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A B S T R A C T   

Distributed flexible energy consumption, production and storage technologies are an option to increase the 
flexibility of electricity systems and foster the integration of variable renewable energy sources. Aggregation 
business models, providing residential customers access to different electricity markets, can activate and utilize 
this untapped flexibility potential. However, economic feasibility for both aggregator and customers is a pre-
requisite for the adoption of these business models. In a European electricity market design with sequential 
markets, participation on multiple markets is supposed to further increase the economic benefits of aggregated 
demand response. In this work, a modular and extensible operational optimization and simulation framework 
based on mixed interger linear programming is developed to investigate different business models for aggre-
gation of residential flexibility options on multiple markets. Simulation results of a specific case study show that 
considering day-ahead, balancing and intraday markets with adequate risk management in the optimization can 
significantly improve economic benefits compared to single-market optimization. Battery storages contribute 
most to these benefits. Business models on multiple markets are complex in terms of business model design and 
optimization, but they are economical for both aggregator and customers. Moreover they provide additional 
flexibility options to electricity systems. Thus, barriers for their implementation should be mitigated.   

1. Introduction 

Increased flexibility is a crucial requirement for the ongoing inte-
gration of variable Renewable Energy Sources (RES) and the transition 
to a sustainable renewable energy system [1]. Aggregation of distributed 
flexible demand and production and provision of access to wholesale 
electricity and balancing markets is one of many promising options to 
increase the flexibility of electricity systems [2]. 

However, the multitude of different flexible end user components 
and portfolios, different characteristics for different electricity markets 
and the complexity of corresponding business model design makes the 
aggregation and coordinated control of distributed flexible technologies 
a challenging task [3]. Technical constraints of individual components 
as well as customers’ comfort limits have to be respected. Furthermore, 
interfering in the operation of end user components might yield unde-
sired effects on total energy efficiency, technical lifetime or grid costs. 

In this work a modular optimization framework is presented that 
allows to optimize a portfolio of flexible electricity consumption, pro-
duction and storage technologies on the day-ahead spot market and a 
balancing market. It is embedded in a simulation framework to simulate 

stochastic balancing market activations and corresponding reactions of 
the aggregator on the intraday market. The underlying sequence of 
electricity markets (day-ahead, intraday and balancing markets) reflects 
the electricity market design in many regions in Europe [4]. 

The framework is applied to a specific case study considering an 
aggregator of residential customers optimizing their flexible compo-
nents on the day-ahead spot market, a balancing market and the 
intraday market. Different scenarios and portfolio configurations are 
analyzed to identify crucial impact factors for the economic feasibility of 
aggregator business models and to answer the following research 
questions:  

• What economic benefits can be achieved with aggregated residential 
flexible components on various markets?  

• What is the contribution of different technology types (battery, 
electric vehicle, heat pump, electric boiler, photovoltaic (PV) sys-
tem) to these benefits?  

• How does market-driven flexibility optimization impact the share of 
PV self-consumption of prosumers?  

• What is the optimal level of aggregation for the optimization of 
multiple components? 
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The paper is organized as follows: Section 2 provides an overview of 
work related to electricity aggregators, the regulatory framework and 
portfolio optimization on multiple markets and explains the contribu-
tions of this work beyond the state of the art. Section 3 describes the 
mathematical approach of the optimization and simulation framework. 
The empirical scaling for the investigated case study is described in 
Section 4. Section 5 presents the quantitative results. A discussion of 
business model design, barriers and challenges is provided in Section 6. 
Section 7 concludes the paper. 

2. State of the Art 

A comprehensive review of the theoretical value of aggregation is 
given by Burger et al. [5]. Lu et al. [3] provide an overview of the 
fundamentals and business model of demand response aggregation on 
electricity markets. Carreiro et al. [6] present a literature survey of en-
ergy management systems aggregation. Besides related review papers, 
the following subsections discuss important references in the different 
categories relevant for the analysis in this work. 

Nomenclature 

Abbreviations 
aFRR automatic Frequency Restoration Reserve 
CVaR Conditional Value at Risk 
DER Distributed Energy Resources 
ENTSO-E European Network of Transmission System Operators for 

Electricity 
ISO Independent System Operator 
LCOE Levelized cost of energy 
mFRR manual Frequency Restoration Reserve 
PV photovoltaic 
RES Renewable Energy Sources 
RR Replacement Reserves 
TSO Transmission System Operator 
VaR Value at Risk 

Sets 
B δ Indices for possible price bids for each balancing market 

direction 
D Balancing market directions (D = {− ,+}) 
P δ Indices for balancing products considered for each 

direction in the optimization 
T opt Considered time steps for the optimization 
T sim Considered time steps for the simulation 
T δ

i Time steps of the ith balancing product 

Parameters 
Δt Step length in hours 
τbal Reduced grid tariff for negative balancing in EUR/MWh 
τreg Regular grid tariff in EUR/MWh 
pδ

act,i,j Balancing activation price bid for balancing bid j of 

product i 
pda,t Day-ahead market price at time t 
pδ

res,i,j Balancing reserve price for balancing bid j of product i 
Pδ

i,j Activation probability for balancing bid j of product i 
Pδ

t,j Activation probability of price bid j at time t 
rδ

min,i,j Minimum bid size for bid j of product i 
Vbal Balancing market volume 

Model expressions and variables 
χin

t Charging schedule of a component at time t 
χout

t Discharging schedule of a component at time t 
soct State-of-charge of a component at time t 
π Total expected profit 
πbal Expected balancing market profit 
πda Day-ahead market profit 
bδ

bid,i,j Binary variable indicating whether a bid is placed for bid j 
of product i 

ctot Total cost 
cop Operational cost of a component 
ctar Expected grid tariff costs 
rδ

bid,i,j Balancing market bid size of bid j for the ith product 
rδ

tot,t,j Total balancing market reserve for bid j at time t 
rδ
t,j Balancing market reserves of a component for price bid j 

sin
t Input schedule of a component at time t 

sout
t Output schedule of a component at time t 

stot
t Total day-ahead market schedule at time t 

sbuy
da,t Day-ahead market buying schedule of a component 

ssell
da,t Day-ahead market selling schedule of a component  

Fig. 1. European sequential electricity markets. The left side shows the market closure times for balancing reserve procurement and energy markets. The right side 
illustrates the balancing market activation schedule in the frequency restoration process. (Own illustration based on Poplavskaya [8] and ENTSO-E [9]). 
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2.1. Electricity markets 

This work considers the European electricity market design. In the U. 
S., market participants place complex bids including operational con-
straints and start-up cost. The Independent System Operator (ISO) 
usually co-optimizes energy and balancing reserves in a centralized unit 
commitment model. In contrast, in Europe energy and balancing pro-
curement are organized in sequential markets with simpler bids and 
separate clearing mechanisms. The market participants are responsible 
for unit commitment. Botterud and Auer [4] provide a comprehensive 
comparison of European and U.S. electricity market design. 

Fig. 1 schematically illustrates the market closure times of the Eu-
ropean sequential electricity markets. Short-term energy-only markets 
are auctioned either day-ahead or intraday and are operated by power 
exchanges. The balancing markets are operated by the Transmission 
System Operator (TSO). They are typically divided into four markets for 
Frequency Containment Reserve (FCR), automatic Frequency Restora-
tion Reserve (aFRR), manual Frequency Restoration Reserve (mFRR) 
and Replacement Reserves (RR) respectively. Hirth and Ziegenhagen [7] 
provide a comprehensive description of the European balancing markets 
and three links to the integration of variable RES. 

Dallinger et al. [10] investigate the impact of balancing market 
design on European balancing markets. They find that shorter balancing 
products promote market access for distributed energy resources and 
RES. Furthermore, they show that distributed energy resources can 
significantly reduce balancing procurement cost, CO2 emissions and 
spillage of RES. Roos and Bolkesjø [11] analyze the effects of using de-
mand response for balancing capacity procurement. They present 
similar findings of significant reduction of cost and RES curtailment. 

2.2. Regulatory framework and barriers 

According to Carreiro et al. [6] the practical implementation of 
business models for electricity aggregation still faces challenges. They 
highlight the importance of adequate regulatory frameworks. Barbero 
et al. [12] investigate barriers for aggregation of electricity demand in 
Belgium, Finland, France and UK and find that results are strongly 
country-dependent. They categorize balancing market access barriers 
into regulatory, technical and economic barriers. Incomplete regulations 
defining the roles of market participants and a high number of required 
contracts can be regulatory barriers. Technical barriers include high 
minimum bid sizes, symmetric products and long product resolution. 
Economic barriers range from insufficient incentives from market sig-
nals or high cost for smart meters and ICT infrastructure to high 
penalization costs and subsidies of peak power plants. 

Poplavskaya and de Vries [13] conduct a similar analysis for the 
balancing markets in Austria, Germany and The Netherlands. They 
consider minimum bid sizes ranging from MWto MW5 fairly restrictive 
for aggregation of Distributed Energy Resources (DER). They recom-
mend pool-based prequalification, increasing the bidding frequency and 
higher product resolution. They acknowledge that recent regulation 
[14] addresses all key design variables except for product resolution. 
However, the Network Codes on Electricity Balancing [15] of the Eu-
ropean Network of Transmission System Operators for Electricity 
(ENTSO-E) provide for a product validity period of 15 min. 

Nysten and Wimmer [16] discuss the barriers for several aggregator 
business models related to the regulatory framework and data avail-
ability. They elaborate on the dynamic interdependency between na-
tional and EU regulations, focusing on the “Clean Energy for all 
European” package [17]. 

2.3. Portfolio optimization in multiple markets 

For the adoption of business models for aggregation their economic 
feasibility is a necessary requirement. Several contributions aim to 
evaluate the techno-economic potential of business models for an energy 

aggregator operating in multiple markets. For this purpose the dispatch 
of the aggregator’s portfolio of end user flexibilities on several markets is 
optimized respecting technical constraints and customer preferences. 
The result is compared to a baseline case without pooling and market 
access. 

Most existing literature presents scenario-based multi-stage sto-
chastic optimization models [18] to calculate the market schedule of an 
aggregator. For example, Ottesen et al. [19] use a two-stage model with 
different price scenarios to quantify the potential benefits of an aggre-
gator of prosumers with shiftable electric heat demand and curtailable 
loads on the day-ahead and balancing market. However, the balancing 
market is not modeled explicitly but represented via imbalance pen-
alties. Ottesen et al. [20] extend this approach to a three-stage model 
considering an options market, a spot market and a short-term flexibility 
market. In this analysis the options market corresponds to balancing 
procurement and the flexibility market to balancing activation of the 
mFRR market. For each of the three market segments different price 
scenarios are considered. In contrast, Iria et al. [21] introduce uncer-
tainty of prosumers’ load and generation profiles in a two-stage sto-
chastic model. They consider an aggregator of prosumers operating on 
the aFRR market. Rashidizadeh-Kermani et al. [22] introduce a bi-level 
stochastic optimization model with the upper level optimizing an 
aggregator’s profit and the lower corresponding to the customers’ 
behavior based on a cost function. Şengör [23] present an optimization 
model for an aggregator of electric vehicle parking lots. They tackle 
uncertainty by considering multiple scenarios for both, electric vehicle 
customer behavior and market prices for Finland, Turkey and the U.S. 

None of the above contributions consider the inherent uncertainty of 
balancing market activations. Most of flexible end user technologies, 
like batteries, electric vehicles or electric heating, show properties of an 
energy storage and are characterized by a state-of-charge. Unexpected 
balancing activations yield unexpected state-of-charge levels. This 
might force the technology to deviate from schedule and cause imbal-
ances or penalties for not supplied balancing reserve. Iria and Soares 
[24] evaluate this in a model predictive control approach. In a deter-
ministic optimization model day-ahead market bids and balancing re-
serves are scheduled. The controller adjusts the operating point of 
flexible technologies to the signal provided by balancing market 
activations. 

All contributions find significant potential benefits especially on 
balancing markets for the aggregation of flexible end users. However, 
they do not consider the complete electricity bill, including grid tariffs, 
fees and surcharges, in the optimization of end user flexibilities. This can 
yield suboptimal results. The impact of grid tariffs on coordinated de-
mand response is analyzed by [25]. However, they only consider the 
day-ahead market. 

2.4. Novelty and contribution to the progress beyond the state of the art 

On a methodoligical level the contribution of this work is a mathe-
matical framework to optimize and simulate the operation of a portfolio 
of flexible technologies on multiple short-term markets in a European 
electricity market design, including balancing, day-ahead and intraday 
markets. This allows to evaluate a wide range of business models in the 
context of energy aggregation. The novelty of this framework is twofold:  

• It is designed with a focus on modularity and extensibility. 
A specific use case including the day-ahead, intraday and aFRR 

balancing market is presented in detail. However, in general, any 
combination of day-ahead, intraday and multiple balancing markets, 
characterized by reserves and uncertain activations, with arbitrary, 
potentially different, product lengths can be considered. 

Furthermore, the framework is not limited to specific technologies 
but formulated in terms of a generic component interface. Potential 
representations of batteries, electric vehicle charging stations, heat 
pumps, electric hot water boilers and PV systems in the generic 
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interface are presented, but new technologies can easily be added for 
further analyses. 

Finally, different portfolios of technologies can be flexibly 
composed and the components can be optimized individually, clus-
tered to households or altogether.  

• The framework provides a high level of detail in terms of operational 
simulation. 

Most contributions to literature related to participation on 
balancing markets focus on the optimization of market schedules 
only using stochastic optimization or similar scenario-based ap-
proaches. However, they disregard the impact of unexpected 
balancing activations on the state-of-charge of flexible components 
and potential effects on energy efficiency and total cost reduction. In 
contrast, the presented framework couples day-ahead optimization 
of market schedules with quarter-hourly simulation of balancing 
activations and corresponding reactions to unexpected activations 
on the intraday market. The option to balance state-of-charge de-
viations on the intraday market is already considered in the day- 
ahead optimization, ensuring technically feasible operation of the 
components and allowing to offer significantly more flexible reserves 
to balancing markets. 

Furthermore, the framework does not only consider market in-
teractions in the optimization, but includes a detailed representation 
of grid tariffs, fees and surcharges, even considering tariff reductions 
for balancing market participation. This allows to consider the 
complete end user electricity bill and ensure actual cost reduction. 

On an energy-economic and systemic level this work provides the 
following contributions by applying the presented methodological 
framework to different configurations of a case study and discussing the 
quantitative results:  

• The economic potential of business models for the aggregation of 
flexible residential technologies is quantified considering the full end 
user electricity bill.  

• The contributions of different components to the total cost reduction 
achieved on different markets are evaluated and the advantages and 
disadvantages of various flexibility options for different markets are 
disussed.  

• The impact of unexpected balancing activations on the profitability 
of these business models is analyzed and different strategies to 
mitigate the risk of unexpected cost increase are investigated.  

• The advantages and disadvantages of different aggregation levels in 
the formulation and solution of the optimization problems them-
selves are quantified and discussed. 

3. Methods 

This section provides a mathematical formulation of the framework 
used to simulate the operation of different flexible technology portfolios 
on multiple electricity markets. The framework is implemented in the 
Julia [26] programming language using the JuMP [27] package to 
model optimization problems. The models are solved using the Gurobi 
solver [28]. Section 3.1 describes the general structure of the simulation 
set-up. The basic formulation of the optimization problem in multiple 
markets is provided in Section 3.2. Details about the implementation of 
different flexible technologies are given in Appendix A. 

3.1. Simulation framework 

The framework simulates the actual day-to-day operation of a tech-
nology portfolio in multiple markets close to real-life conditions in many 
regional European electricity market designs. Here, a day-ahead energy- 
only market with uniform pricing and a daily auctioned balancing 
market with four-hourly products and pay-as-bid pricing are considered. 
In the day-ahead market, the components can buy or sell electricity for 
the following day until market closure time. Furthermore, balancing 
reserve, both negative and positive, can be offered day-ahead for six 
four-hourly products until balancing market closure time. The compo-
nents get remunerated for the reserve with the offered balancing reserve 
price and for actual activations with the bidden balancing activation 
price. Most components require control over their state-of-charge. To 
compensate stochastic activations from the balancing market in these 
cases, the intraday market is used. It is characterized by a time series of 
prices and a lead time, describing minimum duration between the last 
potential trade and the actual delivery. 

The general structure of the simulation framework is illustrated in 
Fig. 2. It can run for an arbitrary set of time steps T sim with a step length 
Δt. The simulation iterates through all time steps t ∈ T sim. 

If t is the market closure time of a balancing market, first an 

Fig. 2. Simulation Framework Flowchart.  
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optimization model is built and solved providing the optimal balancing 
reserve bids of the portfolio for all auctioned market products (Step 1). 
Typically these are the six four-hour products of the following day, but 
in general other market structures, e.g. with weekly peak and off-peak 
products, can be considered, too. In the balancing market optimization 
both the balancing and the day-ahead market are considered, because 
the day-ahead prices provide the opportunity cost for offering balancing 
reserves. Furthermore, in this framework it is assumed that the day- 
ahead schedule provides the baseline for deviations caused by 
balancing market activations. The simulations of the use case presented 
in this work use an overlapping rolling horizon of two days. Each day the 
optimal day-ahead and balancing market schedules for the 192 quarter- 
hourly time steps of the next two days are determined. However, only 
the results for the following day are fixed. The values for the second day 
overwritten by the optimization results of the next day. A description of 
the optimization model is provided in Section 3.2. 

If t is the market closure time of the day-ahead market, next a further 
optimization model may be formulated and solved updating the day- 
ahead schedule and respecting the already accepted balancing re-
serves (Step 2). This step is only required if the information about day- 
ahead market prices or load and production forecasts has improved 
since the balancing market optimization. Otherwise it yields the same 
results. 

If there have been balancing market activations at time step t − 1 and 
they have to be compensated, an intraday market bid can be placed at 
time step t respecting the lead time (Step 3). Finally, at each time step t ∈
T balancing market activations are simulated (Step 4). For this either 
historical values of positive and negative activations are used or random 
numbers with the appropriate expectation are generated. 

3.2. Optimization on multiple markets 

This section presents the general structure for the optimization 
model considering multiple markets that is solved in Step 1 in Fig. 2. To 
allow the consideration of manifold energy technology portfolios, 
several model expressions are initialized that can be added to for each 
considered device. Model expressions mean linear combinations of 
model variables of the form 

a0 +
∑n

i=1
ai⋅xi, (1)  

where ai for i = 0,…, n are constants and xi for i = 1,…, n are model 
variables. 

3.2.1. Market representation 
Balancing markets are represented in the framework as a set of 

positive and negative balancing products, where each product is char-
acterized by its active time steps, the market closure time of its auction, a 
set of price bids and a minimum bid size. 

The price bids are described by a balancing activation price, a 
balancing reserve price and an activation probability. During the 
simulation, activations are generated randomly based on the activation 
probability. Market participants are remunerated with the balancing 
reserve price if a bid is accepted and with the balancing activation price 
for actual activations. Both prices are provided in EUR/MWh1. 
Balancing products can be described by all historical price bids, repre-
senting the total merit-order curve, or by a selection of several price 
bids. In the optimization model the portfolio can decide how much to 
reserve for each available bid. 

Both the day-ahead and the intraday market are represented by a 
time series of prices in EUR/MWh. For the day-ahead market an auction 

closure time is provided in addition. The intraday market is character-
ized by a minimum lead time. 

The framework is formulated generally in terms of time resolution. 
For the simulations in this work hourly day-ahead market prices and 
quarter-hourly intraday market prices are assumed. Balancing market 
activations are simulated with a quarter-hourly resolution. In the sim-
ulations it is assumed that the balancing market closure time is before 
the day-ahead market auction. 

3.2.2. Initialization of model expressions 
At each balancing market closure time t in the simulation illustrated 

in Fig. 2 an optimization model is built, considering all balancing 
products that are auctioned at time t. First, all time steps T opt⊆T sim of 
the considered products are identified. These are typically all time steps 
of the next day or week. In the following δ ∈ D = {− ,+} is written for 
the balancing market direction. Let B δ denote the set of indices for 
possible price bids for balancing market products in each direction. 
Next, model expressions for the positive and negative reserve for each 
price bid at each time step rδ

tot,t,j, expressions for the day-ahead market 
schedule of the portfolio at every time step st and an expression for 
operational cost c are initialized. 

rδ
tot,t,j = 0 j ∈ B

δ
, δ ∈ D , t ∈ T opt (2)  

st = 0 t ∈ T opt (3)  

c = 0 (4) 

For the day-ahead schedule the convention is used that positive 
values correspond to sales while negative ones represent purchases. 
Variables or expressions for different components can be added to these 
expressions subsequently. Section 3.3 and Appendix A describe in detail 
how this can be done for various technologies and which constraints 
have to be added to the optimization model. 

3.2.3. Model finalization 
When all individual component expressions are added to the model 

expression, the balancing reserves in the model are the sum of all 
technology reserves and the model day-ahead schedule is the sum of all 
individual schedules. Next, some constraints regarding the bid size for 
each bid are added to the model, the objective function is formulated 
and a solver is started. 

Let P δ denote the indices of considered products for each direction 
in the optimization problem. Furthermore, let T δ

i for i ∈ P δ be the time 
steps corresponding to the ith balancing product. The decision variable 
for the size of bid j for the ith product in each direction is written as rδ

bid,i,j. 
The following constraints ensure that the sum of all component bid sizes 
is the same for every bid at each relevant time step. 

rδ
tot,t,j = rδ

bid,i,j t ∈ T
δ
i , i ∈ P

δ
, j ∈ B

δ
, δ ∈ D (5) 

To consider minimum bid sizes for balancing markets binary vari-
ables bδ

bid,i,j are introduced for each bid of all products. With the total 
balancing market volume Vbal and minimum bid sizes rδ

min,i,j they can be 
respected in Eqs. (6)–(8). 

bδ
bid,i,j ∈ {0, 1} i ∈ P

δ, j ∈ B
δ, δ ∈ D (6)  

rδ
bid,i,j⩽Vbal⋅bδ

bid,i,j i ∈ P
δ, j ∈ B

δ, δ ∈ D (7)  

rδ
bid,i,j⩾rδ

min,i,j⋅b
δ
bid,i,j i ∈ P

δ, j ∈ B
δ, δ ∈ D (8) 

Let Pδ
i,j denote the activation probability for bid j of product i. The 

balancing activation and reserve prices of the respective products are 
written as pδ

act,i,j and pδ
res,i,j. Then the expected profit on the balancing 

market is given by Eq. (9). 
1 Balancing reserve prices are often provided in EUR/MW. They can be easily 

transformed to EUR/MWh by dividing by the product’s duration in hours. 
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πbal = Δt⋅
∑

δ∈D ,i∈P δ ,
j∈B δ ,t∈T δ

i

(
Pδ

i,j⋅p
δ
act,i,j + pδ

res,i,j

)
⋅rδ

bid,i,j (9) 

With the day-ahead market prices at time t written as pda,t the spot 
market profit is given in Eq. (10). 

πda = Δt⋅
∑

t∈T opt

pda,t⋅stot
t (10) 

The cost expression ctot is already populated with potential additional 
cost of different components. The objective function of the model is 

given by the total expected profit π which is defined in Eq. (11). 

π = πbal + πda − ctot (11) 

Finally, the model is solved maximizing π and the resulting schedules 
of individual components are stored. 

3.3. Generic storage interface 

In this work different types of flexible components are considered: 
batteries, electric vehicles, heat pumps, electric domestic hot water 
boilers and PV systems. They differ significantly in terms of function-
alities as well as from a technical and service delivery perspective. 
However, they share many characteristics in terms of market operation 
and representation in the optimization and simulation framework. All 
components can (at least theoretically) provide negative and positive 
balancing reserves and purchase electricity from the day-ahead market. 
Technically they are characterized by efficiencies, maximum and mini-
mum operating points and temporal availability. Furthermore, in gen-
eral, most components can consume electric energy, convert it into 
another energy carrier (like thermal energy) and store it subject to losses 
over time. 

Hence, a functional generic component interface is introduced, 
capable of describing the key characteristics of all considered compo-
nents. The 20 functions defining the interface are listed in Table 1. They 
take a component C, a time step t or a vector of times steps t→, and the 
length of a model time step Δt as input. Table 1 shows the default return 
values of fallback methods defined for generic components. They 
describe a component without any flexibility. For specific sub-types of 
generic components new methods can be defined overwriting these 
default values and adding flexibility. 

Fig. 3 illustrates the key elements of the functional interface. Any 
component can consume and produce electricity subject to input and 
output power limits and efficiencies. The consumed electric energy is 
converted into another energy carrier described by the state-of-charge 
unit of the storage, like MWh for batteries or ◦C for electric boilers. 
The state-of-charge is constrained by lower and upper bounds and 
exposed to constant and linear losses as well es fixed external input or 
output. Linear losses depend on the difference between the current state- 
of-charge and a base state-of-charge. Input, output, charging and dis-
charging can be associated with corresponding cost. 

The following paragraphs describe, how different components can be 
considered in the model by adding variables for individual schedules 
and cost to the global model expressions in Eqs. (2) to Eq. (4) and 
introducing new constraints, only relying on the generic component 
interface. The colored elements in Fig. 3 represent the variables that are 

Fig. 3. Generic component interface.  

Table 1 
Functions describing the generic component interface. The functions take a 
component C, a time step t or a vector of time steps t→, and the duration of a time 
step in hours Δt as input argument. The table shows the second argument f (̃t) ≅

f(C, t̃,Δt) only. The default return values of the functions are listed in column D.  

Function D Unit Description 

sin
max(t) 0 MW Maximum consumption power 

sin
min(t) 0 MW Minimum consumption power 

sout
max(t) 0 MW Maximum production power 

sout
min(t) 0 MW Minimum production power 

ηin(t) 1  Charging efficiency 

ηout(t) 1  Discharging efficiency 
ϕ(t) 1 MWh

Unit  
Conversion factor between MWh of electric energy and 
the energy unit in the storage 

α(t) 1 Bool* Availability** 
socmax(t) 0 Unit Maximum state-of-charge 
socmin(t) 0 Unit Minimum state-of-charge 
socbase(t) 0 Unit Base state-of-charge 

socstart
(

t→
) 0 Unit Starting state-of-charge before the time steps in t→

socstop
(

t→
) 0 Unit Minimum state-of-charge at the end of t→

qext(t) 0 Unit External storage input or output 
λconst(t) 0 Unit

h  
Constant storage loss factor 

λlin(t) 0 1
h  

Linear storage loss factor 

cin(t) 0 EUR
MWh  

Cost associated with consumption excluding market 
cost and tariffs 

cout(t) 0 EUR
MWh  

Cost associated with production excluding market cost 
and tariffs 

cin
charge(t) 0 EUR

Unit  
Cost associated with charging 

cout
charge(t) 0 EUR

Unit  
Cost associated with discharging 

* A Boolean value can either be true or false. 
** Electric vehicles, for example, are not connected during all time steps. 
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added to the optimization problem for each time step and for each 
considered component. In the simulation framework every component 
stores a schedule for its state-of-charge, its negative and positive 
balancing market reserves and its day-ahead and intraday market 
schedules for each t ∈ T sim. Hence, values from previous optimization 
runs can be accessed during model set-up. 

3.3.1. Technical constraints 
Let sin

t and sout
t denote the input and output schedule of a component 

at time t. The schedules for charging and discharging are given by χin
t and 

χout
t . The state-of-charge at time t is written as soct . Eq. (12) to Eq. (14) 

ensure the power and storage limits of a component. The efficiencies and 
the conversion between MWh and the corresponding Unit are included 
in Eq. (15) to Eq. (16). 

sin
min(t)⩽sin

t ⩽sin
max(t) t ∈ T opt (12)  

sout
min(t)⩽sout

t ⩽sout
max(t) t ∈ T opt (13)  

socmin(t)⩽soct⩽socmax(t) t ∈ T opt (14)  

ϕ(t)⋅χin
t = ηin(t)⋅sin

t t ∈ T opt (15)  

sout
t = ηout(t)⋅ϕ(t)⋅χout

t t ∈ T opt (16) 

Eq. (17) to Eq. (18) set the start and end values of the state-of-charge. 
Here t1 and tn denote the first and the last considered time step. The 
values for the state-of-charge stored in the simulation schedules from 
previous optimizations are written as socsim

t . 

soct1 − Δt =

{
socsim

t1 − Δt t1 − Δt ∈ T sim

socstart
(
T opt

)
t1 − Δt ∕∈ T sim

(17)  

soctn = socstop
(
T opt

)
(18) 

Eq. (19) connects the state-of-charge to its value in the last time step 
and storage input, output and losses. Note that the external storage input 
qext(t) can also have negative values.   

3.3.2. Market constraints 
The variables for balancing market reserves of a component are 

written as rδ
t,j for each possible price bid j, direction δ and time step t. The 

corresponding activation probabilities are given by Pδ
t,j. The variables for 

selling and buying on the day-ahead spot market are denoted by sbuy
da,t and 

ssell
da,t . Eq. (20) ensures the balance between technical and market 

variables. 

sout
t − sin

t =
∑

j∈B +

P+
t,j⋅r

+
t,j −

∑

j∈B −

P−
t,j⋅r

−
t,j + ssell

da,t − sbuy
da,t t ∈ T opt (20) 

The daily optimization requires a starting value for the state-of- 
charge in. efeq:socstart. It corresponds to the final state-of-charge 
value from the previous schedule. However, market closure time is 
typically several hours before midnight. Balancing market activations 
can still occur after schedule planning affecting the actual state-of- 
charge of the storage. To overcome this issue an intraday market is 
considered in the simulation framework. It allows to react on 

unexpected activations with a small delay, the intraday market lead 
time. Components can act on the intraday market to balance reserve 
activations only if the operating point limits, the current day-ahead 
market schedules and balancing reserves allow additional trades. 
Hence, balancing market reserves also require intraday market reserves. 

Model expressions describing the reserves for buying and selling on 
the intraday market rbuy

id,t and rsell
id,t are introduced. Expected balancing 

market activations are already respected in Eq. (20). The required re-
serves in both directions considering the expected schedule are written 
as rδ

exp,t and given in Eq. (21). For time steps t ∕∈ T opt the stored results 

from previous optimizations rsim,δ
t,j are chosen for rδ

t,j and for t ∕∈ T sim 

they are set to zero. 

r−exp,t =
∑

j∈B −

(1 − P−
t,j)⋅r

−
t,j +

∑

j∈B +

P+
t,j⋅r

+
t,j t ∈ T sim (21)  

r+exp,t =
∑

j∈B +

(1 − P+
t,j)⋅r

+
t,j +

∑

j∈B −

P−
t,j⋅r

−
t,j t ∈ T sim (22) 

Furthermore, the storage loss factor of n linear losses until time step t 
is denoted by Λn

t and defined in Eq. (23). It can be interpreted as the 
share of energy fed into the storage at time t − n⋅Δt that is left at time t. 

Λn
t =

∏n− 1

i=0
(1 − Δt⋅λlin(t − i⋅Δt) ) (23) 

With the intraday market lead time written as nid, the factors κbuy
t and 

κsell
t to calculate intraday reserves at time t from balancing deviations at 

time t − nid⋅Δt are given in Eq. (24). They are used to calculate the 
intraday market reserves in Eq. (26), for 
t ∈ {t1 − nid⋅Δt, t1 − (nid − 1)⋅Δt,…, tn }. 

κbuy
t =

ηin(t)⋅ϕ(t)⋅Λ
nid
t

ηout(t − nid⋅Δt)⋅ϕ(t − nid⋅Δt)
(24)  

κsell
t =

ηin(t − nin⋅Δt)⋅ϕ(t)⋅Λnid
t

ηout(t)⋅ϕ(t − nid⋅Δt)
(25)  

rbuy
id,t = κbuy

t ⋅r+exp,t− nid ⋅Δt (26)  

rsell
id,t = κsell

t ⋅r−exp,t− nid ⋅Δt (27) 

Eq. (28) to Eq. (29) ensure that unexpected balancing market acti-
vations and intraday reactions respect the technical power limits of the 
component. 

ssell
da,t − sbuy

da,t + rsell
id,t +

∑

j∈B +

r+t,j⩽α(t)⋅sout
max(t) t ∈ T opt (28)  

sbuy
da,t − ssell

da,t + rbuy
id,t +

∑

j∈B −

r−t,j⩽α(t)⋅sin
max(t) t ∈ T opt (29) 

Reserve activations can be balanced after nid steps using the intraday 
market. For the time steps in between energy has to be reserved in the 
storage to respect the state-of-charge limits even in case of balancing 
market activations. Let ηmin

t and ηmax
t denote the minimum and maximum 

of charging and discharging efficiency of a component at time t. 

ηmin
t = min{ηin(t), ηout(t) } (30) 

soct = soct− Δt + qext(t)+Δt⋅
(
χin

t − χout
t − λconst(t) − λlin(t)⋅

(
soct− Δt − socbase,t− Δt

) )
t ∈ T opt (19)   

D. Schwabeneder et al.                                                                                                                                                                                                                        



Energy Conversion and Management 230 (2021) 113783

8

ηmax
t = max{ηin(t), ηout(t) } (31) 

The negative and positive storage reserves are written as rδ
soc,t . They 

consist of the total charged or discharged energy from all possible un-
expected balancing market activations and intraday market trades in the 
last nid time steps. They are provided in Eq. (32) and (33) for t ∈ T

soc
opt =

{t1, t1 + Δt,…, tn + nid⋅Δt}. The reserves rδ
exp,t are set to zero for t > tn. 

r+soc,t = Δt⋅
∑nid

i=1

Λi
t⋅
(

rsell
id,t− i⋅Δt + r+exp,t− i⋅Δt

)

ηmin
t− i⋅Δt⋅ϕ(t − i⋅Δt)

(32)  

r−soc,t = Δt⋅
∑nid

i=1

Λi
t⋅ηmax

t− i⋅Δt⋅
(

rbuy
id,t− i⋅Δt + r−exp,t− i⋅Δt

)

ϕ(t − i⋅Δt)
(33) 

With that the state-of-charge reserve is ensured with Eq. (34). 

soct⩾socmin(t) + r+soc,t t ∈ T
soc
opt (34)  

soct⩽socmax(t) − r−soc,t t ∈ T
soc
opt (35) 

Finally the market schedules for each component rδ
t,j and ssell

da,t − sbuy
da,t are 

added to the global model expressions rδ
tot,t,j and st in Eq. (2). 

3.3.3. Component-specific cost 
The market related cost and revenues of all components are already 

considered with πbal and πda in the global objective function. Considering 
the expected balancing activations only in the objective function disre-

gards the potential additional cost associated with unexpected balancing 
activations. For example, for a component with an idle expected 
schedule, balancing activations might cause extra cost for the grid tariff, 
fees and surcharges as well as component wear costs. 

To make the optimization more robust with respect to these sto-
chastic cost components, model expressions for the expected upward 
and downward deviation Δaδ,↑

t,j and Δaδ,↓
t,j from expected balancing acti-

vations are introduced. In Eq. (36) they are defined using the variance p⋅ 
(1 − p) of a B(1, p) binomially distributed random variable. 

Δaδ,↑
t,j = Δaδ,↓

t,j = Pδ
t,j⋅
(

1 − Pδ
t,j

)
⋅rδ

t,j j ∈ B
δ
, δ ∈ D (36) 

The deviations from schedule cause upward and downward intraday 
market trades Δid↑

t and Δid↓
t given in Eq. (37). 

Δid↑
t = κsell

t ⋅
∑

δ∈D

∑

j∈B δ

Δaδ,↓
t− nid ⋅Δt,j (37)  

Δid↓
t = κbuy

t ⋅
∑

δ∈D

∑

j∈B δ

Δaδ,↑
t− nid ⋅Δt,j (38) 

Now the expected deviations from input, output, charge and 
discharge Δsin

t ,Δsout
t ,Δχin

t and Δχout
t can be calculated with Eqs. (39) to 

Eq. (42). 

Δsin
t = Δid↓

t +
∑

δ∈D

∑

j∈B δ

Δaδ,↓
t (39)  

Δsout
t = Δid↑

t +
∑

δ∈D

∑

j∈B δ

Δaδ,↑
t (40)  

Δχin
t = Δt⋅

ηmin
t

ϕ(t)
⋅Δsin

t (41)  

Δχout
t = Δt⋅

1
ηmax

t ⋅ϕ(t)
⋅Δsout

t (42) 

The expected cost associated with the operation of a component cop 

given in Eq. (43) are added to the global model cost expression ctot in Eq. 
(4).   

Cost for the grid tariff, fees and surcharges also have to be added for 
each component individually, because different components may be 
located in different areas or connected at different voltage levels and can 
in general be charged different tariffs. Furthermore, in general, grid 
charges can be different for electricity purchased on the day-ahead 
market and consumption caused by negative balancing market activa-
tions. In Austria, for example, negative reserve activations are charged a 
reduced grid tariff [29]. Tariffs, however, only have to be paid for net 
consumption. 

Let τreg and τbal denote the charges for regular consumption from the 
day-ahead and intraday market and the reduced charges for negative 
balancing in EUR/MWh. Variables for the expected net consumption qt 
excluding negative balancing activations are introduced and con-
strained by Eq. (44). 

qt⩾0 t ∈ T opt (44)  

qt⩾sbuy
da,t − ssell

da,t +Δid↓
t +

∑

j∈B +

(
Δa+,↓

t,j − P+
t,j⋅r

+
t,j

)
t ∈ T opt (45) 

With the expected negative balancing market activations written as 

qbal
t =

∑
j∈B −

(
P−

t,j⋅r−t,j + Δa− ,↓
t,j

)
, the grid tariff, fees and surcharges cost ctar 

for the component is given by Eq. (46) and added to ctot. 

ctar = Δt⋅
∑

t∈T opt

(
τreg⋅qt + τbal⋅qbal

t

)
(46) 

If multiple components share a grid connection point the aggregated 
schedules for day-ahead market operation and balancing market 

Table 2 
Considered grid tariff, fees and surcharges. In general they consist of an annual 
fixed component and a volumetric component in EUR/MWh. For balancing 
activations a reduced volumetric component is charged.   

Fixed Regular Reduced  
EUR/a EUR

MWh  
EUR
MWh  

Grid tariff [29]    
System usage charge 30.00 36.9 0.85 
System loss charge  3.36 3.36 
Metering fee 28.80   
Green electricity subsidy [31]    
System usage charge 4.90 6.90 6.90 
System loss charge  0.46 0.46 
Green electricity flat rate [32] 28.38   
CHP flat rate [33] 1.25   
Electricity tax [34]  15.00 15.00 
Usage tax [35] 1.80 2.42 0.25 
Total 95.13 65.04 26.82  

cop =
∑

t∈T opt

(
cin(t)⋅

(
sin

t + Δsin
t

)
+ cout(t)⋅

(
sout

t + Δsout
t

)
+ cin

charge(t)⋅
(
χin

t + Δχin
t

)
+ cout

charge(t)⋅
(
χout

t + Δχout
t

) )
(43)   
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reserves are used for the calculation of cost for grid tariff, fees and 
surcharges. 

Details about the implementation of different components in the 
generic component interface are provided in Appendix A. 

4. Model setup and empirical scaling 

The optimal dispatch of an Austrian household with five flexible 
components is calculated during two time periods. Period 1 covers a 
whole year from October 1, 2017 to September 30, 2018. Period 2 covers 
eight months from November 1, 2018 to June 30, 2019. These two pe-
riods are separated by the market splitting of the German and the Aus-
trian electricity price zone in October 2018 [30]. 

4.1. Household 

A household with a battery, a charging station for an electric vehicle, 
a heat pump, an electric boiler and a PV system is analyzed. The static 
parameters for the battery, the charging station, the heat pump and the 
electric boiler are Tables A.1 to Eq. (A.4). For the PV system a nominal 
capacity of kW5 is assumed. The considered grid tariff, fees and sur-
charges are listed in Table. 2. 

For each period a PV production profile, an inflexible electricity load 
profile and a domestic hot water load profile are generated using the 
LoadProfileGenerator developed by Pflugradt and Muntwyler [36]. 
The software also provides corresponding outdoor temperature profiles. 
Charging cycles for the electric vehicle are generated randomly based on 
usage probabilities and normally distributed random variables for de-
parture and arrival times and the distance driven, considering working 
days and weekends. A summary of dynamic model parameters for the 

two periods is listed in Table 3. 

4.2. Markets 

For the day-ahead and intraday market historic price data from the 
European Power Exchange EPEX SPOT SE [37] is used. Fig. 4 shows a 
boxplot with the daily day-ahead market prices in the two considered 

periods. 
In the model each four-hour balancing market product is charac-

terized by two price bids: a bid with low balancing activation price pδ
en 

and high activation probability Pδ
act and a bid with inverse characteris-

tics. Furthermore each bid provides a balancing reserve price pδ
res that is 

paid regardless of balancing activations. The prices and corresponding 
activation probabilities are provided by Flex + 2 research project partner 
TIWAG3. 

With the expected day-ahead price during a product period pda as 
opportunity price, the expected profit πδ can be calculated with Eq. (47) 
for negative and Eq. (48) for positive balancing products. 

π− = p−
pow +P−

act⋅
(
pda − p−

en

)
(47)  

π+ = p+
pow +P+

act⋅
(
p+

en − pda
)

(48) 

Fig. 5 shows the expected profit of daily balancing market products 
in the two considered time periods. 

Balancing market activations are simulated randomly based on the 
provided activation probabilities. For a probability p a random variable 

from the Beta
(

1
100,

1
100⋅(1− p)

p

)

distribution [38] is generated. The chosen 

distributions has an expected value of p and a bimodal probability 
density function with modes 0 and 1. Fig. 6 shows the cumulative 

density function of Beta
(

1
100,

1
100⋅(1− p)

p

)

for selected values of p. 

Fig. 4. Day-ahead market prices in the two periods (Source: EPEX SPOT [37]).  

Table 3 
Summary of dynamic household parameters.  

Parameter Unit Period 1 Period 2 

Inflexible electricity consumption kWh 4970 3346 
Hot water load kWh 1857 892 
PV production kWh 6417 3961 
Elcetric vehicle consumption kWh 2989 2111  

2 https://www.flexplus.at/ (Accessed on 8/6/2020.)  
3 https://www.tiwag.at/en/ (Accessed on 8/6/2020.) 
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4.3. Optimization strategies 

To analyze the effects of market integration for households with 
flexible components, first, a simulation with the Baseline optimization 
strategy is run considering constant electricity prices and disregarding 
balancing markets. Next, this is compared to the Day-Ahead optimiza-
tion strategy which uses the components’ flexibility only to minimize 
the electricity procurement cost with day-ahead market prices. Finally, 
the Balancing optimization strategy provides access to the day-ahead 
market, the aFRR balancing market and the intraday market for 
balancing unexpected activations. It is assumed that market access is 

provided by an aggregator. Hence, minimum bid sizes are neglected in 
the simulations. The different optimization strategies are listed in 
Table 4. 

5. Results 

This section provides numerical results of different simulation runs 
using the mathematical framwork in Section 3 to answer various 
research questions. Section 5.1 provides the potential total benefits for 
the optimization strategies presented in Section 4.3. In Section 5.2 the 
impact of the battery’s Levelized Cost Of Energy (LCOE) on its operation 
and the PV self-consumption is investigated. Section 5.3 investigates the 
effects of cost related to unexpected balancing activations and different 
strategies to deal with these uncertainties. The individual contributions 
of different components to the total cost reduction are identified in 
Section 5.4 and Section 5.5 compares different aggregation levels in the 
optimization of a pool of households. 

5.1. Potential benefits of aggregation and multiple market participation 

Fig. 7 shows the cost components of the household under investi-
gation for different optimization strategies in the two considered 

Fig. 5. Expected profits from balancing market products in the two periods.  

Fig. 6. Cumulative density functions of Beta
(

1
100,

1
100⋅1− p

p

)

for selected values of p.  

Table 4 
Considered optimization strategies.  

Strategy Description 

Baseline The technology schedules are optimized considering constant 
electricity prices and disregarding balancing markets. 

Day- 
Ahead 

The flexible components are used to minimize electricity procurement 
cost with day-ahead market prices. 

Balancing The technology portfolio has access to the day-ahead market, the aFRR 
balancing market and the intraday market.  
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periods. The total cost consist of the grid tariff, fees and surcharges, 
technology-specific cost and cost from operating on the considered 
markets. In this setup technology-specific cost correspond to the LCOE of 
the battery. 

The Day-Ahead optimization strategy increases cost for grid tariff, 
fees and surcharges in both periods. However, the cost reduction from 
day-ahead market operation yields a total cost reduction of 5% and 4%. 

Similarly, the Balancing optimization strategy yields a cost increase 
for grid tariff, fees and surcharges. In Period 1, furthermore, the cost on 
the day-ahead market increases. Nevertheless, the profits on the 
balancing markets provide significant total cost reductions of 66% in 
Period 1 and 18% in Period 2 compared to the Baseline strategy. 
Comparing the two considered periods indicates a significant reduction 

of the economic potential on balancing markets for residential flexibil-
ities after the electricity market split between Germany and Austria. 

Fig. 8 shows the quantities traded on different markets for different 
optimization strategies in the two periods. The Baseline optimization 
strategy does not consider market signals. Hence, the only way to reduce 
cost is to minimize electricity consumption. Thus, it provides the most 
energy efficient operation. In the Day-Ahead optimization strategy both 
purchases and sales on the day-ahead market are increased. This results 
in a net consumption increase of 3% in both periods. Using the flexibility 
of components for balancing reserves in the Balancing optimization 
strategy further decreases technical efficiency. This yields a net con-
sumption increase of 7% in Period 1 and 6% in Period 2. 

These results suggest that there is significantly more economic 

Fig. 8. Quantities traded on different energy markets and net consumption for the optimization strategies described in Table 4 in .the two periods.  

Fig. 7. Total household electricity procurement cost for the optimization strategies described in Table 4 in .the two periods.  
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potential for flexible technologies on the balancing market than on the 
day-ahead market under the assumed price conditions. Market partici-
pation has a negative impact on the energy efficiency of considered 
components compared to the Baseline strategy. However, it is important 
to note that the Baseline strategy represents a technically optimal 
operation under perfect foresight. Real-life operation might be based on 
simpler heuristics yielding higher total consumption. In that case, 
introducing market-based optimization and control of flexible technol-
ogies might result in lower consumption increase. Furthermore, even 
with the increase in consumption and the corresponding increase in cost 
for grid tariff, fees and surcharges a significant total cost reduction was 
achieved with the Balancing strategy. Section 6.1 provides a discussion 
of potential approaches to divide the total benefits among the aggre-
gator and end users. 

5.2. Battery cycle cost and photovoltaic self-consumption 

Batteries have a limited number of charging cycles. To avoid too 
much increase in battery usage and a related reduction of battery life-
time, battery operation has to be associated with cost in the objective 
function of the optimization models. The LCOE of a battery can be used 
for this purpose as it describes the price at which electricity should be 
sold to cover all cost components of the battery [39]. 

The impact of the LCOE on the operation of the battery is analyzed by 
simulating the Baseline, Day-Ahead and Balancing optimization strategy 
for the values cBat

op = 0,10,…,200 EUR/MWh. 
Fig. 9 shows the total battery consumption versus battery operation 

cost for different optimization strategies in the two periods. Battery 

Fig. 9. Battery consumption for different battery LCOE in the two periods.  

Fig. 10. Battery consumption for different battery LCOE in the two periods.  
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usage declines with increasing LCOE. The decrease in usage is more 
uniform for the Day-Ahead and the Balancing optimization strategy. Both 
show more battery usage than the Baseline optimization strategy. 

Due to the low activation probabilities, the revenue of actual battery 
consumption and production is very high in the Balancing optimization 
strategy. Hence, the battery is used significantly more compared to the 
other optimization strategies, even for higher LCOE. Fig. 10 shows the 
total household cost with the three optimization strategies for different 
values of battery LCOE. Even for LCOE of 200 EUR/MWh the Balancing 
optimization strategy yields significantly lower total cost than Baseline 
and Day-ahead with zero battery usage cost. Hence, balancing market 
participation can provide an additional stream of revenue for flexible 
components with high operational cost and improve the economic ef-
ficiency of an investment. 

For the Baseline optimization strategy a significant change in battery 
usage can be noticed at 60 EUR/MWh. 50 EUR/MWh seems to be the 
highest LCOE where battery operation for increasing self-consumption is 
still economically efficient. This can also be observed in Fig. 11 showing 
the household’s self-consumption share of PV production for different 
LCOE in all optimization strategies and periods. Up to LCOE of 50 EUR/ 
MWh the Baseline optimization strategy provides the highest self- 
consumption share. For higher values the Day-Ahead optimization 
strategy shows slightly higher shares, triggered by market signals. The 
Balancing optimization strategy provides the lowest shares of PV self- 
consumption, because for many balancing market bids the economic 
benefits in EUR/MWh of expected battery usage is higher than the 
benefit of saving cost for grid tariff, fees and surcharges. In all other 
simulations LCOE of 50 EUR/MWh are assumed to incentivize 

Fig. 11. PV self-consumption for different battery LCOE in the two periods.  

Fig. 12. Quantities traded on different markets and net consumption for different risk management approaches in the two periods.  
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maximizing self-consumption in the Baseline optimization strategy. 

5.3. Impact of activations and risk management 

The risk of extra cost caused by unexpected balancing activations is 
weighted with the variance of a binomially distributed random variable 
defined in Eq. (36) in the objective function of the daily optimization 
models. In the following this is labelled the neutral approach. 

Alternatively, in a more risk-averse approach Eq. (36) could be 
replaced by Eqs. (49) to Eq. (52). 

Δa− ,↑
t,j = P−

t,j⋅r
−
t,j j ∈ B

− (49)  

Δa− ,↓
t,j =

(
1 − P−

t,j

)
⋅r−t,j j ∈ B

− (50)  

Δa+,↑
t,j =

(
1 − P+

t,j

)
⋅r+t,j j ∈ B

+ (51)  

Δa+,↓
t,j = P+

t,j⋅r
+
t,j j ∈ B

+ (52) 

Here the maximum deviations from expected activations are 
considered in the component-specific cost in the objective function. 

Finally, a more risk-friendly approach is to optimize the expected cost 
only, disregarding any cost from potential deviations from balancing 
activations. This can be achieved by replacing Eq. (36) with Eq. (53). 

Fig. 14. Total household cost for different risk management approaches with expected and random activations with battery LCOE of 100 EUR/MWh in the 
two periods. 

Fig. 13. Total household cost for different risk management approaches with expected and random activations in the two periods.  
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Δaδ,↑
t,j = Δaδ,↓

t,j = 0 j ∈ B
δ, δ ∈ D (53) 

Fig. 12 shows the impact of the chosen risk management approach on 
the quantities traded on different markets and the total net consumption 
of the household. The risk-averse approach adds a higher penalty for 
unexpected deviations to the objective function and, hence, increases 
the cost associated with balancing market products. Thus, it provides the 
lowest amount of balancing market reserves and results in the lowest net 
consumption increase. The risk-friendly approach does not consider 
additional cost for deviations at all and, hence, provides the most 
balancing reserves. Furthermore, it selects significantly more balancing 
products with higher activation probabilities, resulting in more 
balancing activations and intraday market trades. This also yields the 
highest net consumption increase of 15% and 14%, respectively. 

To analyze the impact of random activations on the total household 
cost in the different risk management approaches, 100 scenarios for 
random activations are generated and simulated. Fig. 13 shows the total 
household cost for expected and random activations. The risk-averse 
approach yields the least cost reduction. With expected activations the 
highest benefit is achieved using the risk-friendly approach. However, 
with random activations this results in significantly higher cost 
compared to expected activations. The neutral risk management 
approach provides significantly less deviations from the cost with ex-
pected activations. For random activations the cost reduction with the 
risk-friendly approach is about the same as with the neutral approach. 

However, the results look different for higher operational cost. 
Fig. 14 shows the respective results for the same household with battery 

LCOE of 100 EUR/MWh. Here the cost with random activations are 
significantly higher with the risk-friendly approach. In Period 2 they even 
exceed the cost of the risk-averse approach. 

The risk-averse approach seems to be too conservative. The risk- 
friendly approach is too unpredictable with higher operational cost and 
can even result in a cost increase. Hence, for all other simulations the 
neutral approach is chosen. Note that there are alternatives to the pre-
sented risk managment approaches based on the Value at Risk (VaR) or 
the Conditional Value at Risk (CVaR), which might yield better results. 
Their investigation goes beyond the scope of this work and is left to 
future research. 

5.4. Individual contributions of flexible components 

In Section 5.1 the potential total benefits of all flexibile components 
are presented. To determine the contribution of individual technologies 
to the achieved total cost reduction, different household flexibility con-
figurations are considered and simulated. A household flexibility config-
uration specifies for each component if its baseline operation is added to 
the household’s non-flexible load or if its flexibility is used for market 
optimization. To identify the contribution of each flexible component to 
the benefits achieved on different markets, the Day-Ahead and the 
Balancing optimization strategy are simulated for all 32 possible flexi-
bility configurations. Subsequently, the resulting cost benefits compared 
to the Baseline optimization strategy are used to calculate the Shapley 
value [40] for each component. The Shapley value describes the average 
contribution of a component to the total utility. A comprehensive 
description of this approach is provided in [41]. 

Fig. 15 shows the contribution of each component to the total benefit 
achieved compared to the Baseline optimization strategy. In the 
Balancing optimization strategy the battery clearly provides the most 
significant relative contribution with 65% in Period 1 and 45% in Period 
2. The battery is the only component qualified to offer power in both 
directions, consumption and feed-in. Furthermore, it is always available. 
Hence, it can provide the most balancing reserve. 

In contrast, the electric vehicle is not permanently connected to the 
charging station. Furthermore, vehicle-to-grid operation was not 
considered. Hence, it can offer less flexibility than the battery resulting 
in a relative contribution of 15% in Period 1 and 20% in Period 2. 

Fig. 15. Contribution of individual components to the total benefit with different optimization strategies described in Table 4 for .the two periods.  

Table 5 
Levels of aggregation in the market operation optimization of multiple 
households.  

Level Description 

Single Each component is optimized individually without considering other 
households, components or non-flexible loads. 

Technical All components of the same type are aggregated to component specific 
pools and optimized without considering other component types or non- 
flexible loads. 

Local All components of a household are aggregated locally and optimized 
without considering other households. 

Central All components are aggregated and optimized centrally.  
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The heat pump’s and the boiler’s flexibility potential is limited by the 
demand for space heating and domestic hot water, which is determined 
by the user-defined temperature limits and the surrounding tempera-
ture. Both power-to–heat technologies can only consume electricity. 
This constrains their availability for flexibility provision. In Period 1 the 
heat pump adds 8% to the total cost reduction. In Period 2 the relative 
contribution of the heat pump is increased to 21% because the months 
July to October are not covered, where heat pumps usually operate less 
due to lack of heat demand. The electric boiler contributes 10% in Period 
1 and 11% in Period 2. 

The only flexibility option for PV systems is curtailment. This option 
is used on the balancing market resulting in a relative contribution of 2% 

Fig. 16. Total cost of all ten households with the Day-Ahead optimization strategy for different levels of aggregation in the two periods.  

Fig. 17. Total cost of all ten households with the Balancing optimization strategy for different levels of aggregation in the two periods.  

Table 6 
Flexible component configurations of pooled households.  

Household 1 2 3 4 5 6 7 8 9 10 

Battery ✓  ✓  ✓  ✓  ✓       
Electric car ✓  ✓     ✓  ✓  ✓    
Heat pump ✓   ✓    ✓    ✓  ✓  

Boiler ✓  ✓  ✓  ✓   ✓  ✓   ✓   
PV system ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓   
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in Period 1 and 3% in Period 2. 
For the Day-Ahead optimization strategy the heat pump provides the 

highest relative contribution with 36% in Period 1 and 41% in Period 2. 
Similar results can be observed for the charging station with 32% and 
49%, respectively. With 24% and 17% even the electric hot water boiler 
contributes more to cost reduction than the battery with 8% and 2%, 
respectively. This can be explained with the high LCOE of the battery, 
which would require more economic incentives than the day-ahead 
market price spreads for flexibility activations. The PV system is not 
curtailed at all with the Day-Ahead optimization strategy. Hence, it does 
not contribute any flexibility to the total achieved benefits. 

5.5. The value and different levels of aggregation 

In this work minimum bid sizes for balancing market products are 
neglected, because it is assumed that the balancing bids are collected by 
an aggregator and incorporated as part of the bids of a balancing service 
provider. Hence, optimization could happen also locally and for each 
individual component. In an alternative approach an aggregator could 
collect all forecasts and technical data for each component of multiple 
households and manage the dispatch of end-user flexibilities centrally. 
To identify the value of aggregation, in the following the operation of 
ten households is optimized for different levels of aggregation listed in 
Table 5. Table 6 provides the flexible component configurations for each 
household. 

Fig. 16 shows the total cost of all ten households for different levels 
of aggregation with the Day-Ahead optimization strategy. In the Single 
and Technical aggregation the components are optimized without any 
information on the actual residual load of the households. Hence, the 
flexible components cannot be used to maximize self-consumption of the 
households. This results in a total cost increase of 4 - 7% compared to the 
Baseline optimization strategy, which is simulated at a Local aggregation 
level but without market access. With the Local and Central aggregation 
level all household components and loads can be considered in the 
optimization, resulting in a lower cost increase for the grid tariff, fees 
and surcharges and a total cost reduction of 4 - 5%. Considering multiple 
households simultaneously in the optimization does not provide any 
further benefit. 

The total pool cost with the Balancing optimization strategy in Fig. 17 
show similar results. Technology-specific aggregation results in higher 
cost for the grid tariff, fees and surcharges. However, here the profits 
from the balancing markets significantly exceed the cost increase in 
charges. Aggregating on a household level increases the relative cost 
reduction by 8 percentage points compared to technology-specific ag-
gregation in both periods. In Period 1 the Central optimization provides a 
slightly higher benefit over the Local aggregation. This is caused by at 
least one balancing market product, for which at least one households 
can not provide sufficient reserve individually.4 In Period 2 no further 
benefit of the Central aggregation over the Local aggregation can be 
observed. 

Considering the complexity of solving a optimization problem for 
hundreds or thousands of customers centrally the Local aggregation, 
corresponding to de-centralized optimization at a household level, 
seems like a more pragmatic approach. For scalable practical imple-
mentations data-driven machine learning models might pose a sensible 
alternative to linear programming. 

6. Discussion 

Section 6.1 proposes possible business model and tariff design op-
tions based on the quantitative results in Section 5.5. Section 6.2 dis-
cusses the value of intraday market access in the presented optimzation 
and simulation framework. In Section 6.3 the major barriers for business 
models related to the aggregation of residential flexible components are 
explained. 

6.1. Business model considerations 

For simplicity it is now assumed that a single aggregator is supplying 
the end users with electricity and offering market optimization for 
flexible components.5 In general, end users do not pay the hourly elec-
tricity market prices. Instead they are offered a supply tariff. This can be 
a constant or dynamic rate in EUR/MWh, a flat rate or a combination 
thereof. The simulation models, however, optimize the aggregator’s 
operation on multiple markets, additionally considering customer grid 
tariffs, fees and surcharges. There are various ways to incentivize cus-
tomers to provide their component’s flexibilities for this purpose. The 
aggregator can provide a flexibility remuneration to the end users. This 
can be in the form of an annual or monthly flat rate or paid per flexibility 
activations or per balancing reserves in EUR/MWh. Another approach is 
to forward the benefits from flexibility optimization on different markets 
to the end users in a transparent manner. In that case the end users can 
pay a fee for the service of market access, either flat or based on flexi-
bility activations or balancing reserves, respectively. 

To illustrate the differences, consider the following tariff configu-
rations. In the Simple tariff setup the households are charged a constant 
energy tariff chosen as the weighted average day-ahead market price 
plus 20 EUR/MWh. The aggregator can use the flexibility of household 
components and remunerates the customers with a flexibility rate in 
EUR/MWh charged per MWh of balancing reserve provided. Here the 
flexibility rate is chosen as half of the total benefit achieved in EUR 
divided by the total balancing reserves in MWh. 

Alternatively, in the Transparent configuration customers are 
charged the actual hourly day-ahead price plus 20 EUR/MWh. The 
benefits from balancing market operation are directly forwarded to the 
households, who pay the flexibility rate in EUR/MWh for balancing 
reserve to the aggregator for providing the market access. Table 7 shows 

Table 7 
Summary of rates in different tariff setups for the two periods. All rates are 
provided in EUR/MWh.   

Dynamic rate* Constant rate Flexibility rate** 

Period 1    
Simple  55.74 − 8.76 
Transparent pda,t (35.74)  20.00 8.76 
Period 2    
Simple  71.21 − 3.98 
Transparent pda,t (51.21)  20.00 3.98 

* pda,t is the hourly day-ahead electricity market price. The mean value weighted 
with the customers’ total residual load profile is provided in brackets. 
** The flexibility rate is charged per MWh of balancing reserve provided by the 
households. Negative values correspond to payments from the aggregator to the 
customers. 

4 Consider in a simplified example two electric vehicles. One is connected 
until 19:00, the other starting from 17:00. Individually, neither can provide 
reserve for the balancing products between 16:00 and 20:00. However, in a 
global optimization the required reserve can be achieved by both vehicles 
together. 

5 Business models that provide market access to end user flexibilities require 
a supplier, a balancing responsible party, a market participant operating on 
balancing markets and an aggregator responsible for the optimization and 
communication of household components. In theory there can even be multiple 
aggregation. For example technology manufacturers can already equip flexible 
components with the necessary technologies for data exchange and remote 
control and offer market optimization as a service to their customers. 
Conversely, one market participant can take up multiple of the required roles. 
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the values of the supply tariffs and flexibility rates for the Simple and 
Transparent setup in both periods. Both tariff configurations yield the 
same cost with the Baseline optimization strategy. 

Fig. 18 shows the total cost of all ten households for different tariff 
setups. With the Balancing optimization strategy cost for the grid tariff, 
fees and surcharges increase. In the Simple tariff configuration supply 
tariff cost increase, too. However, due to the flexibility rate a total cost 
reduction of 15% in Period 1 and 3% in Period 2 is achieved. With a 
Transparent setup the energy supply component of the end user bill de-
creases significantly. In Period 1 it is even negative. The additional cost 
for the flexibility rate paid to the aggregator yields a total cost reduction 
of 22% in Period 1 and 6% in Period 2. 

Fig. 19 shows the aggregator profit for different tariff setups. The 
aggregator can achieve substantial benefits on the day-ahead and 
balancing markets with the balancing optimization strategy. Note that 
additional cost for market access, ICT infrastructure and software and 
data management are not considered here. With the Simple tariff 
configuration the revenues from electricity supply increase, too. 
Considering the additional cost from the flexibility rate paid to the 
customers still yields a significant profit increase of 226% in Period 1 and 
80% in Period 2. In the Transparent tariff setup the benefits from flexible 
market operation are passed on to the end users in the supply tariff. 
However, with the extra revenue from the flexibility rate profit increases 
by 183% in Period 1 and 59% in Period 2. 

Fig. 19. Aggregator profit for different tariff configurations.  

Fig. 18. Total household cost for different tariff configurations.  
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Both tariff setups result in win–win situations among the aggreator 
and the customers. However, they do not ensure by construction eco-
nomic benefits for individual ened users. Designing tariffs that ensure 
win–win situations among the aggregator and each individual customer 
is a difficult task and subject to future research. Nevertheless, economic 
benefits might not be the only incentive driving the decisions of end 
users. Contributing to the electricity system’s flexibility and, conse-
quently, to the integration of variable RES and the reduction of green-
house gas emissions can also motivate customers to participate in 
business models related to the aggregation of residential flexibilities. 

6.2. Intraday market access 

Most contributions to literature presented in Section 2.3 use a scenario- 
based multi-stage stochastic modeling approach to evaluate business 
models of aggregators operating on balancing markets. However, they do 

not consider unexpected activations, their impact on components’ state-of- 
charge levels or the intraday market as an option to balance unexpected 
state-of-charge deviations. This section explains the benefits of the 
approach chosen in this work using a simplified example. 

Consider the household’s battery bidding on the balancing market. 
For simplicity assume that it has no conversion losses and it bids the 
same size b− and b+ for all six four-hour products of a day and that both 
negative and positive products have the same activation probability. 

If no access to the intraday market is available the battery has to 
meet all activations with the state-of-charge at the beginning of the day. 
In the extreme case of 100% positive activations and zero negative ac-
tivations 24⋅b+ MWh would be discharged from the battery. Conversely, 
for negative activations only, 24⋅b− MWh would be fed into the storage. 
With a state-of-charge of 50% at the beginning of the day and no other 
planned operation for the battery, at most b− = b+ = CBat

48 MW can be 
offered for balancing. The corresponding state-of-charge limits are 

Fig. 21. Maximum balancing market bid sizes of the battery without (i) and with (ii) access to the intraday market.  

Fig. 20. State-of-charge limits of the battery without (i) and with (ii) access to the intraday market.  
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illustrated in subplot (i) of Fig. 20 for day 1. Assume now that the battery 
is already providing balancing reserve during the day when the bids for 
the next day are placed. In that case at market closure time the state-of- 
charge at the end of the day is known within some range only. This 
uncertainty further reduces the maximum balancing market bid sizes for 
the next day. Subplot (i) of Fig. 20 illustrates the state-of charge limits in 
this scenario for days 2 and 3. The corresponding maximum balancing 
market bid sizes are shown in subplot (i) of Fig. 21. 

If intraday market access is available the battery can react on acti-
vations and balance deviations from the planned state-of-charge 
immediately subject to the intraday market lead time. With a lead 
time of one hour this means that at each time step, state-of-charge re-
serves for the activations of the following hour only have to be consid-
ered. However, additional power has to be reserved for potential 
intraday market activations. Hence, the maximum bid size is given by 
min{PBat

in ,PBat
in }

2 where PBat
in and PBat

out are charging and discharging power limits 
of the battery. Thus, in that case the limiting factor is not the battery’s 
capacity but its power. Furthermore, a fixed state-of-charge can be 
assumed at the end of the day every day since all unexpected activations 
are balanced within one hour. The state-of-charge limits with intraday 
market access are illustrated in subplot (ii) of Fig. 20. Fig. 21 shows that 
significantly more balancing market reserves can be offered if access to 
the intraday market is available. A detailed description of reserves for 
the intraday market with this strategy is provided in Section 3.3.2. 

The approach chosen in this work uses the first possible intraday 
product to balance unexpected reserve market activations. The eco-
nomic results might be slightly improved by performing a rolling opti-
mization for the intraday market as well. Furthermore, periodic intraday 
optimization can be used to react on forecast errors, which are not 
considered here. 

6.3. Barriers and challenges 

Minimum bid sizes can constitute a major barrier for aggregators of 
flexible end user components [13]. 

In this work cooperation with a balancing market participant con-
trolling large-scale power plants is assumed to overcome this barrier. 
Without this assumption a large number of households is required for a 
single balancing market bid. With local aggregation in the optimization, 
individual households might find optimal schedules that can not be 
placed as market bids because in total the minimum bid size can not be 
achieved. For global aggregation the optimization models might become 
to complex to solve in reasonable time. 

Regardless of the level of aggregation in the optimization a large 
amount of communication and data transfer is required. In the simula-
tion models it is implicitly assumed that individual small-scale house-
hold components provide operation schedules and that the evidence of 
balancing energy provision is determined by the deviation from these 
schedules. This approach requires continuous measurement and exten-
sive data exchange with the system operator, which is a challenge for 
real-life implementation. Furthermore, costumers might raise privacy 
concerns taking into account the required data communication for these 
business models. 

The simulations in this work assumed perfect foresight for load, 
generation, temperature or market prices. Hence, a real-life imple-
mentation of the proposed optimization strategy will yield less optimal 
results. Especially on a single household level forecasting of non-flexible 
loads is a difficult task. A rolling intraday market operation might be a 
suitable tool to deal with day-ahead load forecast errors. This work only 
considers the uncertainties in terms of balancing activations. Analyzing 
the impact of forecast errors and developing methods to handle these 
uncertainties in the presented framework are left to future research. 

For metered households the grid tariff often includes a peak 
component that is charged for the maximum load within a month or 
year, respectively. Due to the short optimization period of 24 to 48 h in 

the rolling optimization approach this cannot be included exactly into 
the model’s objective function. Not considering it at all might yield 
increased household cost. Considering the full peak component or part 
of it in each daily optimization might result in using too much flexibility 
to restrict the maximum load. There might be higher peaks on different 
days and unnecessary peak load reduction reduces flexibility for market 
optimization. Developing and analyzing different strategies to include a 
peak component of the grid tariff into daily optimization is a task for 
future research. 

7. Conclusions 

A modular mathematical framework to model the operation of en-
ergy aggregators on day-ahead, balancing and intraday markets is pre-
sented. It has proven to be effective to tackle a variety of research 
questions related to the flexibility provision of end users. 

Based on the quantitative analysis of a specific case study the 
following generalized conclusions in the context of aggregators oper-
ating on multiple electricity markets can be drawn: 

• Under the considered price conditions, balancing market participa-
tion provides significantly higher economic potential than opti-
mizing with respect to day-ahead market prices only.  

• The cost reduction achieved on balancing markets allow business 
model and tariff designs resulting in win–win situations among the 
aggregator and the end users.  

• Balancing market participation results in a reduction of PV self- 
consumption share. However, battery operation on balancing mar-
kets is economically feasible for higher LCOE than battery usage for 
self-consumption.  

• Both neglecting the risk of additional cost through unexpected 
balancing activations and assuming the worst case scenario in the 
objective function yields suboptimal results. Hence, the introduction 
of a more elaborate risk measure to the optimization models is 
recommended.  

• Batteries can provide the highest contribution to balancing market 
operation and achieved benefits due to their permanent availability 
and symmetry in consumption and production. However, on the day- 
ahead market the heat pump, the electric vehicle and the electric 
boiler achieve higher contributions because of the batteries’ high 
LCOE.  

• Optimizing components individually or aggregated to a technology- 
specific pool yields suboptimal results. Considering the computa-
tional complexity for large pool sizes, a local optimization on a 
household level through an energy management system is 
recommended. 

• Considering the intraday market to react on balancing market acti-
vations allows to offer significantly more balancing markets reserves. 

Future work may investigate further risk management approaches to 
handle the uncertainties of balancing activations. Furthermore, it is 
planned to include methods to handle forecast errors in the presented 
framework. Another direction of future research might investigate tariff 
design for aggregator business models and its implications on individual 
customers in greater detail. Finally, the development and analysis of 
different approaches to handle peak tariff components in daily optimi-
zation is left to future work. 
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Appendix A. Implementation of different components 

This section provides a brief overview on how different components are implemented in the generic component interface. 

A.1. Batteries 

Batteries provide the highest flexibility. They are the only component type allowing power output and being available all the time. Table A.1 lists 
the parameters characterizing a battery. The methods defined for a battery B in the generic component interface are given in Eqs. (A.1) to (A.9) in 
terms of these parameters. 

sin
max(B, t,Δt) = PB

in (A.1)  

sin
out(B, t,Δt) = PB

out (A.2)  

socmax(B, t,Δt) = CB (A.3)  

ηin(B, t,Δt) = ηB
in (A.4)  

ηout(B, t,Δt) = ηB
out (A.5)  

λlin(B, t,Δt) = λB (A.6)  

cout(B, t,Δt) = cB
cycle (A.7)  

Table A.2 
Parameters describing charging cycles of charging stations.  

Parameter Default Unit Description 

tCycle
on    Time of connection to the charging station 

tCycle
off    

Time of connection to the charging station 

socCycle
on   MWh State-of-charge at connection time 

socCycle
off   

MWh State-of-charge at disconnection time 

PCycle
in  

0.011 MW Nominal input power 

PCycle
out  0 MW Nominal output power 

CCycle  0.04 MWh Storage capacity 

ηCycle
in  

0.953  Charging efficiency 

ηCycle
out  0.953  Discharging efficiency 

λCycle  0.01 1/h Standby loss 

cCycle
cycle  

0 EUR Life cycle cost of one charging cycle  

Table A.1 
Parameters describing batteries.  

Parameter Default Unit Description 

PBat
in  0.0064 MW Nominal input power 

PBat
out  0.005 MW Nominal output power 

CBat  0.01152 MWh Storage capacity 

ηBat
in  0.944  Charging efficiency 

ηBat
out  0.922  Discharging efficiency 

λBat  0.01 1/h Standby loss 

cBat
op  50 EUR/MWh Levelized cost of energy  
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socstart
(
B, t→,Δt

)
=

CB

2
(A.8)  

socstop
(
B, t→,Δt

)
=

CB

2
(A.9)  

A.2. Electric vehicles 

Electric vehicles are included via charging stations. A charging station is characterized by a set of charging cycles, describing when an electric 
vehicle is connect, when it will be disconnected, the state-of-charge at connection time and the required state-of-charge at disconnection time. 
Furthermore, all parameters describing a battery can be specified. Table A.2 lists all parameters characterizing a single charging cycle. Let Ci denote 
the ith charging cycle of a charging station C. The interface function α is given in Eq. (A.10). 

α(C, t,Δt) =

{
1 ∃i : tCi

on⩽t < tCi
off

0 else
(A.10)  

The charging cycle available at time t is written as Ct. The interface functions sin
max, sout

max, ηin, ηout, λlin and cout for the input (C, t,Δt) are defined as the 
corresponding parameter of Ct in Table A.2 analogous to Eqs. (A.1) to Eq. (A.7) if α(C,t,Δt) = 1, and zero otherwise. To consider the connection and 
disconnection of different electric vehicles in the state-of-charge variables, the external storage input function qext defined in Eq. (A.11) is used. 

qext(C, t,Δt) =

⎧
⎪⎪⎨

⎪⎪⎩

socCt
on t = tCt

on

socCt
off t = tCt

off − Δt
0 else

(A.11)  

Accordingly, the function socmax is given by Eq. (A.12). 

socmax(C, t,Δt) =

{
CCt tCt

on⩽t < tCt
off − Δt

0 else
(A.12)  

If charging cycles go beyond the optimization time frame, start and stop values for the state-of-charge are interpolated linearly between the connection 
and disconnection state-of-charge. For tCt

on < min t→< tCt
off the start state-of-charge socstart

(
C, t→,Δt

)
is set to 

socCt
on +

min t→− Δt − tCt
on

tCt
off − tCt

on
⋅
(

socCt
off − socCt

on

)
. (A.13)  

otherwise it equals zero. Similarly, socstop
(
C, t→,Δt

)
defaults to zero except for tCt

on < max t→< tCt
off − Δt. In that case it is given by 

socCt
on +

max t→− tCt
on

tCt
off − tCt

on
⋅
(

socCt
off − socCt

on

)
. (A.14)  

Table A.3 
Parameters describing heat pumps.  

Parameter Default Unit Description 

T→
HP
out   

◦C Vector of outdoor temperatures 

PHP
in  0.00278 MW Nominal input power 

AHP  100 m2 Living area 

THP
min  20 ◦C Minimum indoor temperature 

THP
max  25 ◦C Maximum indoor temperature 

ηHP
in  1  Charging efficiency 

copHP
lin  0.05 MWhth

MWhel
◦C  

Outdoor temperature dependent part of coefficient of performance 

copHP
const  3.5 MWhth

MWhel  

Constant part of coefficient of performance 

ϕHP  0.00444 MWh
◦C  

Conversion factor between thermal energy and room temperature change 

λHP
lin  0.00176 1/h Linear building temperature losses 

λHP
const  − 0.0178 ◦C/h Constant building temperature losses  
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A.3. Heat pumps 

Domestic heat pumps are characterized the nominal input power, temperature limits, a conversion factor, efficiencies, loss factors and the 
building’s living area. Furthermore, a vector storing the outdoor temperature at each time step is required to calculate the building’s temperature 
losses. Table A.3 lists all parameters describing heat pumps and their default values. The default values for copHP

lin , copHP
const, λHP

lin and λHP
const were derived 

using a linear regression on measured data for electric power, thermal power, indoor and outdoor temperature of a real heat pump. The interface 
functions overloaded for a heat pump H are given in Eqs. (A.15) to Eq. (A.20). 

sin
max(H, t,Δt) = PH

in (A.15)  

ηin(H, t,Δt) = ηH
in (A.16)  

ϕ(H, t,Δt) =
AH ⋅ϕH

copH
const + copH

lin⋅TH
out,t

(A.17)  

socbase(H, t,Δt) = TH
out,t (A.18)  

λconst(H, t,Δt) = λH
const (A.19)  

λlin(H, t,Δt) = λH
lin (A.20)  

If the state-of-charge limits are fixed to TH
min and TH

max, the optimization model can become infeasible for extreme outdoor temperatures. Hence, they 
are adapted based on the outdoor temperature profile to ensure feasibility, respecting the provided temperature limits whenever possible. For this 
purpose, a functions Tmin

next and Tmax
next are introduced in Eq. (A.21), calculating the minimum and maximum potential indoor temperatures in the next time 

step. 

Tmin
next(H, T, t,Δt) = T − Δt⋅

(
λH

const + λH
lin⋅

(
T − TH

out,t

))
(A.21)  

Tmax
next(H, T, t,Δt) = Tmin

next(H,T, t,Δt)+Δt⋅
ηH

in⋅PH
in

ϕ(H, t,Δt)
(A.22)  

With these auxiliary functions, the generic interface methods for socmax and socmin are given in Eq. (A.23). Note that only t is explicitly written in the 
equations. The input parameters H and Δt are omitted. 

socmax(t) = max
{

TH
max,T

min
next(socmax(t − Δt), t − Δt )

}
(A.23)  

socmin(t) = min
{

TH
min,T

max
next(socmin(t − Δt), t − Δt )

}
(A.24)  

Finally, the start and stop values for the state-of-charge are defined in Eq. (A.25). 

socstart
(
H, t→,Δt

)
=

TH
max + TH

min

2
(A.25)  

socstop
(
H, t→,Δt

)
= socmin

(
max t→

)
(A.26)  

A.4. Electric boilers 

Electric boilers are characterized by a load profile for domestic hot water demand, the nominal input power and the charging efficiency. 

Table A.4 
Parameters describing electric boilers.  

Parameter Default Unit Description 

L→
Boiler   MW Vector of domestic hot water loads 

PBoiler
in  0.0066 MW Nominal input power 

VBoiler  300 L Water storage volume 

TBoiler
min  40 ◦C Minimum water storage temperature 

TBoiler
max  95 ◦C Maximum water storage temperature 

TBoiler
room  20 ◦C Surrounding room temperature for the water storage 

ηBoiler
in  0.99  Charging efficiency 

λBoiler  0.01 1/h Linear water storage temperature losses  
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Furthermore, the hot water storage is described by its volume, temperature limits and losses. The corresponding parameters are listed in Table A.4. 
With the approximate values for the density ρ = 0.99kg L− 1 and the specific heat capacity c = 4.18 J g− 1 K− 1 [42] of water, the interface functions for 
an electric boiler B are given in Eqs. (A.28) to (A.35). 

sin
max(B, t,Δt) = PB

in (A.28)  

ηin(B, t,Δt) = ηB
in (A.29)  

ϕ(B, t,Δt) =
c⋅ρ

3.6 × 106⋅VB (A.30)  

socmin(B, t,Δt) = TB
min (A.31)  

socmax(B, t,Δt) = TB
min (A.32)  

socbase(B, t,Δt) = TB
room (A.33)  

qext(B, t,Δt) = −
Δt

ϕ(B, t,Δt)
⋅LB

t (A.34)  

λlin(B, t,Δt) = λB (A.35)  

A.5. Photovoltaic systems and non-flexible loads 

PV systems are characterized by a schedule of production values S→
PV 

in MW and a Boolean value δPV indicating if it is allowed to be curtailed. The 
only interface functions overloaded for a PV system P are given in Eq. (A.36). 

sout
max(P, t,Δt) = SP

t (A.36)  

sout
min(P, t,Δt) =

⎧
⎪⎪⎨

⎪⎪⎩

0 δP = 1
SP

t δP = 0 (A.37)  

Non-flexible loads are described by a schedule of consumption values S→
Load 

in MW. They do not offer any flexibility but are important to consider, 
because they affect the grid tariff, fees and surcharges if they share a grid connection point with other flexible devices. The interface functions defined 
for a non-flexible load L are given in Eq. (A.38). 

sout
max(L, t,Δt) = SL

t (A.38)  

sout
min(L, t,Δt) = SL

t (A.39)  
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