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Providing and adapting
infrastructures and architectures

Application of knowledge, methodologies and
techniques to use cases

Industrial use cases
= Hot-rolled wide strip
= Cold rolling area
=  Wire rod rolling

Project duration: 01.06.2018 —31.05.2022
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methods) applied in steel industry in particular at the fast-
rolling processes (Lambda Architecture)
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Motivation R |

There is the demand to increase the stability of production processes
and the quality of the products in the production of rolled steel.

Sensors . . . . .
*  Current sensor equipment at rolling facilities in steel production

delivers masses of data and information about the process, the
I
i

product and its quality

* 1D/2D geometry (sensor, PLC) event — 10Hz
* Surface inspection (image)
* Process data (PLC, sensor, bus) event — 500Hz

... Ima [ '
% MES & ERP

Industrial buses

e Data are supplied at high sample rates and high spatial resolutions

Problem: process supervision lacks an
online or near-online exploitation of the
available data

Wi
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Applicable methodologies to meet the requirements of online/near-online supervision of processes can

be found in knowledge domains like Data Analytics, Machine Vision and in Big Data techniques.
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* The implementation of methodologies for data ingestion, storage and transmission to achieve highest possible
data throughput rates, because this becomes necessary for the aimed online or near online processing into
operational practice at steel production.

* The application of newest technologies of Data Analytics for analysis and modelling, because the existing data

Historical data

:

acquisition systems supply masses of data of various structures and contents, which have to be analysed and

processed together.
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Technical approach RI } A

The technical solutions based on

* the state-of-the-art equipment of the investigated production facilities (brown-field implementation),
* the experts' knowledge about the underlying processes and their physical relations (model definition),
» the application of innovative methodologies of modern data processing (Big Data methodologies).
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https://databricks.com/glossary/lambda-architecture
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Aim:

Development of a platform software solution based on Lambda Architecture to strengthen and optimize
the processes of coils galvanization

a. Forecast of top defects at HDG line due to flatness problem

b. Prediction of specific setup parameters to avoid or limit process problems and product defects during the
galvanization

Platform solution requirement:
= Ingestion and elaboration of high frequency variables (process parameters at Galvanizing line)

= Storing of length-based data (coil profile, mechanical charactetistics, stressometer matrix at CRM for each pass,
Zinc profile top/bottom), time series and large data per coil (images) in datalake

= Heavy data processing for data preparation in the training cycle of ML
= Implementation, deployment and update of ML models

= Storage of results on relational-db

= HMI accessible via web
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Methodological approach RI } A

Development of a platform to strengthen and optimize the processes of coils galvanization
a. Prediction of top defects at HDG line due to flatness problem
b. Prediction of specific parameters setup to avoid or limit problems during the galvanization
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Project Lambda
Architecture Schema

v" Model are created and retrained
+» The result (as code format or parameters values is
stored in the dedicated MySQL server)

v' Batch view on current production are loaded on MySQL server

:
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v' Pre-processed streamed data feed the ML models to

make predictions. DB
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model repository on MySql
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\ 4

y
Dashboard

APACHE

\SEEORARan S/

Visualization




CONTROLNSTEEL

Data preparation,

Online

analysis and modelling

RIyA

ML Pipeline | Ean?r?ttelcjerr?ng l
Offline D Feature Training / Deployed .
ML Pipeline AlEIRIRE (PR Engineering > Evaluaon | Model 7 Scoring
Preparation of dataset based on historical data for the Modelling
training/test of Machine Learning models involves: * Data Segregation
e Rescale/Transform * Split subsets of data to train the model and further validate
CRM « Stressometer tension to IUnit values how it performs against new data
Stressometer/ . .« .
MM e Data Alignment * Training
* Interpolation on length/width * Different schemes of Back Propagation Neural Network @
* Realignment to the correct position with the IBA I — —
QDR and Zinc profile data based on two reported || = — e, —T—
Pro(lj:)uBction dafa: the elon atlon at |Ck|m |me TF-ANN-1  0.816 0.079 SM \Llﬁ'; Iba Guida1l Centr.1 Guida2 Centr.2
. the Wel ght Of the Eut magterlal at HDG Ilne TF-ANN-2 0.884 0.781 SM \Lﬁ'; lba Guida1l Centr.1 Guida2 Centr.2 Guida3 Centr.3
N M|55|ng values handﬁng & F|Iter on no|se TF-ANN-3 0.824 0.678 SM \Llﬁ_g Iba Guida1 Centr.1 Guida3 Centr.3
«  Outliers detection and treatment TF-ANN-3. 0 081 0663 SM \L'JSTQ Iba Guida3 Centr.3
o2 0946 0071 SM S Iba Guidal Cent! Guida2 Centr2 Guida3 Centr.3
Analysis for feature/variable extraction: o2 0902 0035 SM |>° lba Guidal Cenird Guida2 Cenir2 Guida3 Centr3
° Feature englneerlng & DlmenSIonallty redUCtlon :::‘:;_23 0.958 0.863 SM \L/ﬁ.; Iba Guidal Centr.1 Guida2 Centr.2 Guida3 Centr.3
Correlations, PCA (‘:\:n%i 0.944 0905 SM \L'JsTg lba Guidal Centri Guida2 Centr2 Guida3 Centr.3
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Batch Layer Deploy
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ML flow of batch process (a)

Online
. Feature
ML Pipeline Online Data Engineering
Offline Feature Training /
ML Pipeline Historical Data Engineering Evaluation

Stressometer/ values

MM * Data Alignment

->Profile
DB * Crown
Production * Wedge
e Build_up

* Thickness

-Line, Coil_Qlt_In, Coil_Supplier

* Vel _Process_Before_Acc Min/Max

* Vel _Process_HF_After_Acc_Min/Max

* Perc_Acc_Min/Max

* Vel _Process_Before_Acc_SET/Vel_Pr
ocess_HF_After_Acc_SET/
Perc_Acc_SET

e Rescale/Transform
CRM - Stressometer tension to IUnit

- Interpolation on length/width

l

Deployed o .
— > Model > Scoring

List of configuration
for setup parameters

50_150_170
63_150_170
77_150_170
90_150_170

OUTPUT

pos_guidel
pos_centeringl

o

OUTPUT
. pos_guida3
* pos_centering3

80_150_170

++ Calculation of index on each position of coil length based on the value of
guide and centering device predicted by ML model

>=-20<=20 >=-80 <=80 Position: Centered Guide: Low Correction
n >=-20<=20 >-200 <-80; >80 <200 Position: Centered Guide: Medium Correction
BE  >--50<-20;>20<=50 <=-80 >=80 Position: Slight Heel Guide: Low Correction

B >=50<20;>20<=50 >-200<-80; >80 <200 Position: Slight Heel Guide: Medium Correction

>=-180 <-50; >50
<=180 <=-200 >=200 Position: Severe Heel Guide: Max Correction

++  Calculation of global coil criticality (red, yellow, green) based on the
percentages of positional indexes

Criticality classification logic

% Coil Length

0-100

0-100
80 -100 Ho)= 7L 0-49.9
15-100 2-14.9 =)
5-100 1-4.9 0-0.9

0-100
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Flow implementation of batch process (a

Nifi execution flow with processors interactions starting from data sources until the ML model execution
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Visualization of batch process (a) Ri } 2

Coils Criticality for Galvanization

Web Interface based on
B Apache Hitp Server

Coil Criticality maps for different setup
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ML Flow of real time process (b)
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Solutions and main achieved results Rl}Fl

* Online data acquisition systems for high resolution process and quality data, by means of innovative tools
from Big Data technology.

* Development of models for the monitoring and control of the quality of products depending on process
parameters, using advanced Data Analytics and Machine Learning techniques.

v’ A better exploitation of available process and product data through innovative methods and tools for data
handling improves the insight into the steel making processes and the enables the early identification of
disturbing behaviour.

v A better production process supervision and an early detection of anomalies and instabilities corresponds
to a reduction of downgraded products, a higher plant availability and a more sustainable production.
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