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Abstract: Background: Heart failure (HF) remains one of the leading causes of death to date despite
extensive research funding. Various studies are conducted every year in an attempt to improve
diagnostic accuracy and therapy monitoring. The small cytoplasmic heart-type fatty acid-binding
protein (H-FABP) has been studied in a variety of disease entities. Here, we provide a review of the
available literature on H-FABP and its possible applications in HF. Methods: Literature research using
PubMed Central was conducted. To select possible studies for inclusion, the authors screened all
available studies by title and, if suitable, by abstract. Relevant manuscripts were read in full text.
Results: In total, 23 studies regarding H-FABP in HF were included in this review. Conclusion: While,
algorithms already exist in the area of risk stratification for acute pulmonary embolism, there is still
no consensus for the routine use of H-FABP in daily clinical practice in HF. At present, the strongest
evidence exists for risk evaluation of adverse cardiac events. Other future applications of H-FABP may
include early detection of ischemia, worsening of renal failure, and long-term treatment planning.

Keywords: H-FABP; heart-type fatty acid-binding protein; FABP3; fatty acid-binding protein 3; heart
failure; HF; cardiac biomarkers

1. Introduction

According to the Global Burden of Disease study, cardiovascular (CV) diseases represent the
leading cause of death among non-communicable diseases, accounting for approximately 17.9 million
deaths worldwide in 2015 [1]. As described in the meta-analysis by Van Riet et al., the prevalence of
all-type heart failure (HF) in the older cohort of patients (>60 years) is 11.8% [2]. Additionally, health
care costs, related to HF, represent a serious economic burden to healthcare systems. Heidenreich and
colleagues estimated that the total medical costs of HF in the US will increase from $31 billion in 2012
to at least $70 billion in 2030 [3]. Thus, it is not only important to find new therapeutic approaches,
but also to diagnose affected individuals early and monitor therapies properly. Biomarkers for HF
are subject of current research and may have the potential to, not only reduce costs, but also extend
symptom-free intervals through effective therapy control.
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Described for the first time in 1972, a group of cytoplasmic proteins called fatty acid-binding
proteins (FABPs) has been under investigation in the scientific community [4]. To date, several subtypes
of FABPs, occurring in various organ systems in different concentrations, have been discovered. These
low-molecular-weight proteins (about 15 kD [5]) have been widely discussed, especially given the
association of H-FABP as an independent risk factor for all-cause mortality and cardiovascular (CV)
death [6]. According to the HUGO Gene Nomenclature Committee, the FABP family consists of 16
members, each encoded by a distinct gene. The probably best-known members include L- (liver), I-
(intestinal), H- (muscle/heart), A- (adipocyte), E- (epidermal), Il- (ileal), B- (brain), M- (myelin), and
T-FABP (testis) [7]. FABPs are involved in cellular fatty acid metabolism as they reversibly bind and
transport long-chain polyunsaturated fatty acids (PUFA) from cell membranes to the mitochondria.
Additionally, they contribute to cellular growth and proliferation processes, and can activate peroxisome
proliferator activated receptors (PPARs). Therefore, they play a functional role in lipid metabolism and
energy homeostasis [8–10].

The heart-type FABP (H-FABP), also known as mammary-derived growth inhibitor, is probably the
best-known member of the FABP family. H-FABP is encoded by the FABP3 gene located on the 1p33-p32
region of chromosome 1 [11], whereas, RXRa, KLF15, CREB, and Sp1 were identified as transcriptional
factor binding sites for different PPARs in animal studies [12]. It is expressed in tissues with high
demand of fatty-acids, such as heart, skeletal-muscle, brain, kidney, adrenal gland, and mammary
gland tissues, as well as in blastocysts [8]. FABP3 was also found to be expressed in γ-aminobutyric
acid (GABA)-ergic inhibitory interneurons of the male anterior cingulate cortex in mice, suggesting
that it has an important role also in cerebral PUFA-homeostasis [13]. H-FABP itself is abundant in the
cytoplasm of striated muscle cells and is rapidly released in response to cardiac injury [14]. H-FABP is
expressed more abundantly in the heart’s ventricles (0.46 mg/g wet weight) and atria (0.25 mg/g wet
weight) than in skeletal muscles (e.g., the diaphragm contains 25% of the heart’s H-FABP concentration)
or in other organs (less than 10% of the H-FABP content of the heart) [15]. In healthy individuals,
serum levels of H-FABP are in the single digit ng/ml range [16–18]. Expression of H-FABP is regulated
by the microRNA miR-1, which might play a role in the progression of HF itself [19]. Upon myocardial
injury, H-FABP is rapidly released from myocytes into the systemic circulation, due to its small size
and free cytoplasmic localization. Also, transient increases in sarcolemmal membrane permeability are
suspected to permit H-FABP leakage into the systemic circulation [20,21]. This so-called “wounding”
of myocytes was observed, even after short-term ventricular stress, and it may play an important
role in diverse auto- and paracrine mechanisms in the pathogenesis of HF [20]. The elimination of
H-FABP takes place via the kidney, explaining a shorter diagnostic window in patients with normal
renal function [22]. Kleine et al., for example, reported that H-FABP plasma levels returned to baseline
within 20 hours after the onset of symptoms in patients with acute myocardial infarction [23].

Apart from its crucial role in cardiac lipid transport [24,25], several in vitro and in vivo studies
investigated further functions of H-FABP. The potential role of H-FABP in cardiomyocyte differentiation
was suggested by Tang et al., who observed a correlation between H-FABP expression and decreased
cell proliferation in mouse cardiomyocytes [26]. A similar finding was obtained by Wang et al., using
human bone marrow derived mesenchymal stem cells, by which overexpression of H-FABP inhibited
proliferation [27]. Additionally, it was shown by Zhu et al., using a P19 embryonic myocardial
cell line overexpressing H-FABP, that it might inhibit cell proliferation and promote apoptosis
during myocardial cell development [28]. However, in a later study, H-FABP silencing instead
of overexpression led to reduced proliferation and increased apoptosis in the same cell line [29].
In zebrafish, the knock-down of H-FABP resulted in impaired heart development and augmented
apoptosis [30,31]. In neonatal rats, H-FABP downregulation repressed cell apoptosis and improved
structural remodeling in ventricular myocytes under hypoxia. On the other hand, H-FABP upregulation
enhanced phosphorylation of the MAPK signalling pathway and decreased phosphorylated protein
kinase B (Akt) levels, increasing apoptosis and remodeling [32]. An anti-apoptotic role of H-FABP
was also found in hypoxia/reoxygenation induced H9c2 cardiomyocytes [33]. Consistent with this,
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H-FABP enhanced survival in human bone marrow derived mesenchymal stem cells in hypoxia [27].
Overexpression of H-FABP promoted growth and migration in human aortic smooth muscle cells [34].
In summary, the precise mechanism by which this protein influences cardiomyocyte proliferation and
apoptosis remains elusive and further research is needed to explain its mode of action. Figure 1 provides
a graphic overview of H-FABP under physiological and pathophysiological conditions.
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Figure 1. Under physiological conditions, H-FABP serves as a transport protein in cellular metabolism
and can reversibly bind fatty acids. Furthermore, it can activate PPARs and therefore plays a role in
lipid metabolism and energy homeostasis. The expression of H-FABP is regulated by the microRNA
miR-1. In response to cardiac injury, H-FABP is rapidly released into the blood-stream where it
can be quantified. Physical training as well as pharmacological interventions like anti-tachycardic
therapy were shown to decrease plasma levels of H-FABP. Abbreviations: miR-1: microRNA 1; PPAR:
peroxisome proliferator activated receptor (PPAR). H-FABP: heart-type fatty acid-binding protein.

Regarding laboratory testing, different types of assays are frequently used in research and clinical
settings for the detection and quantification of H-FABP in serum, plasma, or whole blood. These
assays comprise enzyme-linked immunosorbent assays (ELISA) [6,15,35–37], immunoturbidimetric
assays [38,39], multiplex assays [40,41], and immunochromatographic assays [42,43]. Test times depend
on the type of assay, and vary between 5 and 120 min (as reviewed in [44]). The varying characteristics
of these tests allow flexibility when choosing the appropriate test for the desired readout under varying
budget and time restrictions.

A number of authors have discussed the role of H-FABP in clinical routine since its discovery.
The following literature review will consider H-FABP and its potential use as a biomarker in HF.

2. Methods

A structured database search regarding H-FABP and its role in HF was conducted using “PubMed
Central”. Three researchers (R.R., M.G. and R.D.) screened the studies independently. To select possible
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studies for inclusion in the definite analysis, the authors screened all available studies by title and, if
suitable, by abstract. Manuscripts that appeared relevant were read in full text. References of studies
included were reviewed for further reading. This review on H-FABP in HF was conducted based on
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [45].
The corresponding flow-chart is given in Appendix A Figure A1.

3. H-FABP as a Biomarker in Heart Failure

According to the European Society of Cardiology (ESC) guidelines, HF is a syndrome characterised
by typical symptoms and clinical signs, with a “structural and/or functional cardiac abnormality” as an
underlying cause, “resulting in reduced cardiac output and/or elevated intra-cardiac pressures at rest
or during stress” [46]. Due to their strong negative-predictive value, the use of natriuretic peptides
is well-established in standard HF algorithms [46–48]. Nevertheless, like many other biomarkers,
including cardiac troponins, elevated levels of B-type natriuretic peptide (BNP) may also indicate
alternative conditions and BNP release may lag in conditions with very acute onset, such as flash
pulmonary edema or right-sided acute HF (AHF) [46,49]. As mentioned in the actual ESC-guidelines,
their use for ruling out HF, but not for setting up the diagnosis, can be recommended [46]. These
guidelines also state that, despite extensive research, no recommendation can currently be made for
the use of novel cardiac biomarkers in everyday clinical practice [46]. The same holds true for the
American AHA guidelines on HF [47] and even a specific sub-study of the large scale PROTECT trial
failed to identify the perfect single biomarker among 48 different markers for the prognostic assessment
of patients with AHF [50].

Most biomarkers are not indicative of cardio-specific events but of general pathologic processes
like inflammation, ischemia, fibrosis, or general cell death. As HF is an aetiologically diversified,
systemic-progressive disease, a simultaneous assessment of different pathways seems reasonable,
though, a prognostic assessment based on a single factor is challenging. Possible hallmarks in the
pathophysiology of HF are mechanical stress, ischemia, chronic (subclinical) inflammation, fibrosis,
and angiogenesis [36]. With respect to ischemic heart disease, the potential suitability of H-FABP
as an early indicator of myocardial injury has been mentioned for years in numerous publications.
In contrast to cardiac troponins, which are bound to the myocyte’s structural apparatus, H-FABP
is present as soluble protein in the cytoplasm. Therefore, the release into systemic circulation may
possibly be detected more rapidly and even after minor myocardial damage [21]. Liebetrau et al., for
example, report significantly increased serum levels of H-FABP already 15 minutes after iatrogenic
myocardial infarction, caused by transcoronary ablation of septal hypertrophy (TASH). in patients with
hypertrophic obstructive cardiomyopathy [14]. Some authors state additional benefits of combining
H-FABP with high-sensitive troponins [37,38], whereas, others do not conclude any incremental benefit
of H-FABP on top of cardiac troponins for diagnosing acute myocardial infarction [42,51,52]. Regarding
pulmonary embolism (PE), several publications describe the use of H-FABP for risk stratification due
to its role as an early indicator of right-ventricular strain [53–55]. A strong correlation with the risk
of major adverse events and mortality was demonstrated, and even the 2019 ESC Guidelines on the
diagnosis and management of acute PE mention the use of H-FABP for risk stratification, despite the
fact that prospective trials are still missing [56].

As mentioned before, H-FABP plays an important role in cellular signalling, lipid-transport,
and myocytal homeostasis [57]. Additionally, due to the amphipathic nature of fatty acids, their
accumulation and membranal storage can have noxious effects on cellular structural and functional
properties [57]. Therefore, mechanical stress, as well as cellular damage, including from ischemic or
inflammatory processes, may be further perpetuated by a disturbed myocytal homeostasis, reduced
intracellular H-FABP content [11], and may support the (chronically) progressive character of HF.
Despite its rapid, and in the case of CHF, sustained release into general circulation, H-FABP not only
acted as an indicator of cellular damage, but also a marker of myocytal dyshomeostasis, and thus,
functional impairment of the myocardium.
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Various authors have investigated the role of H-FABP in patients suffering from HF with different
methods over the last few years. Many studies postulate the independent relationship between
H-FABP and outcome, as well as the risk of adverse CV events [40,58–61]. In a recent study by Ho
et al., for example, high levels of H-FABP were an independent risk factor for CV death and acute
HF-related hospitalization in 1071 patients with chronic coronary disease [40]. In an interesting study
from 2005 with 186 patients, Niizeki et al. demonstrated superiority of the combined analysis of BNP
and H-FABP for risk stratification in patients with CHF. The authors described the added benefit of
H-FABP in showing persistent myocardial damage, compared to BNP, as a sole myocardial strain
parameter. Interestingly, the authors only found a weak correlation between the two individual
laboratory parameters, which may indicate different pathophysiological origins [58]. In a second study
from 2008, involving 113 patients with CHF, the authors again associated persistently high levels of
H-FABP with adverse events in patient follow-up. They suggested serial measurement of H-FABP
concentrations for therapy monitoring, as they observed regredient serum levels under HF therapy in
a subgroup of patients [59]. A significant decrease in H-FABP levels was also observed in a study by
Jirak et al. where they investigated several biomarkers in fifty patients with CHF under therapy with
the If channel inhibitor, ivabradine [62]. This was also observed in children with CHF after treatment
with carvedilol [63].

Regarding AHF, Hoffmann et al. found improved specificity and positive predictive value for
the diagnosis of AHF in their work including 401 patients with acute dyspnea or peripheral edema
when using H-FABP in addition to BNP. H-FABP levels also correlated with adverse outcomes and
AHF related rehospitalization [60]. These findings are in line with the work of Ishino et al. In their
study on 134 patients with acute decompensated HF (ADHF), the authors were able to correlate high
H-FABP levels with significantly higher rates of adverse cardiac events and in-hospital mortality [61].
Kazimierczyk et al. observed significantly higher rates of death and rehospitalization in patients
with ADHF and both higher H-FABP concentrations at admission and discharge. Echocardiographic
remodeling parameters correlated well with high initial H-FABP-levels [64]. Shirakabe et al. were able
to correlate serum H-FABP levels not only with all-cause mortality in patients with ADHF, but also
worsening of renal failure. The latter finding achieved a sensitivity and specificity of 94.7%, and 72.7%,
respectively (AUC = 0.904) in non-chronic kidney disease patients [65].

Concerning patients with HF with reduced ejection fraction (HFrEF), Lichtenauer et al. enrolled
65 patients with dilative cardiomyopathy (DCM) and 59 patients with ischemic cardiomyopathy (ICM)
in their study on novel cardiac biomarkers in CHF. H-FABP levels were significantly elevated in both
patient populations, compared to controls without signs of HF or coronary artery disease. Furthermore,
H-FABP levels not only correlated proportionally with NYHA functional class, but also inversely with
ejection fraction [36]. Regarding, HF with preserved ejection fraction (HFpEF; left ventricular ejection
fraction ≥50%), Kutsuzawa et al. observed an independent correlation of higher H-FABP-levels and the
occurrence of adverse CV events in their study on 151 HFpEF-patients. Interestingly, serum levels of
H-FABP did not differ between patients with HFpEF and HFrEF (left ventricular ejection fraction <50%)
between each NYHA functional class [66]. Dinh et al. found markedly higher levels of Troponin T and
H-FABP, even in patients with asymptomatic left ventricular diastolic dysfunction and patients with
HF and normal ejection fraction, supposing ongoing myocytal damage in these patient collectives [67].
However, Jirak et al. observed significantly higher H-FABP serum levels in patients with DCM and
ICM, than in patients with HFpEF. Nevertheless, significantly higher H-FABP concentrations were
shown in HFpEF patients compared to the control group [68].

Considering patients with valvular heart disease, Iida et al. showed an independent
association of H-FABP with clinical outcomes in hypertensive patients with aortic valve disease.
Echocardiographically determined left ventricular dimensions were signs of cardiac remodelling and
correlated significantly with measured levels of H-FABP, whereas Troponin T remained below cut-off

levels in all patients [21]. Mirna et al. actually reported a significant reduction in H-FABP plasma
concentration in 79 patients with severe aortic valve stenosis after conducting transcatheter aortic valve
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implantation (TAVI), indicating reduced ventricular wall stress and potential reversibility of cardiac
remodeling due to valvular replacement [69].

Regarding arrhythmia as a co- and sometimes main-perpetrator in HF, Otaki et al. observed in
their study with 402 patients higher levels of H-FABP in patients with CHF and atrial fibrillation (AF)
than in patients with CHF and sinus rhythm (SR) [70]. Rader et al. showed that in 63 studied patients
undergoing cardiac surgery that post- but not preoperative H-FABP levels correlated with onset of
perioperative AF (POAF) [71]. Interestingly, Shingu et al. observed lower H-FABP gene expression in
patients’ atria with POAF after cardiac surgery, illustrating the complexity of cellular processes in the
development of HF [72].

Mirna et al. made another interesting discovery when investigating H-FABP levels in patients
with pulmonary hypertension (PH). They observed that H-FABP levels were primarily elevated in
group two and three PH, namely PH related to left heart disease, pulmonary disease, and chronic
hypoxia. H-FABP may, therefore, be useful as a possible indicator for post-capillary PH [73].

Application of H-FABP measurement in HF monitoring may also be found in paediatric cardiology.
Zoair et al. reported a correlation of serum H-FABP levels with clinical and echocardiographic signs
before, and after, HF therapy in 30 children with congestive HF compared to 20 healthy individuals.
An unfavourable outcome was again associated with increased serum levels. However, the study
was limited as H-FABP was investigated as a single laboratory parameter, and its superiority over
biomarkers, such as BNP, was not determined [74]. Sun et al. also reported that there is a correlation
between H-FABP levels with disease severity in children with CHF, but again other laboratory markers
were not compared [75]. In their study on 238 children and adolescents with congenital heart disease,
Hayabuchi et al. found that H-FABP did not correlate with BNP, but was affected by age, NYHA class,
arterial oxygen saturation, CK-MB and creatinine, supporting a different pathophysiological pathway
of the two biomarkers [76]. Table 1 gives an overview of selected studies on H-FABP and HF.

Table 1. Overview of different positive clinical studies assessing the diagnostic value of H-FABP
(heart-type fatty acid-binding protein) in patients with heart failure (HF) (sorted by main topic and
year of publication).

Main Findings Study Patient Number Reference

High H-FABP (>4.3 ng/mL) and elevated BNP
(>200 pg/mL) showed highest rates for cardiac death
and cardiac events and were also independent
predictors of cardiac events (H-FABP HR 5.416,
p = 0.0002; BNP HR 2.411, p = 0.0463)

Prospective study for 534+/−350
days on CHF patients 186 Niizeki T. et al.,

2005 [58]

Persistently high H-FABP levels at hospital discharge
(>4.3 ng/mL) correlated with increased rates for CV
events (HR 5.68)

Prospective study for 624+/−299
days on patients with CHF 113 Niizeki T. et al.,

2008 [59]

Two-fold higher rate of primary CV events between
high H-FABP (>4.143 ng/mL) vs. low H-FABP group
(32% vs. 16% respectively)

Prospective multicenter study for
24 months on patients with stable
coronary heart disease (SCHD)

1071 Ho S. et al.,
2018 [40]

H-FABP levels of >5.7 ng/mL were correlated with
significantly higher in-hospital mortality (6.7% vs.
0%, p < 0.05) and cardiac events

Study for 615 days on patients
with ADHF 134 Ishino M. et al.,

2010 [61]

Highest H-FABP level patient quartile showed
increased all-cause mortality (HR: 2.1–2.5, p = 0.04)
and AHF related rehospitalization rate (HR 2.8–8.3,
p = 0.001); combining H-FABP & NT-proBNP
improves diagnostic specificity and PPV to
rule out AHF

Prospective study for up to five
years on patients with acute
dyspnea or peripheral edema with
or without AHF

401 Hoffmann U.
et al., 2015 [60]

Significant positive correlation between H-FABP
with echocardiographic parameters, death and
rehospitalization

Study on patients with ADHF 77 Kazimierczyk E.
et al., 2018 [64]

Serum H-FABP levels were significantly higher in
patients with true worsening renal failure

Retrospective study on patients
with AHF 281 Shirakabe A.

et al., 2019 [65]

H-FABP levels are significantly higher in patients
with DCM and ICM; ejection fraction correlates
inversely with H-FABP concentrations

Study on the diagnostic value of
novel cardiac biomarkers in
patients with HFrEF

65 patients with DCM, 59
patients with ICM, 76 controls

Lichtenauer M.
et al., 2017 [36]
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Table 1. Cont.

Main Findings Study Patient Number Reference

Significantly higher levels of Troponin T and H-FABP
in patients with asymptomatic LVDD and patients
with HFnEF

Study on patients with HFnEF
49 patients with HFnEF,
51 patients with asymptomatic
LVDD, 30 controls

Dinh W. et al.,
2011 [67]

Higher H-FABP-levels correlated with adverse CV
events; H-FABP levels did not differ between
patients with HFpEF and HFrEF between each
NYHA functional class

Prospective study on patients with
HFpEF with a median follow-up
of 694 days

151 patients with HFpEF,
162 patients with HFrEF
as controls

Kutsuzawa D.
et al., 2012 [66]

A greater rise in post-operative H-FABP levels is
associated with AF after cardiac surgery

Prospective study on patients
undergoing cardiac surgery 63 Rader F. et al.,

2013 [71]

Optimal cut-off values for H-FABP as myocardial
damage marker were higher in CHF patients with
AF than in patients with SR (5.4 vs. 4.6 ng/mL)

Prospective study on patients with
CHF and AF or CHF and SR with
a median follow-up of
643/688 days

402 Otaki Y. et al.,
2014 [70]

H-FABP levels correlate independently with age,
NYHA-class, CK-MB, creatinine and arterial
oxygen saturation

Study in children and adolescents
with congenital heart disease 238 Hayabuchi Y.

et al., 2011 [76]

Significant negative correlation between H-FABP
levels and heart function (LVEF, CI, LVSF)

Study in pediatric patients with
chronic HF

36 patients and
30 healthy controls

Sun Y.P. et al.,
2013 [75]

Significant positive correlation between increased
H-FABP levels and severity of HF and
adverse outcome

Prospective cohort study for
3 months on pediatric patients
with HF

30 patients and
20 healthy controls

Zoair A. et al.,
2015 [74]

Abbreviations: ADHF: acute decompensated heart failure; AF: atrial fibrillation; AHF: acute heart failure; BNP:
brain natriuretic peptide; CHF: chronic heart failure; CK-MB: muscle-brain type creatine kinase; CI: cardiac index;
CV: cardiovascular; DCM: dilative cardiomyopathy; HF: heart failure; HFnEF: heart failure with normal ejection
fraction; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction;
HR: hazard ratio; ICM: ischemic cardiomyopathy; LVDD: left ventricular diastolic dysfunction; LVEF: left ventricular
ejection fraction; LVSF: left ventricular shortening fraction; NYHA: New York Heart Association; PPV: positive
predictive value; SR: sinus rhythm.

4. Discussion and Conclusion(s)

In CV research, H-FABP represents a much-studied protein that is well-known for its role in lipid
transport and influence on myocyte metabolism. Different assays and methods exist for measurement,
allowing flexibility for the researcher and clinician. However, little is known about its precise function
in cardiac development and remodelling. In vitro and animal studies suggest both, promoting and
inhibitory roles in myocyte proliferation and apoptosis, but a mechanistic explanation is missing. If,
and how, H-FABP that is released from damaged myocytes impacts the progression of HF and other
CV diseases, in detail, remains unknown to date. Although, dyshomeostasis of cellular metabolism
due to reduced intracellular H-FABP content, and hence, impaired fatty acid supply seems one
reasonable consideration.

Individual investigators come to different conclusions about H-FABPs possible application in
clinical routine. With BNP, a biomarker with high negative predictive value in differential diagnosis
of HF and its long-term therapy surveillance already exists. The use of H-FABP in clinical settings
has only been experimental in the past and large-scale studies are still lacking. Nevertheless, the
different pathophysiological origins of H-FABP and BNP give hope for a more differentiated diagnostic
approach in the future.

To date one possible application of H-FABP seems to be the detection of early and/or subclinical
cardiac ischemia and inflammation. H-FABP could be used as a screening tool, for example, in routine
health check-ups, since laboratory tests are inexpensive, and samples can be obtained in remote locations
and analyzed in central laboratories. Takahashi et al. demonstrated a strong positive correlation
between increased pulse pressure with BNP and H-FABP as signs of increased silent myocardial damage
in 3504 participants at their annual health check [77]. On the other hand, the rapid detection of ischemia
may pave the way for identifying patients with acute ischemia as an underlying cause of AHF at an
early phase. As serum H-FABP levels were shown to correlate well with infarct size in patients with
ST-elevation myocardial infarction [78], the measurement of H-FABP may enable the timely admission
of revascularization procedures, and therefore, may even prevent the development of HF in the long
run. As H-FABP and cardiac troponins show different release kinetics [14], a H-FABP-troponin ratio
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may be useful for distinguishing acute ischemia from chronic myocardial damage in patients with
decompensated HF.

Furthermore, interactions of the various organ systems in decompensated HF are highlighted by
several authors and international guidelines [46,65,79]. As the coexistence of HF and chronic kidney
disease is frequently observed, the terms “cardiorenal syndromes” as well as “renocardiac syndromes”
have gained attention in the last few years. A peculiarity of H-FABP compared to markers, such as
BNP and troponins, could lie in detecting true worsening of renal function [65]. The exact mechanism
that causes this correlation has not yet been clarified. High levels of H-FABP in patients with ADHF
may be due to severely decompensated HF itself, but also due to damage of the distal tubules or due to
accumulation in glomerular podocytes. Nevertheless, as Shirakabe et al. note, this correlation has
not previously been shown for BNP or troponins, which may give H-FABP a unique position as a
biomarker in HF diagnostics [65].

Another application of H-FABP as a biomarker might be in highly specialized areas. Dalos et al.
observed an exponential increase of H-FABP levels, with decreasing left ventricular ejection fraction in
patients with coronary artery disease, reflecting chronic myocardial ischemia [80]. As a strong and
independent correlation of H-FABP with individual prognosis was shown in several studies, it may,
therefore, be used in mid- to long-term treatment planning. This may be especially helpful when
dealing with invasive and expensive approaches, like implantable cardiac resynchronization devices,
valve replacement, or mechanical circulatory devices. For example, Cabiati et al. demonstrate an
association between high H-FABP levels and poor prognosis in patients after LVAD implantation [81].

The clinical picture of HF comprises a group of heterogenous disease entities as an underlying
cause. Novel biomarkers extend our understanding both of CV physiology and pathophysiologic
processes, leading to cardiac remodelling and the development of HF. By defining an appropriate patient
population in the right clinical context, the additional diagnostic value of H-FABP as a biomarker in HF
may well be obtained in the future. Furthermore, an optimal point in time for sample recovery, as well
as different thresholds for diagnostic, prognostic, and therapeutic consequences need to be determined.

We currently assume that H-FABP is, not only a rapid indicator of myocardial ischemia, but that
its loss from the cardiomyocytes´ cytoplasm may cause an intracellular metabolic dyshomeostasis, and
is therefore, conducive to the progressive nature of heart failure. H-FABP’s present and future in HF
diagnostics may also not lie in its use as a single laboratory value, but in a combination of clinical
assessment, imaging, and a multi-biomarker approach.
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