4. Convexité - Exercices

Barycentres, parties convexes d'un \mathbb{R} -espace vectoriel

E-4.1. $(5')^*$ Montrer que $C = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le z\}$ est une partie convexe de \mathbb{R}^3 .

Énoncé détaillé - Corrigé

E-4.2. $(10')^{**}$ Soient E un \mathbb{R} -espace vectoriel normé, $n \ge 2$ et $(x_1, \dots, x_n) \in E^n$ unitaires tels que 0 soit dans l'enveloppe convexe de (x_1, \dots, x_n) . Montrer que $\|\sum_{\|k=1\}} x_k\| \le n-2$.

Énoncé détaillé - Corrigé

E-4.3. (25')*** *Théorèmes de Radon et de Helly.* Soit *E* un plan vectoriel réel.

(a) *Théorème de Radon*. Montrer que toute partie finie X de E de cardinal supérieur ou égal à 4 possède une partition de la forme $X = Y \cup Z$, $Y \cap Z = \emptyset$, telle que

$$Conv(Y) \cap Conv(Z) \neq \emptyset$$
.

(b) Théorème de Helly. Soit $(C_1, ..., C_n)$ une famille de $n \ge 3$ convexes de E telle que l'intersection de trois quelconques d'entre eux soit non vide. Montrer que $\bigcap_{1 \le k \le n} C_k \ne \emptyset$.

Énoncé détaillé - Corrigé

Fonctions convexes

E-4.4. $(5')^*$ Soient $f: I \to \mathbb{R}_+$ convexe sur I et $(x, y, z) \in I^3$, x < y < z. Donner le signe de $\begin{bmatrix} 1 & x & f(x) & 1 \\ 1 & y & f(y) & 1 \\ 1 & z & f(z) & 1 \end{bmatrix}$

Énoncé détaillé - Corrigé

E-4.5. $(10')^*$ Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ les angles d'un triangle T non aplati. Montrer que

$$\frac{1}{\sin \alpha} + \frac{1}{\sin \beta} \ge \frac{2}{\cos \frac{\gamma}{2}}.$$

Énoncé détaillé - Corrigé

E-4.6. $(10')^*$ Soit f une fonction convexe sur \mathbb{R} . Montrer qu'il existe $a \in \mathbb{R}$ tel que f soit constante ou strictement monotone sur $a \in \mathbb{R}$ tel que f soit constante ou strictement monotone sur $a \in \mathbb{R}$ tel que f soit constante ou strictement monotone sur $a \in \mathbb{R}$ tel que $a \in \mathbb{R}$ tel qu

Énoncé détaillé - Corrigé

E-4.7. $(10')^{**}$ Que peut-on dire de $f: \mathbb{R} \to \mathbb{R}$ convexe et bornée sur \mathbb{R} ?

Énoncé détaillé – Corrigé

E-4.8. $(15')^{**}$ Soient *I* un intervalle et *f* et *g* deux applications convexes sur *I* à valeurs dans \mathbb{R} .

- (a) Pour $(\lambda, \mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est-elle convexe?
- (b) fg est-elle convexe? Et en ajoutant que f et g sont positives?
- (c) Si f est à valeurs dans un intervalle J et si h est convexe sur J, $h \circ f$ est-elle convexe?
- (d) Si la réponse à l'une des questions précédentes est non, quelle hypothèse ajouter pour que la réponse devienne oui?

Énoncé détaillé - Corrigé

E-4.9. $(10')^{**}$ Soit $f \in C^2([a,b],\mathbb{R})$, on pose $M = ||f''||_{\infty}$. Montrer que pour tout $x \in [a,b]$

$$|f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)| \le M \frac{(b - x)(x - a)}{2}.$$

Énoncé détaillé - Corrigé

E-4.10. $(10')^{**}$ Inégalité de Ky Fan. Soit $(x_1,...,x_n) \in \left[0,\frac{1}{2}\right]^n$. Montrer que

$$\left(\prod_{k=1}^{n} \frac{x_k}{1 - x_k}\right)^{\frac{1}{n}} \le \frac{\sum_{k=1}^{n} x_k}{\sum_{k=1}^{n} (1 - x_k)}.$$

Étudier le cas d'égalité.

E-4.11. $(10')^{**}$ Soit $(a, b, c, d) \in (\mathbb{R}_{+}^{*})^{4}$ vérifiant a + b + c + d = 1. Montrer que

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+d} + \frac{d^2}{d+a} \ge \frac{1}{2}.$$

Étudier le cas d'égalité.

Énoncé détaillé - Corrigé

E-4.12. $(10')^{**}$ Soient E un \mathbb{R} -espace vectoriel et $A \subseteq E$ une partie convexe non vide. Montrer que l'application $f: x \mapsto d(x, A)$ est convexe sur E.

Énoncé détaillé - Corrigé

E-4.13. $(15')^{**}$ Soient $f: \mathbb{R}_+^* \to \mathbb{R}$ et g définie par $g: x \mapsto \frac{f(x)}{x}$.

(a) Montrer que si g est décroissante, alors pour tout $(x, y) \in (\mathbb{R}_+^*)^2$

$$f(x+y) \le f(x) + f(y)$$
.

(b) Montrer la réciproque en supposant de plus f convexe sur \mathbb{R}_+^* .

Énoncé détaillé - Corrigé

E-4.14. $(20')^{**}$ *Polaire d'une fonction convexe.* Soit $f \in C^3(\mathbb{R}, \mathbb{R})$ telle qu'il existe $\alpha > 0$ vérifiant pour tout $x \in \mathbb{R}$, $f''(x) \ge \alpha$.

- (a) Montrer que f' réalise une bijection de classe C^2 de \mathbb{R} sur \mathbb{R} .
- (b) On pose

$$f^*(x) = x f'^{-1}(x) - f(f'^{-1}(x))$$

pour tout $x \in \mathbb{R}$ (*polaire* de f). Calculer les deux premières dérivées de f^* , et en déduire que s'il existe $\beta > 0$ tel que $f''(x) \le \beta$ pour tout $x \in \mathbb{R}$, alors $(f^*)^*$ est bien définie et est égale à f.

- (c) Calculer la polaire de la fonction ch (on introduira la réciproque Argsh du sinus hyperbolique).
- (d) Montrer que pour tout $x \in \mathbb{R}$, $f^*(x) = \sup_{t \in \mathbb{R}} (tx f(t))$.

Énoncé détaillé - Corrigé

E-4.15. $(20')^{***}$ Soit $f: \mathbb{R}_+ \to \mathbb{R}$ convexe et de classe C^1 sur \mathbb{R}_+ . Montrer que pour tout entier $n \ge 2$

$$0 \le \frac{f(0)}{2} + \sum_{k=1}^{n-1} f(k) + \frac{f(n)}{2} - \int_0^n f \le \frac{f'(n) - f'(0)}{8}.$$

Énoncé détaillé - Corrigé

E-4.16. $(20')^{***}$ Soit f une application définie sur un intervalle I à valeurs dans \mathbb{R}_+^* . Montrer l'équivalence entre les deux propriétés suivantes.

- (i) $\ln \circ f$ est convexe sur I.
- (ii) Pour tout $\alpha > 0$, f^{α} est convexe sur I.

Énoncé détaillé - Corrigé

E-4.17. $(20')^{***}$ Soit f définie sur un intervalle ouvert I de \mathbb{R} et à valeurs dans \mathbb{R} .

(a) Montrer que f est convexe sur I si et seulement si pour tout segment $[a,b] \subset I$, a < b, et tout $\lambda \in \mathbb{R}$

$$\varphi_{\lambda}: x \mapsto f(x) - \lambda x$$

est majorée et atteint sa borne supérieure en a ou en b.

(b) On suppose de plus f continue sur I. Montrer que f est convexe si et seulement si pour tout $x \in I$, et pour tout h > 0 vérifiant $[x - h, x + h] \subset I$, on a

$$f(x) \le \frac{1}{2h} \int_{x-h}^{x+h} f(t) \mathrm{d}t.$$

Énoncé détaillé - Corrigé

4. Convexité - Exercices (énoncés détaillés)

Barycentres, parties convexes d'un \mathbb{R} -espace vectoriel

E-4.1. $(5')^*$ Montrer que $f:(x,y)\mapsto x^2+y^2$ est convexe sur \mathbb{R}^2 . En déduire que $C=\{(x,y,z)\in\mathbb{R}^3, x^2+y^2\leq z\}$ est une partie convexe de \mathbb{R}^3 .

Énoncé non détaillé - Corrigé

E-4.2. $(10')^{**}$ Soient E un \mathbb{R} -espace vectoriel normé, $n \ge 2$ et $(x_1, \dots, x_n) \in E^n$ unitaires tels que 0 soit dans l'enveloppe convexe de (x_1, \dots, x_n) . On peut donc considérer $(\lambda_1, \dots, \lambda_n) \in [0, 1]^n$ tel que $\sum_{k=1}^n \lambda_k x_k = 0$ et $\sum_{k=1}^n \lambda_k = 1$.

- (a) Montrer que $\max\{\lambda_k, 1 \le k \le n\} \le \frac{1}{2}$.
- (b) Montrer que $\left\| \sum_{k=1}^{n} x_k \right\| \le n 2$.

Énoncé non détaillé - Corrigé

E-4.3. (25')*** *Théorèmes de Radon et de Helly.* Soit *E* un plan vectoriel réel.

- (a) Théorème de Radon. Soit $(x_1,...,x_p) \in E^p$ avec $p \ge 4$. Montrer qu'il existe $(\lambda_1,...,\lambda_p) \in \mathbb{R}^p$ non tous nuls tel que $\sum_{i=1}^p \lambda_i = 0$
- et $\sum_{i=1}^{p} \lambda_i x_i = 0$. En déduire que toute partie finie X de E de cardinal supérieur ou égal à 4 possède une partition de la forme $X = Y \cup Z$, $Y \cap Z = \emptyset$, telle que

$$Conv(Y) \cap Conv(Z) \neq \emptyset$$
.

(b) Théorème de Helly. Soit (C_1, \ldots, C_n) une famille de $n \ge 3$ convexes de E telle que l'intersection de trois quelconques d'entre eux soit non vide. En raisonnant par récurrence avec le théorème de Radon, montrer que $\bigcap_{k \ge 1} C_k \ne \emptyset$.

Énoncé non détaillé - Corrigé

Fonctions convexes

E-4.4. $(5')^*$ Soient $f: I \to \mathbb{R}_+$ convexe sur I et $(x, y, z) \in I^3$, x < y < z. À l'aide d'opérations sur les lignes, montrer que $\begin{vmatrix} 1 & x & f(x) \\ 1 & y & f(y) \\ 1 & z & f(z) \end{vmatrix} \ge 0$.

Énoncé non détaillé - Corrigé

E-4.5. $(10')^*$ Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ les angles d'un triangle T non aplati. Montrer que $\frac{1}{\sin}$ est convexe sur $]0, \pi[$, et en déduire que

$$\frac{1}{\sin \alpha} + \frac{1}{\sin \beta} \ge \frac{2}{\cos \frac{\gamma}{2}}.$$

Énoncé non détaillé – Corrigé

E-4.6. $(10')^*$ Soit f une fonction convexe sur \mathbb{R} .

- (a) On suppose qu'il existe $(x, y) \in \mathbb{R}^2$ tels que x < y et $f(x) \le f(y)$. Montrer que f est croissante sur $]y, +\infty[$.
- (b) Montrer, en toute généralité, qu'il existe $a \in \mathbb{R}$ tel que f soit constante ou strictement monotone sur] $a, +\infty$ [.

Énoncé non détaillé - Corrigé

E-4.7. $(10')^{**}$ Soit $f: \mathbb{R} \to \mathbb{R}$ convexe et bornée sur \mathbb{R} . Montrer par l'absurde que f est constante.

Énoncé non détaillé - Corrigé

- **E-4.8.** $(15')^{**}$ Soient *I* un intervalle et *f* et *g* deux applications convexes sur *I* à valeurs dans \mathbb{R} .
 - (a) Montrer que $\lambda f + \mu g$ est convexe si $(\lambda, \mu) \in \mathbb{R}^2_+$, mais pas nécessairement s'ils ne sont pas positifs.
- (b) Montrer que fg n'est pas nécessairement convexe, même si elles sont en outre positives. Montrer que fg est convexe si elles sont à la fois croissantes et positives.
- (c) Si f est à valeurs dans un intervalle J et si h est convexe sur J, montrer que $h \circ f$ est convexe si h est en outre croissante, et ne l'est pas nécessairement sinon.

Énoncé non détaillé - Corrigé

- **E-4.9.** $(10')^{**}$ Soit $f \in C^2([a,b],\mathbb{R})$, on pose $M = \|f''\|_{\infty}$. (a) Montrer que $g: x \mapsto f(x) f(a) \frac{f(b) f(a)}{b a}(x a) M\frac{(b x)(x a)}{2}$ est convexe. (b) Montrer que pour tout $x \in [a,b]$

$$\left| f(x) - f(a) - \frac{f(b) - f(a)}{b - a} (x - a) \right| \le M \frac{(b - x)(x - a)}{2}.$$

Énoncé non détaillé – Corrigé

E-4.10. $(10')^{**}$ Inégalité de Ky Fan. Soit $(x_1,...,x_n) \in \left[0,\frac{1}{2}\right]^n$.

- (a) Montrer que $f: x \mapsto \ln\left(\frac{x}{1-x}\right)$ est strictement concave sur $\left[0,\frac{1}{2}\right]$.
- (b) Montrer que

$$\left(\prod_{k=1}^{n} \frac{x_k}{1 - x_k}\right)^{\frac{1}{n}} \le \frac{\sum_{k=1}^{n} x_k}{\sum_{k=1}^{n} (1 - x_k)}.$$

Étudier le cas d'égalité.

Énoncé non détaillé - Corrigé

E-4.11. $(10')^{**}$ Soit $(a, b, c, d) \in (\mathbb{R}_+^*)^4$ vérifiant a + b + c + d = 1.

- (a) Montrer que $f: x \mapsto \frac{1}{1+x}$ est strictement convexe sur \mathbb{R}_+ .
- (b) Montrer que

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+d} + \frac{d^2}{d+a} \ge \frac{1}{2}.$$

Étudier le cas d'égalité.

Énoncé non détaillé - Corrigé

E-4.12. $(10')^{**}$ Soient *E* un \mathbb{R} -espace vectoriel et $A \subset E$ une partie convexe non vide.

(a) Justifier que pour tout $(a, b) \in A^2$ et tout $t \in [0, 1]$

$$d(tx + (1-t)y, A) \le t||x - a|| + (1-t)||y - b||.$$

(b) Montrer que l'application $f: x \mapsto d(x, A)$ est convexe sur E.

Énoncé non détaillé - Corrigé

E-4.13. $(15')^{**}$ Soient $f: \mathbb{R}_+^* \to \mathbb{R}$ et g définie par $g: x \mapsto \frac{f(x)}{x}$.

(a) Montrer que si g est décroissante, alors pour tout $(x, y) \in (\mathbb{R}_+^*)^2$

$$f(x+y) \le f(x) + f(y).$$

On pourra majorer g(x + y) de deux façons différentes.

(b) On suppose que $f(x+y) \le f(x) + f(y)$ pour tout $(x,y) \in (\mathbb{R}_+^*)^2$ et que f est convexe sur \mathbb{R}_+^* . En écrivant y comme barycentre de x et x + y pour x < y, montrer que g est décroissante.

Énoncé non détaillé - Corrigé

E-4.14. $(20')^{**}$ *Polaire d'une fonction convexe.* Soit $f \in C^3(\mathbb{R}, \mathbb{R})$ telle qu'il existe $\alpha > 0$ vérifiant pour tout $x \in \mathbb{R}$, $f''(x) \ge \alpha$.

- (a) Montrer, avec le théorème des accroissements finis, que $f'(\mathbb{R}) = \mathbb{R}$, puis que f' réalise une bijection de classe C^2 de \mathbb{R} sur \mathbb{R} .
- (b) On pose

$$f^*(x) = xf'^{-1}(x) - f(f'^{-1}(x))$$

pour tout $x \in \mathbb{R}$ (*polaire* de f). Montrer que pour tout $x \in \mathbb{R}$

$$(f^*)'(x) = f'^{-1}(x)$$
 ; $(f^*)''(x) = \frac{1}{f''(f'^{-1}(x))}$.

Justifer que s'il existe $\beta > 0$ tel que $f''(x) \le \beta$ pour tout $x \in \mathbb{R}$, alors $(f^*)^*$ est bien définie et est égale à f.

- (c) Calculer la polaire de la fonction ch (on introduira la réciproque Argsh du sinus hyperbolique).
- (d) En étudiant $F_x : t \mapsto tx f(t)$ pour $x \in \mathbb{R}$ fixé, montrer que $f^*(x) = \sup_{t \in \mathbb{R}} (tx f(t))$.

Énoncé non détaillé – Corrigé

E-4.15. $(20')^{***}$ Soit $f: \mathbb{R}_+ \to \mathbb{R}$ convexe et de classe C^1 sur \mathbb{R}_+ .

(a) Montrer que pour tout entier $n \ge 2$

$$\frac{f(0)}{2} + \sum_{k=1}^{n-1} f(k) + \frac{f(n)}{2} - \int_0^n f \ge 0.$$

(b) Montrer, toujours pour $n \ge 2$, que

$$\int_0^n f = \sum_{k=0}^{n-1} \frac{1}{2} (f(k+1) + f(k)) - \sum_{k=0}^{n-1} \int_k^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) dt.$$

En déduire que

$$\frac{f(0)}{2} + \sum_{k=1}^{n-1} f(k) + \frac{f(n)}{2} - \int_0^n f \le \frac{f'(n) - f'(0)}{8}.$$

Énoncé non détaillé - Corrigé

E-4.16. $(20')^{***}$ Soit f une application définie sur un intervalle I à valeurs dans \mathbb{R}_+^* . On souhaite démontrer l'équivalence entre les deux propriétés suivantes.

- (i) $\ln \circ f$ est convexe sur *I*.
- (ii) Pour tout $\alpha > 0$, f^{α} est convexe sur I.
- (a) Montrer le sens (i)⇒(ii).
- (b) On suppose (ii). En écrivant la convexité de f^{α} et en faisant tendre $\alpha > 0$ vers 0 de façon judicieuse, montrer (i).

Énoncé non détaillé - Corrigé

E-4.17. $(20')^{***}$ Soit f définie sur un intervalle ouvert I de \mathbb{R} et à valeurs dans \mathbb{R} .

(a) On suppose que f est convexe sur I. Montrer que pour tout $\lambda \in \mathbb{R}$

$$\varphi_{\lambda}: x \mapsto f(x) - \lambda x$$

est convexe sur I, puis qu'elle est majorée et atteint sa borne supérieure en a ou en b sur tout segment $[a,b] \subset I$.

(b) On suppose réciproquement que φ_{λ} est majorée sur I et atteint sa borne supérieure en a ou en b sur tout segment $[a,b] \subset I$ pour tout $\lambda \in \mathbb{R}$. En choisissant avec soin λ pour $(a,b) \in I^2$ fixés, montrer que f est convexe sur I.

(c) On suppose de plus f continue sur I. Montrer que si f est convexe, alors pour tout $x \in I$, pour tout h > 0 vérifiant $[x - h, x + h] \subset I$ et tout $t \in [0, h]$

$$f(x) \le \frac{1}{2}f(x-t) + \frac{1}{2}f(x+t).$$

En déduire que

$$f(x) \le \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt.$$

(d) Montrer la réciproque du résultat précédent en raisonnant par contraposée avec (b)

Énoncé non détaillé - Corrigé

4. Convexité - Exercices (corrigés)

Barycentres, parties convexes d'un R-espace vectoriel

E-4.1. C est l'épigraphe de $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f: (x,y) \mapsto x^2 + y^2$. f est convexe sur \mathbb{R}^2 car $\varphi: t \mapsto t^2$ l'est, si bien que pour a = (x,y) et b = (x',y') dans \mathbb{R}^2 et $\lambda \in [0,1]$, on a

$$f(\lambda a + (1 - \lambda)b) = \varphi(\lambda x + (1 - \lambda x')) + \varphi(\lambda y + (1 - \lambda y')) \le \lambda \varphi(x) + (1 - \lambda)\varphi(x') + \lambda \varphi(y) + (1 - \lambda)\varphi(y')$$
$$= \lambda(\varphi(x) + \varphi(y)) + (1 - \lambda)(\varphi(x') + \varphi(y')) = \lambda f(a) + (1 - \lambda)f(b)$$

d'où la convexité de f puis celle de C.

Énoncé non détaillé - Énoncé détaillé

E-4.2. Soit $(\lambda_1, \dots, \lambda_n) \in [0, 1]^n$ tel que $\sum_{k=1}^n \lambda_k x_k = 0$ et $\sum_{k=1}^n \lambda_k = 1$. Quitte à réordonner, on les suppose rangés dans l'ordre croissant $\lambda_1 \le \dots \le \lambda_n$, de sorte qu'en particulier, $\lambda_n > 0$. On a par la seconde inégalité triangulaire

$$0 = \left\| \sum_{k=1}^{n} \lambda_k x_k \right\| \ge \lambda_n \|x_n\| - \sum_{k=1}^{n-1} \lambda_k \|x_k\| = \lambda_n - \sum_{k=1}^{n-1} \lambda_k = \lambda_n - (1 - \lambda_n) = 2\lambda_n - 1$$

de sorte que $\lambda_n \leq \frac{1}{2}$. On peut alors écrire

$$x_n = -\frac{1}{\lambda_n} \sum_{k=1}^{n-1} \lambda_k x_k$$

et donc

$$\left\| \sum_{k=1}^{n} x_k \right\| = \left\| \sum_{k=1}^{n-1} \left(1 - \frac{\lambda_k}{\lambda_n} \right) x_k \right\| \le \sum_{k=1}^{n-1} \left(1 - \frac{\lambda_k}{\lambda_n} \right) \|x_k\| = \sum_{k=1}^{n-1} \left(1 - \frac{\lambda_k}{\lambda_n} \right) = n - 1 - \frac{1 - \lambda_n}{\lambda_n} = n - \frac{1}{\lambda_n} \le n - 2.$$

Énoncé non détaillé - Énoncé détaillé

E-4.3. (a) Notons $p = \operatorname{Card}(X)$, (x_1, \dots, x_p) les éléments deux à deux distincts de X. $(\lambda_1, \dots, \lambda_p) \mapsto \left(\sum_{i=1}^p \lambda_i x_i, \sum_{i=1}^p \lambda_i\right)$ n'est pas injective de \mathbb{R}^p dans $E \times \mathbb{R}$ car elle est linéaire et $p \ge 4 > \dim(E \times \mathbb{R}) = 3$, de sorte qu'il existe $(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$ non tous nuls tels que $\sum_{i=1}^p \lambda_i x_i = 0$ et $\sum_{i=1}^p \lambda_i x_i = 0$ (voir l'exercice de TD sur le théorème de Carathéodory qui exploite la même idée). Quitte à les réordonner, on peut supposer que $k \in [[1,p]]$ vérifie $\lambda_1 \le \dots \le \lambda_k \le 0$ et $0 < \lambda_{k+1} \le \dots \le \lambda_p$. On a alors

$$\sum_{i=1}^{k} (-\lambda_i) = \sum_{i=k+1}^{p} \lambda_i$$

et l'on peut noter s la valeur commune de ces deux quantités. On a s>0 car s=0 entraînerait que tous les λ_i sont nuls, en contradiction avec leur construction. On pose alors $\mu_i=-\frac{\lambda_i}{s}$ pour tout $i\in [\![1,k]\!]$ et $v_i=\frac{\lambda_i}{s}$ pour tout $i\in [\![k+1,p]\!]$, qui sont des coefficients positifs et vérifiant $\sum_{i=1}^k \mu_i = \sum_{i=k+1}^p v_i = 1$ par construction. Il vient alors

$$\sum_{i=1}^{k} (-\lambda_i) x_i = \sum_{i=k+1}^{p} \lambda_i x_i \iff \sum_{i=1}^{k} \mu_i x_i = \sum_{i=k+1}^{p} \nu_i x_i.$$

Le point z, valeur commune de ces deux sommes, est donc à la fois dans l'enveloppe convexe de $Y = \{x_1, ..., x_k\}$ et de $Z = \{x_{k+1}, ..., x_p\}$, qui répondent aux exigences de l'énoncé.

(b) On raisonne par récurrence sur n, le cas n=3 étant évident. Supposons le résultat vrai pour $n-1 \ge 3$ et considérons (C_1,\ldots,C_n) des convexes de E d'intersections trois à trois non vides. Par hypothèse de récurrence, l'intersection de n-1 quelconques d'entre eux n'est pas vide, et il existe donc $(x_1,\ldots,x_n) \in E^n$ tel que $x_i \in \bigcap_{\substack{1 \le j \le n \\ i \ne i}} C_j$ pour tout $i \in [1,n]$. Si deux d'entre eux sont égaux, il

s'agit d'un point de $\bigcap_{1 \le i \le n} C_i$. Sinon, comme $n \ge 4$, on peut appliquer le théorème de Radon à $X = \{x_1, \dots, x_n\}$, et (quitte à réordonner) il existe $k \in [1, n]$ tel que $Y = \{x_1, \dots, x_k\}$ et $Z = \{x_{k+1}, \dots, x_n\}$ aient un point commun z dans leurs enveloppes convexes. Comme $Y \subset U_1 = \bigcap_{1 \le i \le k} C_i$ qui est convexe, on a $z \in U_1$, et de même $z \in U_2 = \bigcap_{k+1 \le i \le p} C_i$, puis finalement $z \in \bigcap_{1 \le i \le p} C_i$ comme voulu. Ceci achève la récurrence.

Fonctions convexes

E-4.4. En effectuant $L_2 \leftarrow L_2 - L_1$, $L_3 \leftarrow L_3 - L_1$, puis en développant par rapport à la première colonne, et enfin en factorisant par y - x > 0 et z - x > 0, on a

$$\begin{vmatrix} 1 & x & f(x) \\ 1 & y & f(y) \\ 1 & z & f(z) \end{vmatrix} = \begin{vmatrix} 1 & x & f(x) \\ 0 & y - x & f(y) - f(x) \\ 0 & z - x & f(z) - f(x) \end{vmatrix} = \begin{vmatrix} y - x & f(y) - f(x) \\ z - x & f(z) - f(x) \end{vmatrix}$$
$$= (y - x)(z - x) \begin{vmatrix} 1 & \frac{f(y) - f(x)}{y - x} \\ 1 & \frac{f(z) - f(x)}{z - x} \end{vmatrix}$$
$$= (y - x)(z - x) \left(\frac{f(z) - f(x)}{z - x} - \frac{f(y) - f(x)}{y - x} \right) \ge 0.$$

Énoncé non détaillé - Énoncé détaillé

E-4.5. Comme T n'est pas aplati, on peut chosir $(\alpha, \beta, \gamma) \in]0, \pi[^3$ vérifiant $\alpha + \beta + \gamma = \pi$. $f = \frac{1}{\sin}$ étant convexe sur $]0, \pi[$ car deux fois dérivable et de dérivée seconde $\frac{\sin^2 + 2\cos^2}{\sin^3} > 0$ (calcul facile), on a

$$\frac{1}{2}(f(\alpha)+f(\beta)) \geq f\left(\frac{\alpha+\beta}{2}\right) = f\left(\frac{\pi}{2}-\frac{\gamma}{2}\right)$$

c'est-à-dire

$$\frac{1}{2} \left(\frac{1}{\sin \alpha} + \frac{1}{\sin \beta} \right) \ge \frac{1}{\sin \left(\frac{\pi}{2} - \frac{\gamma}{2} \right)} = \frac{1}{\cos \frac{\gamma}{2}}$$

comme voulu.

Énoncé non détaillé - Énoncé détaillé

E-4.6. Supposons qu'il existe $(x, y) \in \mathbb{R}^2$ tels que x < y et $f(x) \le f(y)$. Pour tous $(z, t) \in]y, +\infty[^2$ tel que z < t, on a par applications successives de l'inégalité des pentes

$$\frac{f(t) - f(z)}{t - z} \ge \frac{f(t) - f(x)}{t - x} \ge \frac{f(y) - f(x)}{v - x} \ge 0$$

ce qui montre que $f(t) \ge f(z)$ et donc que f est croissante sur $]y, +\infty[$. Si f n'est pas constante, il existe alors $a \in]y, +\infty[$ tel que f(a) > f(y). En reprenant alors le même raisonnement, on montre que f est strictement croissante sur $]a, +\infty[$.

Dans le cas contraire, on a

$$\forall (x, y) \in \mathbb{R}^2, x < y \Rightarrow f(x) > f(y)$$

ce qui signifie cette fois que f est strictement décroissante sur \mathbb{R} .

Énoncé non détaillé - Énoncé détaillé

E-4.7. Supposons que f ne soit pas constante, et considérons $(x, y) \in \mathbb{R}^2$ tels que f(x) > f(y). Supposons par exemple que x > y. Alors d'après l'inégalité des pentes, pour tout z > x

$$\frac{f(z) - f(y)}{z - y} \ge \frac{f(x) - f(y)}{x - y} \iff f(z) > \frac{f(x) - f(y)}{x - y} (z - y) + f(y)$$

qui diverge vers $+\infty$ quand z tend vers $+\infty$, ce qui est absurde puisque f est bornée. Le même raisonnement en $-\infty$ permet de conclure si x < y. Finalement, f est nécessairement constante.

Énoncé non détaillé - Énoncé détaillé

E-4.8. (a) La réponse est non, prendre f strictement convexe, $\lambda = -1$ et $\mu = 0$. Si on ajoute que λ et μ sont positifs ou nuls, pour tout $(x, y) \in I^2$ et tout $t \in [0, 1]$

$$(\lambda f + \mu g)(tx + (1 - t)y) = \lambda f(tx + (1 - t)y) + \mu g(tx + (1 - t)y) \leq \lambda t f(x) + \lambda (1 - t) f(y) + \mu t g(x) + \mu (1 - t) g(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(y) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) = t(\lambda f + \mu g)(x) + (1 - t)(\lambda f + \mu g)(x) + (1$$

si bien que $\lambda f + \mu g$ est convexe.

(b) Non: $f: x \mapsto x^2$ et $g: x \mapsto e^x$ sont convexes sur \mathbb{R} mais $\varphi = fg: x \mapsto x^2 e^x$ ne l'est pas : elle est deux fois dérivable et pour tout $x \in \mathbb{R}$

$$\varphi'(x) = (x^2 + 2x)e^x$$
; $\varphi''(x) = (x^2 + 4x + 2)e^x$

si bien que φ'' n'est pas positive sur \mathbb{R} ($\varphi''(-1) < 0$, par exemple). En revanche, si f et g sont convexes croissantes et positives, alors pour tout $(x, y) \in I^2$ et pour tout $t \in [0, 1]$

$$(fg)(tx+(1-t)y) \le (tf(x)+(1-t)f(y))(tg(x)+(1-t)g(y)) = t^2(fg)(x)+(1-t)^2(fg)(y)+t(1-t)(f(x)g(y)+f(y)g(x)).$$

Or, en supposant par exemple $x \le y$

$$f(x)g(x) + f(y)g(y) - (f(x)g(y) + f(y)g(x)) = (f(y) - f(x))(g(y) - g(x)) \ge 0$$

si bien que

$$(fg)(tx + (1-t)y) \le t^2(fg)(x) + (1-t)^2(fg)(y) + t(1-t)(f(x)g(x) + f(y)g(y)) = t(fg)(x) + (1-t)(fg)(y) + t(1-t)(f(x)g(x) + f(y)g(y)) = t(fg)(x) + (1-t)(f(x)g(x) + f(y)g(x)) = t(fg)(x) + (fg)(x) + (fg)(x)$$

et fg est convexe.

(c) Non plus... Pour $h: x \mapsto e^{-x}$ et $f: x \mapsto x^2$ sur \mathbb{R} , $h \circ f: x \mapsto e^{-x^2}$ n'est pas convexe (dériver deux fois). Si on suppose de plus h croissante, alors pour tout $(x, y) \in I^2$ et tout $t \in [0, 1]$

$$(h \circ f)(tx + (1-t)y) \le h(\lambda t f(x) + \lambda (1-t) f(y)) \le t(h \circ f)(x) + (1-t)(h \circ f)(y)$$

et $h \circ f$ est convexe.

(d) On a répondu dans chaque question.

Énoncé non détaillé - Énoncé détaillé

E-4.9. Soit $g: x \mapsto f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) - M\frac{(b - x)(x - a)}{2}$. g est de classe C^2 et $g'': x \mapsto f''(x) + M \ge 0$, si bien que g est convexe. Le graphe de g est donc situé sous sa corde [a, b], ce qui donne pour tout $x \in [a, b]$

$$g(x) \le g(a) + \frac{g(b) - g(a)}{b - a}(x - a) = 0 \iff f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) \le M \frac{(b - x)(x - a)}{2}.$$

On montre de même que $h: x \mapsto f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) + M\frac{(b - x)(x - a)}{2}$ est concave puis positive, ce qui donne le résultat voulu.

Énoncé non détaillé - Énoncé détaillé

E-4.10. L'inégalité est triviale si l'un des x_k est nul. $f: x \mapsto \ln\left(\frac{x}{1-x}\right) = \ln(x) - \ln(1-x)$ est strictement concave sur $\left[0, \frac{1}{2}\right]$ car deux fois dérivable et de dérivée seconde $x \mapsto \frac{2x-1}{x^2(1-x)^2}$. Par l'inégalité de Jensen

$$f\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right) \ge \frac{1}{n}\sum_{k=1}^{n}f(x_{k}) \iff \ln\left(\frac{\frac{1}{n}\sum_{k=1}^{n}x_{k}}{1-\frac{1}{n}\sum_{k=1}^{n}x_{k}}\right) = \ln\left(\frac{\frac{1}{n}\sum_{k=1}^{n}x_{k}}{\frac{1}{n}\sum_{k=1}^{n}(1-x_{k})}\right) \ge \frac{1}{n}\sum_{k=1}^{n}\ln\left(\frac{x_{k}}{1-x_{k}}\right)$$

d'où le résultat par croissance de l'exponentielle. Le cas d'égalité est obtenu quand tous les x_k sont égaux, par stricte concavité.

Énoncé non détaillé - Énoncé détaillé

E-4.11. $f: x \mapsto \frac{1}{1+x}$ est strictement convexe sur \mathbb{R}_+ , et

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+d} + \frac{d^2}{d+a} = af\left(\frac{b}{a}\right) + bf\left(\frac{c}{b}\right) + cf\left(\frac{d}{c}\right) + df\left(\frac{a}{d}\right)$$
$$\geqslant f(b+c+d+a) = f(1) = \frac{1}{2}.$$

Par stricte convexité, l'égalité a lieu si et seulement si $\frac{b}{a} = \frac{c}{b} = \frac{d}{c} = \frac{a}{d}$. En notant $\lambda > 0$ cette valeur commune, on aboutit à

$$b = \lambda a = \lambda^2 d = \lambda^3 c = \lambda^4 b$$

donc $\lambda = 1$, et $a = b = c = d = \frac{1}{4}$.

Énoncé non détaillé - Énoncé détaillé

E-4.12. Soient $(x, y) \in E^2$, $t \in [0, 1]$ et $(a, b) \in A^2$. Comme A est convexe, $ta + (1 - t)b \in A$, de sorte que

$$d(tx + (1-t)y, A) \le ||tx + (1-t)y - (ta + (1-t)b)|| \le t||x - a|| + (1-t)||y - b||.$$

On peut passer successivement dans le terme de droite à la borne inférieure pour $a \in A$, puis pour $b \in A$, ce qui donne bien

$$d(tx + (1 - t)y, A) \le td(x, A) + (1 - t)d(x, A)$$

et donc la convexité de $x \mapsto d(x, A)$.

Énoncé non détaillé - Énoncé détaillé

E-4.13. (a) Pour tout $(x, y) \in (\mathbb{R}_+^*)^2$

$$\frac{f(x)}{x} \ge \frac{f(x+y)}{x+y} \iff f(x) \ge x \frac{f(x+y)}{x+y}.$$

On a de même $f(y) \ge y \frac{f(x+y)}{x+y}$ d'où le résultat en sommant.

(b) Si x < y, y est barycentre de x et x + y

$$y = \frac{x}{y}x + \left(1 - \frac{x}{y}\right)(x+y)$$

ďoù

$$f\left(\frac{x}{y}x + \left(1 - \frac{x}{y}\right)(x + y)\right) \le \frac{x}{y}f(x) + \left(1 - \frac{x}{y}\right)f(x + y) \le \frac{x}{y}f(x) + \left(1 - \frac{x}{y}\right)f(x) + \left(1 - \frac{x}{y}\right)f(y)$$

si bien que

$$f(y) \le f(x) + \left(1 - \frac{x}{y}\right) f(y) \iff x f(y) \le y f(x) \iff g(y) \le g(x)$$

ce qu'on voulait.

Énoncé non détaillé - Énoncé détaillé

E-4.14. (a) f'' est strictement positive sur \mathbb{R} et donc f' est strictement croissante. Comme elle est en outre dérivable, elle est continue sur \mathbb{R} et réalise donc une bijection de \mathbb{R} sur son image. Cependant, comme f' est en particulier dérivable sur [0, x] pour tout x > 0, il existe d'après le théorème des accroissement finis un $c \in [0, x]$ tel que f'(x) - f'(0) = xf''(c) d'où

$$f'(x) \ge \alpha x + f'(0)$$

ce qui montre que $\lim_{x\to +\infty} f'(x) = +\infty$. On a de même que $\lim_{x\to -\infty} f'(x) = -\infty$ et f' réalise donc une bijection de $\mathbb R$ sur $\mathbb R$. Enfin, f' est de classe C^2 sur $\mathbb R$ comme dérivée d'une application de classe C^2 ce qui conclut.

(b) f^* est de classe C^1 sur $\mathbb R$ comme différence d'un produit et d'une composée d'applications de classe C^2 sur $\mathbb R$ (la composition ne pose pas de problème puisque f est définie sur $\mathbb R$ et f'^{-1} est à valeurs réelles). On a par le théorème de dérivation des fonctions composées que pour tout $x \in \mathbb R$

$$(f^*)'(x) = f'^{-1}(x) + \frac{x}{f''(f'^{-1}(x))} - \frac{1}{f''(f'^{-1}(x))} f'(f'^{-1}(x)) = f'^{-1}(x)$$

et donc

$$(f^*)''(x) = \frac{1}{f''(f'^{-1}(x))}.$$

S'il existe $\beta > 0$ tel que $f''(x) \le \beta$ pour tout $x \in \mathbb{R}$, on a alors $(f^*)''(x) \ge \frac{1}{\beta}$ pour tout $x \in \mathbb{R}$ et l'on peut appliquer tout ce qui précède à f^* . $(f^*)^*$ est donc bien définie. En remarquant que $(f^*)' = f'^{-1}$, il vient pour tout $x \in \mathbb{R}$

$$(f^*)^*(x) = x(f^*)^{\prime - 1}(x) - f^*((f^*)^{\prime - 1}(x))$$

$$= xf'(x) - f^*(f'(x))$$

$$= xf'(x) - f'(x)f'^{\prime - 1}(f'(x)) + f(f'^{\prime - 1}(f'(x)))$$

$$= xf'(x) - f'(x)x + f(x)$$

$$= f(x)$$

d'où $(f^*)^* = f$, ce qu'on voulait.

(c) on sait que sh réalise une bijection de classe C^{∞} de \mathbb{R} dans \mathbb{R} . Soit $y \in \mathbb{R}$, on cherche $x \in \mathbb{R}$ tel que $\frac{e^x - e^{-x}}{2} = y$. En posant $X = e^x$, il vient

$$\frac{X - \frac{1}{X}}{2} = y \iff X^2 - 2yX - 1 = 0.$$

On en déduit que $X = e^x = y + \sqrt{1 + y^2}$, l'autre racine $y - \sqrt{1 + y^2}$ de ce trinôme en X étant négative puisque $\sqrt{1 + y^2} > \sqrt{y^2} = |y| \ge y$. Finalement, pour tout $y \in \mathbb{R}$

$$Argsh(y) = \ln(y + \sqrt{1 + y^2}).$$

Notons que ch'' = ch ≥ 1 , ce qui valide l'existence de ch*. Il vient pour tout $x \in \mathbb{R}$

$$ch^*(x) = xArgsh(x) - ch(Argsh(x)).$$

Comme ch = $\sqrt{1 + \text{sh}^2}$, on obtient finalement

$$ch^*(x) = x \operatorname{Argsh}(x) - \sqrt{1 + x^2}.$$

(d) Posons pour tout $x \in \mathbb{R}$ l'application $F_x : t \mapsto tx - f(t)$. F_x est de classe C^3 sur \mathbb{R} et pour tout $t \in \mathbb{R}$

$$F_{x}'(t) = x - f'(t).$$

f' est décroissante et bijective de $\mathbb R$ sur $\mathbb R$, si bien que F'_x est strictement positive sur $]-\infty,f'^{-1}(x)[$ et strictement négative sur $]f'^{-1}(x),+\infty[$. On en déduit que F_x atteint son maximum (strict) en $t=f'^{-1}(x)$ et donc que

$$\sup_{t \in \mathbb{R}} tx - f(t) = \sup_{t \in \mathbb{R}} F_x(t) = F_x(f'^{-1}(x)) = f'^{-1}(x)x - f(f'^{-1}(x)) = f^*(x)$$

ce qu'on voulait.

Énoncé non détaillé - Énoncé détaillé

E-4.15. On a par la relation de Chasles

$$\int_0^n f = \sum_{k=0}^{n-1} \int_k^{k+1} f.$$

f étant convexe, pour tout $k \in [0, n-1]$, son graphe sur [k, k+1] est situé sous la corde reliant ses deux extrémités (graphiquement, l'aire sous le graphe de f est inférieure ou égale à celle d'un trapèze). Formellement, on a pour tout $t \in [k, k+1]$

$$f(t) \le (f(k+1) - f(k))(t-k) + f(k)$$

d'où par croissance de l'intégrale

$$\int_{k}^{k+1} f(t) dt \le \left[(f(k+1) - f(k)) \frac{(t-k)^{2}}{2} + f(k)(t-k) \right]_{k}^{k+1} = \frac{f(k+1) + f(k)}{2}.$$

Il vient en sommane de 0 à n-1

$$\int_0^n f \le \frac{f(0)}{2} + \sum_{k=1}^{n-1} f(k) + \frac{f(n)}{2}$$

ce qui donne la partie gauche de notre double inégalité.

Pour tout $k \in [0, n-1]$, on effectue ensuite dans $\int_{k}^{k+1} f$ une intégration par parties. Il vient

$$\begin{split} & \int_{k}^{k+1} f = \left[\left(t - k - \frac{1}{2} \right) f(t) \right]_{k}^{k+1} - \int_{k}^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) \mathrm{d}t = \frac{1}{2} (f(k+1) + f(k)) - \int_{k}^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) \mathrm{d}t \\ & \iff \frac{1}{2} (f(k+1) + f(k)) - \int_{k}^{k+1} f = \int_{k}^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) \mathrm{d}t. \end{split} \tag{\clubsuit}$$

Or

$$\int_{k}^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) dt = \int_{k}^{k+\frac{1}{2}} \left(t - k - \frac{1}{2} \right) f'(t) dt + \int_{k+\frac{1}{2}}^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) dt.$$

Comme f' est croissante et $t - k - \frac{1}{2} \le 0$ pour $t \in \left[k, k + \frac{1}{2}\right]$, on a

$$\int_{k}^{k+\frac{1}{2}} \left(t - k - \frac{1}{2} \right) f'(t) dt \le \int_{k}^{k+\frac{1}{2}} \left(t - k - \frac{1}{2} \right) f'(k) dt = f'(k) \left[\frac{1}{2} \left(t - k - \frac{1}{2} \right)^{2} \right]_{k}^{k+\frac{1}{2}} = -\frac{f'(k)}{8}.$$

On obtient de même

$$\int_{k+\frac{1}{2}}^{k+1} \left(t - k - \frac{1}{2} \right) f'(t) dt \le \frac{f'(k+1)}{8}$$

puis par sommation de (\spadesuit) pour k allant de 0 à n-1

$$\frac{f(0)}{2} + \sum_{k=1}^{n-1} f(k) + \frac{f(n)}{2} - \int_0^n f \le \sum_{k=1}^{n-1} \frac{f'(k+1) - f'(k)}{8} = \frac{f'(n) - f'(0)}{8}$$

comme voulu.

Énoncé non détaillé - Énoncé détaillé

E-4.16. Supposons (i). $\alpha(\ln \circ f)$ est alors convexe pour tout $\alpha > 0$: pour tout $(x, y) \in I^2$ et tout $t \in [0, 1]$

$$\alpha \ln f(tx + (1-t)y) \le t\alpha \ln f(x) + (1-t)\alpha \ln f(y)$$

et par croissance puis convexité de l'exponentielle

$$f(tx + (1-t)y)^{\alpha} \le \exp\left(t\alpha \ln f(x) + (1-t)\alpha \ln f(y)\right) \le tf(x)^{\alpha} + (1-t)f(y)^{\alpha}$$

donc f^{α} est convexe.

Supposons (ii) : on a pour tout $\alpha > 0$, tout $(x, y) \in I^2$ et tout $t \in [0, 1]$ en écrivant la convexité de f^{α} , en passant au logarithme et en divisant par α

$$\ln(f(tx+(1-t)y)) \leq \frac{\ln(tf(x)^{\alpha}+(1-t)f(y)^{\alpha})}{\alpha} = g(\alpha).$$

On peut faire tendre α vers 0 dans $g(\alpha)$ en reconnaissant dans la limite la dérivée en 0 de φ : $\alpha \mapsto \ln(tf(x)^{\alpha} + (1-t)f(y)^{\alpha})$. Or pour tout $\alpha \ge 0$

$$\varphi'(\alpha) = \frac{t \ln(f(x))f(x)^{\alpha} + (1-t)\ln(f(y))f(y)^{\alpha}}{tf(x)^{\alpha} + (1-t)f(y)^{\alpha}}$$

donc $\varphi'(0) = t \ln(f(x)) + (1 - t) \ln(f(y))$ et

$$\ln(f(tx + (1-t)y)) \le t \ln(f(x)) + (1-t) \ln(f(y))$$

comme voulu.

Énoncé non détaillé - Énoncé détaillé

E-4.17. (a) Supposons f convexe : on vérifie immédiatement que pour tout $\lambda \in \mathbb{R}$, φ_{λ} est également convexe. On a alors pour tout $[a,b] \subset I$ et pour tout $x \in [a,b]$ l'existence de $t \in [0,1]$ tel que x = ta + (1-t)b et il vient en notant $M = \max(\varphi_{\lambda}(a), \varphi_{\lambda}(b))$

$$\varphi_{\lambda}(x) \le t\varphi_{\lambda}(a) + (1-t)\varphi_{\lambda}(b) \le tM + (1-t)M = M$$

si bien que φ_{λ} est majorée sur [a,b] et $\sup_{[a,b]} \varphi_{\lambda} = \max_{[a,b]} \varphi_{\lambda} = M$.

Supposons réciproquement que pour tout $\lambda \in \mathbb{R}$, φ_{λ} soit majorée sur tout $[a,b] \subset I$ de borne supérieure atteinte en a ou b. Pour a et b fixés tels que a < b, on prend alors $\lambda = \frac{f(b) - f(a)}{b - a}$, valeur qui assure que $\varphi_{\lambda}(a) = \varphi_{\lambda}(b)$. Alors pour tout $t \in [0,1]$

$$f(ta + (1-t)b) = \varphi_{\lambda}(ta + (1-t)b) + \frac{f(b) - f(a)}{b - a}(ta + (1-t)b) \le \varphi_{\lambda}(a) + \frac{f(b) - f(a)}{b - a}(ta + (1-t)b)$$

et compte tenu du fait que $\varphi_{\lambda}(a) = \varphi_{\lambda}(b)$

$$\begin{split} f(ta+(1-t)b) & \leq t\varphi_{\lambda}(a) + (1-t)\varphi_{\lambda}(b) + \frac{f(b)-f(a)}{b-a}(ta+(1-t)b) \\ & = tf(a) - \frac{f(b)-f(a)}{b-a}ta + (1-t)f(b) - \frac{f(b)-f(a)}{b-a}(1-t) + \frac{f(b)-f(a)}{b-a}(ta+(1-t)b) = tf(a) + (1-t)f(b) \end{split}$$

ce qui montre bien que f est convexe sur I puisque a et b sont arbitraires.

(b) Si f est convexe, alors pour tout $x \in I$, h > 0 tel et $t \in [0, h]$

$$f(x) = f\left(\frac{1}{2}(x-t) + \frac{1}{2}(x+t)\right) \le \frac{1}{2}f(x-t) + \frac{1}{2}f(x+t)$$

ce qui donne par intégration sur [0, h]

$$2hf(x) \le \int_0^h f(x-t)dt + \int_0^h f(x+t)dt = \int_{x-h}^{x+h} f(u)du$$

en posant u = x - t dans la première intégrale et u = x + t dans la seconde, d'où le résultat en divisant par 2h > 0.

Réciproquement, on raisonne par contraposée en supposant que f n'est pas convexe : d'après la question précédente, il existe $\lambda \in \mathbb{R}$ et $(a,b) \in I^2$, a < b, tels que φ_λ (qui est nécessairement majorée sur [a,b] car continue sur ce segment) atteigne son maximum (toujours du fait de la continuité sur un segment) en $x \in]a,b[$, avec $\varphi_\lambda(a) < \varphi_\lambda(x)$ et $\varphi_\lambda(b) < \varphi_\lambda(x)$. On prend alors $h=\min(x-a,b-x)$ de sorte que, soit x-h=a, soit x+h=b. On suppose par exemple qu'on se trouve dans le premier cas. Il vient

$$\varphi_{\lambda}(t) \leq \varphi_{\lambda}(x)$$

pour tout $t \in [x-h,x+h]$. Par intégration sur [x-h,x+h] de $t \mapsto \varphi_{\lambda}(x) - \varphi_{\lambda}(t)$ qui est positive, continue et non identiquement nulle (puisque $\varphi_{\lambda}(x-h) = \varphi_{\lambda}(a) < \varphi_{\lambda}(x)$), il vient par stricte positivité de l'intégrale

$$\int_{x-h}^{x+h} \varphi_{\lambda}(x) dt > \int_{x-h}^{x+h} \varphi_{\lambda}(t) dt$$

ce qui donne

$$2h(f(x) - \lambda x) > \int_{x-h}^{x+h} f(t) dt - 2h\lambda x \iff f(x) > \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$$

et achève la preuve par contraposée.

Énoncé non détaillé – Énoncé détaillé