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Abstract

We develop a three-sector model in which goods market frictions impart a causal effect of demand

shocks on measured productivity and estimate it using Bayesian techniques. For identification,

we make novel use of total capacity utilization in nondurables and durables, which in the

model depend on a weighted average of shopping effort and variable capital utilization. In

a simple version of the model, the use of these observables greatly improves the precision of

estimated shopping-related parameters and implies a strong demand channel on productivity.

In the general model, unanticipated and news shocks to shopping effort explain a major part of

the forecast error variance decomposition of output, the Solow residual, utilization, and other

variables. Capacity utilization accounts for over 80% of the Solow residual variance. Search

demand shocks are essential for generating positive comovement of the utilization series, and

variable capital utilization helps generate positive autocorrelation as in the data.

Keywords: goods market frictions, capacity utilization, sectoral comovement, endogeneity of

Solow residual, Bayesian estimation
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1. Introduction

How important are demand shocks for explaining business cycle fluctuations, sectoral co-

movement, and movements in the Solow residual? What role do goods market frictions play,

and what do they imply for capacity utilization?
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Output, consumption, labor supply, and TFP comove positively in the data. Hence, the

contribution of non-technology shocks to business cycle fluctuations depends on their ability to

influence the Solow residual–the endogeneity of TFP. Pioneering work by Basu, Fernald, and

Kimball (2006) ‘purifies’ the Solow residual for various non-technological influences and find

that the extracted technology process is about half as volatile as TFP, appears permanent,

is generally uncorrelated with output. Gali (1999) provides evidence from a structural VAR

identified with long run restrictions that technology shocks induce a decline in labor hours on

impact. Francis and Ramey (2005) show that the results of of Gali (1999) are robust using

several long-run restrictions and controlling for capital income tax rates.

These findings undoubtedly place a greater responsibility on non-technology shocks to gen-

erate a positive correlation among the series. The introduction of goods market frictions by

Diamond (1982) presents a promising avenue for demand shocks to influence total factor pro-

ductivity. Bai, Rios-Rull, and Storesletten (2024), hereafter BRS, develop and estimate a two-

sector neoclassical DSGE model with matching frictions. Output in this model depends by

firms’ technology, inputs, and their efficiency in matching with customers. Increases in shop-

ping effort, whether due to exogenous factors or as a response to other economic shocks, enhance

the matching process, leading to higher output and measured total factor productivity. The

disparity between potential output and matched output (value added) aligns with the essence

of Keynes (1936) and reflects a reversal of causality in comparison to a standard TFP shock.

One possible interpretation of this gap is that search effort is an omitted input in production.

The causal role of demand shocks on productivity depends crucially on key structural pa-

rameters pertaining to (1) the matching technology, (2) shopping disutility, and (3) stochastic

processes of demand shocks. Given the novelty and structural significance of the mechanism,

identification and precise estimation of these parameters is fundamental. The estimation by

BRS relies on two datasets, one which features shopping time from the American Time Use

Survey as a proxy for effort.2 Additionally, they use shopping-time data to calibrate the elastic-

ity of the matching function, denoted ϕ, and the elasticity of disutility, denoted η. Specifically,

they employ cross-sectional price dispersion for identical goods and the elasticity of shopping

time with respect to expenditure to calibrate ϕ and η.

2The other dataset uses the relative price of investment instead. Both datasets include output, investment,

and labor productivity.
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While leveraging identified micro moments to derive ϕ and η is generally compelling, using

shopping time as a proxy for effort raises at least two concerns. First, as discussed by BRS,

fluctuations in shopping effort should be interpreted in a broader sense to encompass changes in

match efficiency, rather than solely focusing on time. Second, leisure activities can potentially

contaminate shopping time. For instance, spending more time browsing a store for goods can

be attributed to either genuine effort or simply engaging in window shopping. An increased

desire to find a particular item may lead to a shift towards actively searching for it and away

from mere window shopping, resulting in an overall change in shopping time that reflects a

combination of both factors.

We explore an alternative way to discipline the goods market frictions. Our analysis incorpo-

rates disaggregated total capacity utilization and sectoral data as observable series in estimation.

The Federal Reserve Board constructs total capacity utilization as the ratio of an output index

to capacity index for manufacturing, mining, and electric and gas utilities. The objective of the

measure is to capture the maximum level of output that a plant can sustain given its available

resources. Relative to a major alternative, the quarterly measure of utilization developed by

Fernald (2014), it does not require constant returns to scale and zero profits. This is appealing

because goods market frictions and competitive search generally require decreasing returns to

scale. We encouragingly find, however, a close correspondence. If one defines Fernald utilization

as the difference in cyclical components of total factor productivity and its utilization-adjusted

counterpart, then it comoves closely with total capacity utilization.

Qiu and Ŕıos-Rull (2022) are the first to carefully define capacity utilization within the

model in terms of the ratio of an output index to a capacity index, analogous to the empirical

measure. They show that in a setting with goods market frictions, capacity utilization depends

on a weighted sum of variable capital utilization and shopping effort, with the former magnified

by the share of fixed costs. We define capacity utilization in the model the same way except at

a sectoral level.3

We show that, absent fixed costs in production, cyclical movements in the Solow residual

comprise technology, utilization, and mismeasurement of input shares. The last of these results

from misspecifying constant returns to scale in capital and labor and imposing perfectly compet-

3In general, few papers in the literature use capacity utilization, and some equate it with variable capital

utilization (Born, Peter, and Pfeifer (2013), Christiano, Eichenbaum, and Trabandt (2016)).
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itive labor markets.4 Thus, total capacity utilization is a sufficient statistic for the contribution

of demand shocks (and variable capital utilization) to the Solow residual. Furthermore, mismea-

surement of input shares depends on sectoral movements in labor supply, providing additional

justification for using this series as an additional observable variable.

Sectoral labor data, when combined with output data, effectively encapsulates labor pro-

ductivity data within each sector, thus disciplining the model mechanism. Specifically, within

the BRS framework, the ratio of shopping effort in the consumption and investment sectors

corresponds to the ratio of labor input. In a more general setting, we demonstrate that the

shopping-effort ratio depends on the ratio of labor income across sectors and the ratio of the

marginal disutility of shopping between these sectors. The use of sectoral data is thus informa-

tive about relative shopping effort.

Capacity utilization data relies on a measurable capacity index and is thus not available

economy-wide. Notably, it is unavailable for services. Hence, we disaggregate consumption in

the model into nondurables and services. We define sector-specific equivalents of utilization,

and map utilization measures for durables and nondurables to their empirical analogues in the

measurement equations of the Kalman filter. Interestingly, the empirical utilization measures

have a strong positive correlation. By using these measures, along with sectoral labor and

output, we extend the range of comovement facts used to discipline the model.

The set of observables we use for Bayesian estimation extends that of Katayama and Kim

(2018) with the utilization measures but drops aggregate wages. Specifically, we target de-

meaned growth rates of consumption, investment, labor hours in consumption, labor hours in

investment, utilization in nondurable goods, utilization in durable goods, and the relative price

of investment to consumption.5

We introduce contemporaneous and news shocks to various components, including a stochas-

tic trend in technology, stationary neutral technology, investment-specific technology, neutral

shopping effort cost, investment-specific shopping effort cost, and wage markups. Given that

state-of-the-art DSGE models often highlight the significance of news shocks, it is natural for

us to examine their importance in the presence of goods market frictions.

4This term would be absent if the econometrician knew the exact production technology.
5Whereas BRS use labor productivity as an observable, the use of sectoral data on inputs and outputs means

we effectively target labor productivity in each sector and also proxy for relative shopping effort.
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The model’s components and shock structure build upon the framework introduced by BRS

while integrating key elements from Jaimovich and Rebelo (2009), Schmitt-Grohé and Uribe

(2012), and Katayama and Kim (2018). Specifically, the model incorporates convex adjustment

costs for investment, allows for greater capital utilization subject to higher depreciation, and

accounts for imperfect substitution of labor between the consumption and investment sectors

by households. Furthermore, preferences over consumption, shopping effort, and labor supply

are nonseparable, with a parameter capturing the degree of short-run wealth effects on labor

supply. The consumption good is a CES aggregate of nondurables and services.

Our model nests BRS as a special case, allowing us to use it as a laboratory to examine

the alternative identification strategy. The exercise is in the spirit of Guerron-Quintana (2010),

who investigates the choice of observable variables on estimated parameters in the context of

a rich New Keynesian model. We drop shopping time as an observable and estimate ϕ and

η directly using the dataset with the relative price of investment. We find that the posterior

90% probability band of ϕ ranges from 0.00 to 0.20, and the importance of shopping-disutility

shocks in the variance decomposition drops significantly relative to BRS. Next, we estimate the

same model but include capacity utilization as an observable series. Remarkably, the posterior

probability band of ϕ changes to (0.85, 0.90), and the contribution of demand shocks to the

variance decomposition rises dramatically. Additionally, the standard deviation of capacity

utilization rises ten-fold in this case compared to the former, similar to the empirical value.

The general model appreciably builds upon this exercise and reveals the following insights.

Search demand shocks account for nearly two thirds of the forecast error variance of output and

nearly 50% for the Solow residual. Additionally, these shocks explain a significant share of the

relative price of investment and labor supply. The variance of utilization represents over 80%

of the variance of the Solow residual, and the model matches the comovement of consumption

and investment, utilization series, and labor reasonably well. Removing fixed costs reduces

model fit but does not alter the qualitative findings, but excluding variable capital utilization

prevents the model in generating autocorrelation of the utilization growth rates. However, the

exclusion of search demand shocks leads to a drastic deterioration in the marginal likelihood.

The volatility of output exceeds the empirical value by several orders of magnitude. This fact

holds even though the same model is able to fit non-utilization data well if the utilization series

are dropped from the set of observables. However, it implies not only a low volatility for the
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utilization series, but also a strong negative correlation between the two, counterfactual to the

data. We thus conclude that utilization data stringently tests models above and beyond other

series, and that search demand shocks are indispensable to capture all the comovement patterns.

For reasons of pedagogy and exposition, we focus on a neoclassical environment with com-

petitive search. This choice facilitates comparison with BRS and Katayama and Kim (2018),

who also abstract from nominal rigidity, and emphasizes the role of demand shocks operating

via goods market frictions with well-functioning submarkets. Additionally, this choice ensures

that conclusions follow without using monetary variables such as inflation or nominal interest

rates.6

Though our work aligns most closely with Bai, Rios-Rull, and Storesletten (2024), it is also

greatly inspired by Michaillat and Saez (2015), who model and argue for a prominent role for

aggregate demand on unemployment and idle time operating through goods market frictions.

Similar to our approach, they regard rates of operation in the economy and their business

cycle comovement as fundamental outcome variables in their own right. However, they do not

formally discipline the model using time series data. Moreover, they model matching costs in

terms of additional expenditures rather than effort. Appendix E carefully compares the two

specifications and shows that it does not matter for the essence of the transmission mechanism

but that it does affect the labor share of income, which is relevant for the Solow residual.

Section 2 provides key background facts on utilization and sectoral comovement. Section

3 lays out the model environment. Section 4 characterizes key equilibrium relationships. It

also decomposes the growth rate of the Solow residual into structural forces and relates these to

capacity utilization. Section 6 examines the informative role of capacity utilization in the nested

BRS version of the model. Section 7 estimates the full model. It decomposes the forecast error

variance decomposition and shows that crucial parameters related to goods market frictions

and shocks are precisely estimated. Section 8 concludes. The appendices describe the data

construction, derivation of equilibrium, calibration strategy, the identification of key parameters

by estimating the model on artificial data, and the role of the matching costs. We sometimes

omit time indices in describing static relationships to economize on notation.

6An extension with sticky prices and monetary policy transmission is of great interest. Sticky prices affect

the transmission of technology shocks, particularly on hours. Moreover, this setting would permit the use of

inflation and interest-rate data as observables, which would provide additional identification.
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2. Background and stylized facts on utilization and sectoral comovement

The early real business cycle literature treated the Solow residual as a pure measure of

technology, but subsequent analysis found that it contained important components unrelated to

technology. To address this issue, Basu, Fernald, and Kimball (2006) purify the Solow residual

by removing aggregation effects, variation in capital and labor utilization, non-constant returns

to scale, and imperfect competition. They find that the purified technology process is about

half as volatile as TFP, appears to be permanent, and is generally uncorrelated with output.

Building on these findings, Fernald (2014) constructs a quarterly measure of TFP adjusted for

utilization. Figure 1 plots detrended utilization-adjusted TFP alongside standard TFP. The

Fernald series not only leads the Solow residual but also exhibits less volatility. Moreover, these

series occasionally diverge significantly, most notably during the pandemic shock in 2020Q1,

the Great Recession, and the recession of the early 1980’s. For what follows, we define Fernald

utilization as the difference between cyclical TFP and its utilization-adjusted counterpart.
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Figure 1: Time series of the Solow residual and its utilization-adjusted counterpart, following the methodology

in Fernald (2014). Each underlying series is detrended via the Hamilton regression filter with the four most

recent observations 8 quarters in the past (p = 4, h = 8)

Next, we turn to total capacity utilization. This measure is provided by the Federal Reserve

Board and encompasses 89 detailed industries (71 in manufacturing, 16 in mining, 2 in utilities).7

These industries primarily correspond to the 3 or 4-digit North American Industry Classification

System (NAICS) codes. Importantly for our purposes, estimates are available for durable and

nondurable goods. In manufacturing, most capacity indices are based on responses to the

7This data can be downloaded at https://www.federalreserve.gov/datadownload/Choose.aspx?rel=

G17.

7

https://www.federalreserve.gov/datadownload/Choose.aspx?rel=G17
https://www.federalreserve.gov/datadownload/Choose.aspx?rel=G17


Census Bureau’s Quarterly Survey of Plant Capacity. The census is conducted quarterly at the

establishment level. The probability that each establishment is selected is proportional to the

value of shipments within each industry.

Figure 2 compares cyclical total capacity utilization with the Fernald measure. The two

series comove closely with each other and output, with total capacity utilization being more

volatile. The volatility difference likely reflects the greater cyclical sensitivity of manufacturing.

However, it also shows that cyclical sensitivity cannot be accounted for entirely by variation in

labor inputs.

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

15

10

5

0

5

10

Pe
rc

en
t

Utilization (Fernald)
Total capacity utilization
Real output (consumption plus investment)

Figure 2: Time series of total capacity utilization; Fernald utilization, following the methodology in Fernald

(2014); and output (here defined as consumption plus investment). Each underlying series is detrended via the

Hamilton regression filter with the four most recent observations 8 quarters in the past (p = 4, h = 8).

Next, we disaggregate total capacity utilization into subcomponents for nondurables and

durables. Consistent with Katayama and Kim (2018) and standard practice, the former is part

of consumption and latter is part of investment. Figure 3 plots the two measures side by side.

We see that utilization for durables tracks and slightly leads that of non-durables and exhibits

greater volatility.
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Figure 3: Total capacity utilization in nondurable and durable goods. Each underlying series is detrended via

the Hamilton regression filter with the four most recent observations 8 quarters in the past (p = 4, h = 8).

Finally, Figure 4 shows the detrended time series of hours in each sector alongside the

aggregate measure. The series comove strongly, with hours in the investment sector being

substantially more volatile. The construction of hours uses the BLS Current Employment

Statistics following Katayama and Kim (2018). The data appendix provides details.
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Figure 4: Sectoral and aggregate hours. Each underlying series is detrended via the Hamilton regression filter

with the four most recent observations 8 quarters in the past (p = 4, h = 8).

We conclude by examining business cycle statistics of the sectoral and utilization data. Table

1 presents the second moments of the series expressed in growth rates from 1964Q1-2019Q4. The

use of growth rates aligns with the treatment of data in estimation, a standard practice since

Smets and Wouters (2007), and facilitates comparison with other studies. Following BRS, we

define output as the sum of consumption and investment, consistent with our model framework.

The findings indicate a strong correlation of 0.87 between labor hours, a moderate correlation

of 0.54 between consumption and investment, and robust comovement between the utilization

measures and investment, as well as labor hours in investment. Additionally, all series exhibit
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significant autocorrelation, except for labor productivity. Notably, investment, labor hours in

investment, and utilization in durables display substantial volatility compared to consumption,

labor hours in consumption, and utilization in nondurables.

SD(x) STD(x)/STD(Y ) Cor(x, I) Cor(x, ni) Cor(x, x−1)

Y 0.87 1.00 0.94 0.70 0.47

C 0.44 0.51 0.54 0.44 0.48

I 2.14 2.46 1.00 0.73 0.41

nc 0.57 0.66 0.66 0.87 0.67

ni 1.94 2.23 0.73 1.00 0.64

Y/n 0.64 0.73 0.36 -0.28 0.10

pi 0.51 0.58 -0.28 -0.22 0.44

utilD 2.27 2.61 0.69 0.84 0.55

utilND 1.26 1.45 0.61 0.65 0.51

Table 1: Time range: 1964Q1 − 2019Q4. Each underlying series is expressed in 100 quarterly log deviations.

Here output is defined as the sum of consumption and investment. We use the symbols Y for output, C for

consumption, I for investment, nc for labor supply, in consumption, ni for labor supply in investment, Y/n for

labor productivity, pi for the relative price of investment, and utilD and utilND for the utilization of durables

and nondurables, respectively. Appendix A describes the construction of variables in detail.

3. Model environment

3.1. Technology and markets

There is a unit mass of households and a unit mass of firms within each production sector.

There are three sectors, two of these for consumption (goods Mc and services Sc), and one for

investment. Each sector uses capital and labor to produce output. Moreover, capital can be used

at a rate h, and production involves a fixed cost νj.
8 The economy grows with a stochastic trend

X. Its growth rate gt = Xt/Xt−1 is a stationary process with steady state g. The production

function satisfies

Fj = zjf(hjkj, nj)− νjX, j ∈ {mc, sc, i} (1)

8By ‘fixed’ we mean that the cost does not vary with the choices of inputs. The costs scales with the stochastic

trend X, so that on the balanced growth the share of fixed costs to output is stationary.
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for

f(hk, n) = (hk)αknαnX1−αk (2)

The representation (1) and (2) ensures balanced growth, so that the share of fixed costs to

output is stationary.

Higher utilization of capital raises depreciation according to an increasing and convex func-

tion δK(·). We assume

δj(h) = δK + σb(h− 1) +
σajσb

2
(h− 1)2, j ∈ {mc, sc, i}

where δK is an exogenous rate of depreciation. Note that δ(1) = δK , so that δK is the economy-

wide steady-state depreciation rate of capital. Moreover, σb = δh(1) is the marginal cost of

utilization in the steady state and σa = (1)δhh(1)/δh(1) is the elasticity of the marginal uti-

lization cost with respect to rate h at h = 1. Alternatively, 1/σa is the elasticity of capital

utilization with respect to the rental rate. We restrict the parameter σb to set steady-state

utilization to unity in each sector.

Investment is specific to each sector and subject to endogenous depreciation and adjustment

costs:

k′
j = (1− δj(hj))kj + [1− Sj(ij/ij,−1)]ij j ∈ {mc, sc, i}, Smc = Ssc

subject to i = imc + isc + ii. The investment adjustment cost function is quadratic following

Christiano, Eichenbaum, and Evans (2005):

Sj(x) =
Ψj

2
(x− 1)2

Extending Moen (1997), there is a competitive search protocol in which each submarket is

indexed by price, market tightness, and quantity (p, q, F ). The measure of matches in each

submarket is given by a sector-specific constant returns to scale Cobb Douglas function

Mj(D,T ) = AjD
ϕT 1−ϕ (3)

of aggregate shopping effort D (in the submarket) and measure of firms T . The level param-

eter Aj measures sector-specific match efficiency. Given (3), the implied matching rates for

households and firms are

Ψjd(D) = Mj/D = AjD
ϕ−1
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ΨjT (D) = Mj/T = AjD
ϕ

using constant returns to scale and T = 1. Note that D measures market tightness. Once a

match is formed, goods are traded at the posted price pj per unit. A household who exerts

search effort dj purchases a real quantity of goods

yj = djΨjd(D)Fj j ∈ {mc, sc, i}

3.2. Households

Households have preferences over search effort, consumption, and a labor composite following

Bai, Rios-Rull, and Storesletten (2024). However, preferences also accommodate parameterized

short-run wealth effects on labor supply and external habit formation. Specifically, letting θ be

a vector of preference shifters, we have

u(c, d, na, θ) =
Γ1−σ − 1

1− σ
(4)

where Γ is a composite parameter with external habit formation:

Γ = c− haC−1 − θd
d1+1/η

1 + 1/η
− θn

(na)1+1/ζ

1 + 1/ζ
S

and

S =

(
c− haC−1 − θd

d1+1/η

1 + 1/η

)γ

S1−γ
−1 (5)

Here C is aggregate consumption and d = dmc + dsc + θidi is total search effort. Thus, θi is an

exogenous wedge in the search cost of investment goods relative to consumption.

The parameter γ regulates the strength of wealth effects while preserving stationarity in labor

supply. Setting γ = 0 yields GHH preferences, and the further restriction that ha = 0 coincides

with the preferences in Bai, Rios-Rull, and Storesletten (2024). Setting γ = 1 implements the

general nonlinear form of King, Plosser, and Rebelo (1988) preferences. Standard additively

separable preferences arise with the additional restriction σ = γ = 1.

Household consumption is a constant-elasticity-of-substitution aggregator of a bundle of

goods ymc and services ysc:

c = [ω1−ρc
c yρcmc + (1− ωc)

1−ρcyρcsc ]
1/ρc (6)
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The elasticity of substitution is ξ = 1/(1− ρc), and the price index satisfies

pc =
(
ωmcp

−ρc/(1−ρc)
mc + ωscp

−ρc/(1−ρc)
sc

)− 1−ρc
ρc

such that ωmc + ωsc = 1. Thus, pmc/pc and psc/pc are the relative prices of nondurables and

services to consumption overall.

Households have preferences with regard to the composition of labor they supply across sec-

tors, following Horvath (2000) and Katayama and Kim (2018). Specifically, the labor composite

na is

na =
[
ω−θn1+θ

c + (1− ω)−θn1+θ
i

] 1
1+θ (7)

The elasticity of substitution 1/θ measures intersectoral labor mobility. The standard case of

infinite marginal rate of substitution applies as θ → 0, in which case na → nc + ni = n.

Figure 5 summarizes the timing of moves in the model. First, aggregate shocks occur at the

beginning of each period. Second, in each sector j, a firm posts a submarket offer (pj, Dj, Fj).

Third, given the submarket choice, households choose shopping, consumption, labor supply,

and capital utilization. Firms simultaneously hire labor in a competitive spot market, which

determines the wage. Fourth, matching takes place. Matched firms produce and sell. Fifth, the

capital stock is updated in each sector, reflecting investment adjustment costs and endogenous

depreciation.

Aggregate shocks occur

Firms post submarkets

(pj, Dj, Fj)

HH choose shopping, consumption

labor supply, capital, utilization

Firms hire labor

Wage determined

Matching

Matched firms produce and sell

Capital stock is updated

t t+ 1

Figure 5: Timing

4. Equilibrium

4.1. Households

We start with household problem. Let (p,D, F ) = {(pj, Dj, Fj)|j ∈ {mc, sc, i}} be the set of

submarkets available to a household. Let Λ be the aggregate state and let V̂ (Λ, kmc, ksc, ki, p,D, F )
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be the value of the hosehold conditional on these submarkets. Letting Φ be the set of avail-

able submarkets, then the value function is determined by the best combination of submarkets:

V (Λ, kmc, ksc, ki) = max{p,D,F}∈Φ V̂ (Λ, kmc, ksc, ki, p,D, F ). The household chooses search effort,

labor hours, consumption, future capital, and utilization rates to solve

V̂ (Λ, kmc, ksc, ki, p,D, F ) = max
dj ,nc,ni,yj ,ij ,k′j ,h

′
j

u(ymc, ysc, d, n
a, θ) + βθbE{V (Λ′, k′

mc, k
′
sc, k

′
i)|Λ}

s.t. yj = djAjD
ϕ−1
j Fj, j ∈ {mc, sc, i}∑

j

yjpj = π +
∑

j∈{mc,sc,i}

kjhjRj + ncWc + niWi

k′
j = (1− δj(hj))kj + [1− Sj(ij/ij,−1)]ij, j ∈ {mc, sc, i}

and the consumption and labor aggregators (6) and (7).

Appendix B derives each step of the household and firm problem. Here we focus on central

and innovative features of equilibrium. The presence of a goods market friction leads households

to optimally balance the marginal disutility of shopping with the marginal benefit of output in

both the consumption and investment sectors:

−ud = ujϕAjD
ϕ−1
j Fj j ∈ {mc, sc} (8)

−udθi =
umcpi
pmc

ϕAiD
ϕ−1
i Fi (9)

Equation (8) can be interpreted two ways. First, it states that the marginal rate of substitution

between consumption and shopping effort (−ud/uj) is equal to the marginal rate of transforma-

tion, which is determined by the increase in the firm’s matching probability Ψ′
jT (D) multiplied

by the quantity of output sold. Second, it states that the marginal rate of substitution is equal

to the household’s matching probability multiplied by the quantity of output sold and the frac-

tion of the marginal utility of the good paid above the price. Notably, a higher value of ϕ implies

a larger wedge between the marginal utility and the price. We can express this wedge using the

marginal utility of wealth λ as:

uj

λpj
=

1

1− ϕ
⇒ umc

pmc

=
usc

psc
(10)

or ϕ = (uj − λpj)/uj. The GHH structure of preferences between consumption and shopping

effort, as represented in equations (4) to (5), implies that the marginal rate of substitution is an

14



increasing function of shopping effort: −uj/ud = θdd
1/η. Combining this with equation (8), we

can conclude that households increase their shopping effort in response to higher firm capacity

and matching probability, as well as a lower disutility of shopping effort. The condition for

investment goods in equation (9) is similar, but with the marginal disutility adjusted by θi and

the value of output computed in consumption units, accounting for the relative price.

Given (7), households optimally divide their labor hours between consumption and invest-

ment sectors:

nc

ni

=
ω

1− ω

(
W ∗

c

W ∗
i

)1/θ

so that 1/θ is the elasticity of substitution.

Taking the first order condition with respect to mc and sc and combining it with (6), we

derive the demand curves for nondurables and services

yj = p−ξ
j ωjC j ∈ {mc, sc} (11)

where ξ = 1/(1− ρc) repreents the elasticity of substitution. By using (11) together with (10),

we find that λ = Γ−σ(1−ϕ). Here, the term Γ−σ captures the direct influence from the marginal

utility of consumption, while the goods market frictions introduce a wedge represented by ϕ.

Furthermore, the ratio of (8) and (9) provides insight into the relative price of investment:

pi
pj

= θi
Aj

Ai

(
Dj

Di

)ϕ−1
zj
zi

f(hjkj, nj)− νjX

f(hiki, ni)− νiX
(12)

If the price pi increases compared to pj, with capacity held constant, it implies that investment

goods become more valuable in terms of consumption, leading to an increase in Di/Dj. Addi-

tionally, equation (12) reflects the typical mechanism where an increase in investment capacity

results in a decrease in the relative price pi/pj.

4.2. Firms and labor unions

A representative firm in sector j ∈ {mc, sc, i} rents capital and hires labor in spot markets.

We introduce exogenous time-varying wage markups following the approach by Schmitt-Grohé

and Uribe (2012). In this framework, a continuum of monopolistically competitive labor unions

in sector j sell differentiated services, indexed by type s. The firm chooses inputs and market

bundle (pj, Dj, Fj) and ensures compliance with the participation constraint of the household.
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The problem of the firm is

max
kj ,nj ,pj ,Dj ,Fj

pjAjD
ϕ
j Fj −

∫ 1

0

Wj(s)nj(s)ds−Rjhjkj

s.t. V̂ (Λ, kmc, ksc, ki, pj, Dj, Fj) ≥ V (Λ, kmc, ksc, ki)

zjf(hjkj, nj)− νj ≥ Fj

nj =

(∫ 1

0

nj(s)
1/µjds

)µj

The conditional demand for labor type s in sector j is

nj(s) =

(
Wj(s)

Wj

)−
µj

µj−1

nj

and the corresponding wage index is

Wj =

[∫ 1

0

wj(s)
1/(1−µj)ds

]1−µj

The labor union charges the firm a wage Wj(s) and pays W ∗
j to its members. It maximizes

earnings subject to the conditional labor demand of the firm. The problem of the union is thus

max
Wj(s)

(Wj(s)−W ∗
j )

(
Wj(s)

Wj

)−
µj

µj−1

nj (13)

The solution to (13) is Wj(s) = µjW
∗
j . Within sector j, labor unions pay the same wage and

firms choose identical quantities of labor within j: Wj(s) = Wj, nj(s) = nj for all s. Labor

unions provide additional earnings to households in the form of a wage rebate. Consequently,

Wj(s) − W ∗
j = (µj − 1)W ∗

j represents a fixed component of the wage from the perspective of

workers.9

The factor demand curves for the firm are

(1− ϕ)
Wj

pj
= αn

AjD
ϕ
j zjf(hjkj, nj)

nj

j ∈ {mc, sc, i} Wmc = Wsc (14)

(1− ϕ)
Rj

pj
= αk

AjD
ϕ
j zjf(hjkj, nj)

hjkj
j ∈ {mc, sc, i} (15)

The demand for inputs increases with technology, through capacity Fj and matching proba-

bility AjD
ϕ
j , and decreases with real factor prices (Wj/pj or Rj/pj). An interesting addition,

9Labor unions here are a mechanism here designed entirely for the benefit of workers. Thus, the earnings

rebated to the workers count as labor income, which matters for the mapping between model and data.
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distinguishing it from a typical multisector growth model, is the inclusion of the matching func-

tion elasticity ϕ as an independent factor. One intuitive interpretation is that when the firm

hires more inputs and produces additional output, it relaxes the participation constraint of

households, thereby expanding the feasible combinations of price and tightness. This effectively

reduces the associated labor cost by 1− ϕ.

To provide an alternative characterization of the relative price of investment, we take the

ratio of (14) for sectors i and j ∈ {mc, sc}:

pi
pj

=
niWi

njWj

Aj

Ai

(
Dj

Di

)ϕ
zjf(hjkj, nj)

zif(hiki, ni)
(16)

When Dj/Di increases, while holding inputs and technology constant, it becomes easier

to sell nondurables or services to customers, resulting in an increase in pi/pj. Equation (16)

also takes into account the standard relationship where pi/pj decreases as investment-specific

technology zi/zj rises.

Relationships (12) and (16) represent distinct curves that connect the relative investment

price pi/pj to the relative shopping effort Di/Dj. However, there is a slight complication in

comparison, as fixed costs are present in (12) but not in (16). In the case of zero fixed costs,

mutual consistency requires the following relationship:

Di

Dj

=
1

θi

niWi

njWj

(17)

Relative shopping effort is determined by relative labor income and the variation in shopping

disutility. Over the business cycle, the level of sectoral comovement influences ni/nj and thus

provides information about relative shopping effort.

The final three equilibrium conditions encompass Tobin’s Q, optimal utilizations, and Euler

equations pertaining to the selection of future capital. These conditions incorporate investment

adjustment costs and depreciation resulting from utilization:

pi
1− ϕ

= Qj[1− S ′
j(xj)xj − Sj(xj)] + βθbE

λ′

λ
Q′

jS
′
j(x

′
j)(x

′
j)

2 j ∈ {mc, sc, i}

δh(hj)Qj = Rj j ∈ {mc, sc, i}

Qj = βθbE
λ′

λ

[
(1− δ(h′

j))Q
′
j +R′

jh
′
j

]
j ∈ {mc, sc, i}

The variable Qj represents the relative price of capital in sector j in terms of consumption.

The presence of investment adjustment costs introduces a disparity between Qj and pi/(1 −
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ϕ). Households determine the level of utilization such that the value of depreciated capital

δh(hj)Qj is equal to the marginal product of capital Rj. Finally, households decide on the

capital level that equates the marginal cost of foregone consumption Qj to the anticipated

discounted return. The expected return comprises the marginal product of capital in addition

to the value of undepreciated capital, and the stochastic discount factor βθbEλ′/λ transforms

returns into current marginal utility.

4.3. Inducing stationarity

The specification of technology (1) implies that output, consumption, wages, and capital have

the same stochastic trend as technology Xt, characterized by the growth rate gt = Xt/Xt−1.

The next section shows that the trend growth rate of the Solow residual is g1−τ
t for labor share

τ . Preferences regarding labor supply imply zero long-run wealth effects and hence ensure sta-

tionarity of labor supply. We adjust GHH preference weights to ensure stationarity of shopping

effort. To focus on equilibrium fluctuations around stochastic trends, we divide each trending

variable other than capital by the stochastic trend Xt. For the capital stock, we instead divide

by Xt−1 to maintain its predetermined nature.

4.4. The sector-specific Solow residual and capacity utilization

We construct the Solow residual for a specific sector in the model and relate it to capacity

utilization and other structurally interesting components. Begin by expressing sectoral output

as follows:

Yjt = AjD
ϕ
jt(zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt − νjXt)

Let νR
j = νjX/Fj be the fixed cost share of capacity. Then note that νjX/(zjf(hjkj, nj)) =

νR
j /(1 + νR

j ), so that

Yjt =
AjD

ϕ
j (zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt )

1 + νR
jt

Fernald (2014) constructs the sectoral Solow residual under the assumptions of constant returns

to scale Cobb-Douglas technology in capital and labor, no fixed costs, and perfectly competitive

factor markets. Accordingly, we define the Solow residual in sector j as

SRjt ≡
Yjt

k1−τ
jt nτ

jt

=
AjD

ϕ
jt(zjth

αk
jt X

1−αk
t kαk−1+τ

jt nαn−τ
jt )

1 + νR
jt

(18)
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where τ represents the steady-state labor income share. To express (18) in terms of growth

rates, we introduce the symbol dxt = ∆ log xt and rewrite as

dSRjt = ϕdDjt + dzjt + αkdhjt + (1− αk)dXt + (αk − 1 + τ)dkjt (19)

+(αn − τ)dnjt − d(1 + νR
jt)

From (19) we note that the trend net growth rate of the Solow residual is

(1− αk)dXt + (αk − 1 + τ)dXt = τ log gt

which implies that the Solow residual grows at the rate of output multiplied by the labor share

of income. By introducing the log deviation ν̃R
j = log(νR

j /ν
R
ss), we can rewrite (19) as10:

dSRjt = ϕdDjt + dzjt + αkdhjt + (1− αk)dXt + (αk − 1 + τ)dkjt + (αn − τ)dnjt −
νR
ss

1 + νR
ss

∆ν̃R
jt

(20)

Expression (20) decomposes the growth rate of the Solow residual into structural forces.

It comprises a demand component ϕdDjt, a capital utilization component αkdhjt, a technology

component dzjt+(1−αk)dXt, an input share mismeasurement component (αk−1+τ)dkjt+(αn−

τ)dnjt, and a change in the fixed cost share component [νss/(1+νR
ss)]∆ν̃R

jt. The first component

reflects the direct effect of goods market frictions, and there is also a general equilibrium feedback

between higher shopping effort and the other components. Additionally, the calibration strategy

establishes a relationship between the coefficients αk and αn in relation to ϕ. It is worth noting

that the growth rate of cyclical labor productivity d(Yjt/njt) has the same expression as (20),

except that τ is replaced by 1. Therefore, d(Yjt/njt) = dSRjt + (1− τ)(dkjt − dnjt). In general,

we find that the Solow residual and labor productivity behave similarly in cyclical terms, and

choose to emphasize the former because of its significance in the literature.

We next turn to capacity utilization and relate it to the Solow residual. Following Qiu and

Ŕıos-Rull (2022), we define capacity in sector j as

capj = zjk
αk
j nαn

j X1−αk − νjX

10Calculate

log(1 + νRj ) ≈ log(1 + νRss) +
1

1 + νRss
(νRjt − νRss) ≈ log(1 + νRss) +

νRss
1 + νRss

ν̃Rjt

Hence, d(1 + νRjt) = ∆ log(1 + νRjt) ≈
νR
ss

1+νR
ss
∆ν̃Rjt
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Consistent with the definition from the Federal Reserve Board, capacity utilization in sector j

is the ratio of output to capacity:

utiljt ≡
Yjt

capjt
=

AjD
ϕ
jt(zjth

αk
jt X

1−αk
t kαk

jt n
αn
jt − νjtXt)

zjtk
αk
jt n

αn
jt X

1−αk
t − νjtXt

(21)

=
AjD

ϕ
jt(zjth

αk
jt (kjt/Xt)

αknαn
jt − νjt)

zjt(kjt/Xt)αknαn
jt − νjt

Capacity utilization is stationary since kj grows at the same rate g as X on the balanced growth

path. Expressing (21) in growth rates yields

dutiljt = ϕdDjt + (1 + νR
ss)αkdhjt (22)

The growth rate of utilization equals that of shopping effort scaled by ϕ and capital utiliza-

tion scaled by (1 + νR
ss)αk. Therefore, higher fixed costs amplify the relative weight of capital

utilization to shopping effort.

By comparing (22) and (20), we see that shopping effort enters with the same weight ϕ but

that the weight of capital utilization differs due to the presence of fixed costs. In the special

case of zero fixed costs, the Solow residual growth rate simplifies into the sum of growth rates

of utilization, technology, and mismeasurement of input shares.

dSRjt|νj=0 = dutiljt + dzjt + (1− αk)dXt + (αk − 1 + τ)dkjt + (αn − τ)dnjt (23)

Our definition of the sectoral Solow residual follows the methodology outlined by Fernald

(2014). This approach mitigates potential additional composition bias that may arise from

employing an aggregate production technology. Furthermore, it aligns sensibly with the concept

of utilization, which is only applicable to specific industries. Accordingly, the aggregate Solow

residual and capacity utilization can be defined as the output-weighted average of sectoral values,

as consistent with Fernald (2014):

SR =
∑
j

Yj

Y
SRj, util =

∑
j

Yj

Y
utilj

To a first-order approximation, the linearized expressions (20), (22), and (23) also apply to

their respective aggregates. This allows us to quantify the proportion of Solow residual variance

explained by the utilization component, V ar(dutil)/V ar(dSR).

We have discussed the Solow residual and capacity utilization in terms of growth rates to

facilitate comparison with empirical practice (e.g., Fernald (2014)) and to maintain consistency
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with the form of variables used in the observation equations and for business cycle statistics.

In Appendix D, we provide a similar comparison between the cyclical deviations of the Solow

residual and capacity utilization.

5. Effect of demand shocks in simplified static model

This section presents a highly simplified static model to illustrate the impact of demand

shocks on capacity, output, labor, and the Solow residual. We consider a scenario with a

single consumption good produced using only labor (ξ → ∞, αk → 0). Households have GHH

preferences without habit formation (γ = ha = 0) and sell homogeneous labor to firms in

competitive spot markets (µc = µi = 1).

Equilibrium is a tuple (C,D,W, n) satisfying optimal shopping, consistency of output, labor

supply, and labor demand.

θdD
1
η = ϕ

C

D
(24)

C = ADϕznαn (25)

θnN
1
ζ = (1− ϕ)W (26)

(1− ϕ)W = αn
C

n
(27)

Equation (24) characterizes shopping effort D as a concave function of consumption C. The

curve C = ADϕznαn in equation (25) represents shopping effort D as a convex function of

consumption C. In the space of labor supply and wage (n,W ), equation (26) illustrates an

upward-sloping supply curve, while equation (27) depicts a downward-sloping convex demand

curve for labor. The labor share of income τ ≡ wN/C = αn/(1 − ϕ) using (27). Hence, The

Solow residual is SR ≡ C/(zN τ ) = ADϕznαn−τ = ADϕzn−αnϕ/(1−ϕ). The Solow residual thus

depends on technology, shopping effort, and mismeasurement of labor component.

Figure (6) depicts equilibrium using two graphs. The figure on the right shows the deter-

mination of search effort and consumption, for a given level of capacity F , as the intersection

between (24) and (25). The figure on the left shows the determination of hours and wages given

consumption C.
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Figure 6: Equilibrium of static model

Now, let us consider a negative shock to the shopping disutility θd (Figure 7). The marginal

cost of exerting shopping effort falls, which induces households to shop more intensely. Hence,

the shopping curve shifts to the upper right. More shopping effort increases firms’ matching

rate and therefore boosts total production. This effect constitutes a movement along the con-

sumption curve from point 1 to point 2. To satisfy higher production levels, firms demand

more workers, boosting labor hours and wages. Finally, more labor hours expands the produc-

tive capacity of firms, so the consumption curve curve shifts rightward. This higher capacity

further spurs shopping effort, represented by movement along the shopping curve from point

2 to point 3. The Solow residual therefore reflects both the initial increase in shopping effort

from the demand shock followed by a further increase in shopping effort as households respond

to increased capacity of firms. However, the rise of the Solow residual is slightly dampened

by the mismeasurement of input shares. Notice that the demand shock to θd induces positive

comovement across all variables in the economy and therefore resembles a standard technology

shock to z.
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Figure 7: Reduction in shopping disutility in static model

Similarly, we can examine the impact of a fall in labor disutility θn. This shocks shift the

labor supply curve and increases capacity. The consumption curve shifts rightward and triggers

a movement along the shopping curve, as before. In Appendix E, we also examine equilibrium

in a static setting in which matching costs arise from expenditure à la Michaillat and Saez

(2015). The causal effect of demand on output and productivity is essentially the same, but the

labor share of income is αn, and hence there is no input share mismeasurement in the Solow

residual.

6. Role of capacity utilization in estimation of simple BRS model

The baseline model by Bai, Rios-Rull, and Storesletten (2024) is a very special instance of

the one outlined in the previous section. First, to obtain their preferences remove wealth effects

and habit formation: γ = 0 and ha = 0. Second, allow for perfect mobility of labor (θ = 0)

and make the consumption sector unitary (ρc → 1). Remove fixed costs in the production

technology: νj = 0 for all j. Also fix the utilization of capital (σb → ∞) and remove investment

adjustment costs (Ψc = Ψi = 0). We write the equilibrium in the detrended variables using the

stochastic growth rate gt = Xt/Xt−1.

For this section we consider the same set of shocks as BRS but also add stationary neutral

technology shocks. We generally follow the same calibration strategy and targets but now fix

the risk aversion parameter β = 0.99, σ = 2.0 and Frisch elasticity ζ = 0.72. We estimate the

model and focus on the shopping-related parameters.11 Next we add estimate the same model

11BRS also fix ζ = 0.72 but they use σ = 1 and β = 0.997. We have also estimated the model with ϕ = 0.32
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but add total capacity utilization as an observable series. In the absence of fixed costs and

variable capital utilization, capacity utilization in each sector is utilj = AjD
ϕ
j , and aggregate

capacity utilization is (C/Y )utilc + (I/Y )utili.

First, in Table 2 we report the prior distributions used for both specifications. In addition

to ϕ and η, we specify distributions for the persistence parameters of nonstationary neutral

technology, stationary neutral technology, investment-specific technology, labor supply, and

shopping effort. We use the same prior distribution for the conditional standard deviation and

persistence of the stationary shocks. These conditional standard deviations have an inverse

gamma distribution with mean 0.01 and standard deviation 0.1, an the persistence parameters

have prior mean 0.6 and standard deviation 0.2.

Table 2: Prior distributions

Parameter Distribution Mean Std

ϕ Beta 0.32 0.20

η Gamma 0.20 0.15

σeg Inv. Gamma 0.010 0.10

σx Inv. Gamma 0.010 0.10

ρg Beta 0.10 0.050

ρx Beta 0.60 0.20

Table 2: Prior distributions. We use the symbol x as a shorthand for a shock in the set {z, zI , θn, θd}.

Table 3 compares the posterior means and 90% probability bands of the key shopping-

related parameters. In the former, ϕ imprecisely estimated with a lower posterior mean. In

fact, the 90% probability band includes essentially a null effect. By contrast, when we add

total capacity utilization, the posterior mean increases substantially to 0.88 and the estimate

is precise. Estimates are similarly more precise for the shopping cost elasticity η. Generally,

estimates of ρd and σd are more precise as well, though the properties differ. With total capacity

utilization, demand shocks exhibit greater persistence, but their innovations become less volatile.

and η = 0.2 as by BRS and obtained a similar variance decomposition as that paper.
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Table 3: Role of capacity utilization on parameter estimates

Parameter BRS dataset Add capacity utilization

Post. mean 90% HPD interval Post. mean 90% HPD interval

ϕ 0.0978 [0.0001, 0.205] 0.883 [0.863, 0.906]

η 0.412 [0.282, 0.572] 1.87 [1.86, 1.90]

ρD 0.871 [0.775, 0.961] 0.928 [0.914, 0.941]

eD 0.0484 [0.0024, 0.0987] 0.0075 [0.0068, 0.0081]

Table 3: Estimation of baseline BRS model with to sets of observable series. The first considers growth rates

of output, investment, labor productivity, and the relative price of investment. The second specification also

considers total capacity utilization growth.

The first block of Table 4 compares the standard deviations at the posterior mean of shocks

θd, shopping effort D, and utilization util, where the last two are expressed in growth rates. The

main result is that total capacity utilization is ten times more volatile even though shopping-

effort shocks are less volatile and shopping effort has similar volatility. The key difference lies

in the transmission of shopping effort to utilization through ϕ. The second block highlights the

role of these varying parameter estimates for the forecast error variance fraction attributable to

demand shocks. It is very small in the former case but large in the latter, accounting for about

two thirds of output, almost a third of labor productivity, and about half the Solow residual.
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Table 4: Comparison of volatility and variance decomposition

Variable BRS dataset Add capacity utilization

Volatility

θd 9.84 2.00

D 1.54 1.69

util 0.15 1.49

FEVD

Y 7.73 63.6

Y/N 2.49 27.0

SR 6.14 54.1

Table 4: The first sub-table documents standard deviations of shopping-related variables under two sets of

observables. The second sub-table shows the fraction of the unconditional variance decomposition attributable

to the demand shock θD. See Table 3.

These two exercises sharply illustrate the informative role of total capacity utilization. Not

only are shopping-related parameters more precisely estimated with the additional data series,

but also the volatility of total capacity utilization in the model rises ten-fold, much closer to

the empirical value.

Yet there are significant caveats to this analysis. First, in the absence of variable capital uti-

lization, only shopping can influence total capacity utilization. Second, total capacity utilization

is inappropriate as an economy-wide target since it is only constructed for specific industries.

In particular, it is not measured for consumption services, a large part of the economy. Third,

this model abstracts from various frictions and shocks which the DSGE literature from Smets

and Wouters (2007) and Schmitt-Grohé and Uribe (2012) have demonstrated to be important.

These include especially investment adjustment costs and imperfect competition in the labor

market, encompassing wage markup shocks. In fact, with the introduction of wage markup

shocks, labor supply shocks become unimportant.

Finally, the model struggles with key aspects of sectoral comovement. For instance, in the

second specification, though the correlation of labor in each sector is not too far below the data

(0.58), the autocorrelation is 0.18 for nc and −0.01 for ni. Labor market comovement is im-

portant for the transmission mechanism operating via goods market frictions. The relationship

26



(17) implies that the relative shopping effort equals the relative labor allocation:

Dc

Di

=
nc

ni

(28)

Combining (28) with the shopping optimality conditions then implies

nc

ni

=
C

piI

The variables C, I, and pi are observables in estimation and thus determine nc/ni. Trying to

use nc and ni–or even just their ratio–as observables in estimation would induce stochastic

singularity. Though one could sidestep this issue by avoiding the of labor variables, they play

an important role in the transmission mechanism. The use of these series versus the relative

price of investment becomes arbitrary. A more satisfactory route is to build a richer model and

incorporate both pieces of data to discipline the transmission mechanism.

7. Main quantitative analysis

7.1. Stochastic processes

The growth rate of the stochastic trend gt = Xt/Xt−1 follows an AR(1) process in logs, as

Bai, Rios-Rull, and Storesletten (2024):

log gt = (1− ρg) log g + ρg log gt−1 + e0g,t + e4g,t−4

where e0g,t ∼ N(0, σ0
g) and e4g,t ∼ N(0, σ4

g). The shock e0g,t is contemporaneous and e4g,t is a

4-period-ahead news shock anticipated at time t. In the special case ρg = 0 with no news shock,

logXt follows a random walk with drift modified by anticipated noise.

We also consider a stationary neutral shock zc and an investment-specific shock zi. We let

zi ≡ zczI where zI is independent of zc. Finally, there are disturbances to general shopping

disutility θb, investment-specific shopping disutility θi, the discount factor θd, labor supply θn,

and wage markups µc and µi. We do not include consumption preference shocks because they

can be replicated by sequences of labor supply, shopping-disutility, and discount-factor shocks.

Each stationary shock in the set v = {θb, θd, θn, θi, zc, zI , µc, µi} follows an AR(1) process

log vt = ρv log vt−1 + e0v,t + e4v,t−4

where e0v,t ∼ N(0, σ0
v) and e4v,t ∼ N(0, σ4

v). We also impose e4θn,t−4 = 0 for all t, given that labor

supply shocks turn out to play only a minor role in the general model. Relative to Schmitt-Grohé

27



and Uribe (2012) and Katayama and Kim (2018), we are more parsimonious about anticipated

shocks.

7.2. Bayesian estimation

The Bayesian framework allows us to incorporate prior (e.g.) microeconomic evidence, quan-

tify parameter uncertainty, decompose the forecast error variance of each shock, and compare

the fit of models via the marginal likelihood. The marginal likelihood also implicitly penalizes

parameter complexity.12

Along these lines, we estimate the general model using Bayesian techniques with quarterly

data from 1964Q1 to 2019Q4. The likelihood of the data sample Y given the estimated pa-

rameters Θ is denoted as L(Y |Θ). By incorporating the prior parameter distribution P (Θ),

the posterior density is proportional to L(Y |Θ)P (Θ). We employ the random walk Metropolis

Hastings algorithm, which is a standard practice for drawing from the posterior distribution of

Θ. We use the following observables expressed in growth rates: consumption C, investment I,

labor hours nc and ni, sectoral utilization utilND and utilD, and the relative price of investment

pi. This dataset is similar to Katayama and Kim (2018), but we include the utilization variables

and exclude wages.

The vector of estimated parameters Θ consists of the persistence and conditional standard

deviations for the anticipated and unanticipated shocks, the risk aversion parameter σ, the habit

formation parameter ha, the parameter ζ closely related to the Frisch elasticity of labor supply,

the parameter γ related to the wealth effects of labor supply, the fixed cost share parameter of

potential output νR, the elasticity of depreciation with respect to capital utilization σac and σai,

the investment adjustment cost parameters Ψc and Ψi, the inverse of the intersectoral elasticity

of labor supply θ, and the elasticity of substitution between nondurables and services ξ. Of

particular interest are the elasticity of the matching function with respect to shopping effort ϕ

and the elasticity of shopping cost η.

To calibrate the remaining parameters, we use long-run targets, normalizations, and a subset

ΘR of the estimated parameters. The fixed exogenous parameters include the discount factor

β, average growth rate g, gross wage markup µ, the share ω of labor hours in consumption, and

12If the expansion of the parameter space is irrelevant for fitting the data, then this reduces the prior probability

mass of parameters that do help fit the data and thereby lowers the marginal likelihood.
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the share of services in consumption. Following the approach of Katayama and Kim (2018) and

standard practice, we set β = 0.99, g = 0.45%, µ = 1.15, and ω = 0.8. We pin down the weight

of services ωsc in the consumption aggregator as the average share of services in consumption,

ωsc = pscysc/C = 0.65 over the sample.

The second set of parameters ΘR is estimated and used to calibrate other parameters. These

are the parameters of risk aversion σ, labor supply ζ, elasticity of the matching function ϕ,

elasticity of shopping effort cost η, fixed cost share νR, and habit persistence ha.

The third set of parameters determines the choice of units but does not impact the cyclical

behavior of the economy. We normalize output and the relative price of services and investment

to unity, effectively determining the level parameters of technology for each sector. Additionally,

we set the fraction of time allocated to work as 30%, which, in conjunction with other param-

eters, specifies the value of θn. To achieve a target capacity utilization of 81% in each sector,

we adjust the level parameters Aj of the matching function accordingly. Finally, by setting the

capital utilization rate to 1, we obtain the value for σb.

The fourth set of parameters are determined through long-run targets and the estimated

parameters in the second group. The long-run targets includes those chosen by Bai, Rios-Rull,

and Storesletten (2024). These are an investment-share of output of 20%, an annual capital-to-

output ratio of 2.75, and a labor share of income of 67%. These in turn pin down the parameters

δ, αk and αn. Appendix C discusses the calibration in detail.
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Targets Value Parameter Calibrated value/posterior mode

First group: parameters set exogenously

Discount factor 0.99 β 0.99

Average growth rate 1.8% g 0.45%

Gross wage markup 1.15 µ 1.15

Labor share in consumption 0.8 ω 0.8

Share of services in consumption 0.65 ωsc 0.65

Second group: estimated parameters used for calibration

Risk aversion − σ 1.6

Labor supply − ζ 1.97

Elasticity of matching function − ϕ 0.84

Elasticity of shopping effort cost − η 0.65

Fixed cost share of capacity − νR 0.42

Habit persistence − ha 0.40

Third group: normalizations

SS output 1 zmc 0.45

Relative price of services 1 zsc 0.69

Relative price of investment 1 zi 0.36

Fraction time spent working 0.30 θn 3.85

Capacity utilization of nondurables 0.81 Amc 2.51

Capacity utilization of services 0.81 Asc 1.49

Capacity utilization of investment sector 0.81 Ai 3.33

Capital utilization rate 1 σb 0.031

Fourth group: standard targets

Investment share of output 0.20 δ 0.014

Physical capital to output ratio 2.75 αk 0.242

Labor share of income 0.67 αn 0.074

Table 5: Calibration targets and parameter values. Here we calibrate a subset of parameters using long-run

targets and the posterior mode of the estimated parameters σ, ζ, ϕ, η, νR and ha. For illustration, we specify the

calibrated values corresponding to the posterior mode of these latter parameters.
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Table 6 presents the posterior estimates along with the prior distributions. Of particular

interest is the posterior mean of the matching function elasticity ϕ, which is estimated to be

0.86. This suggests that the search-based demand channel plays a significant role in the model.

The posterior mean values of σ (1.8) and ha (0.42) are consistent with previous findings in the

literature.

The inverse of the elasticity of substitution of labor, θ, has a posterior mean of 1.5, which is

moderate and about half the size reported by Katayama and Kim (2018). This difference can

be attributed to weaker short-run wealth effects and the use of search demand shocks, which

naturally induce complementarity. The wealth effects parameter γ has a posterior mean of

0.32, higher than the near zero estimate obtained by Schmitt-Grohé and Uribe (2012). Thus,

the estimates do not entirely support the GHH specification once one incorporates limited

factor mobility and demand shocks operating through goods market frictions. The elasticity of

substitution ξ between nondurables and services has a posterior mean of 0.92, which is fairly

close to the prior mean, and is somewhat more concentrated compared to the prior distribution.

The fixed cost share νR has a posterior mean of 0.33, somewhat higher than the prior mean.

Relative to Qiu and Ŕıos-Rull (2022), we need a somewhat higher fixed cost share to fit the

disaggregated data.13

Regarding investment adjustment costs, we find moderate costs with no strong evidence of

differences by sector, unlike the findings of Katayama and Kim (2018). The estimated elasticities

of the marginal cost of capital utilization are higher for consumption than for investment,

which aligns with the greater volatility of investment and capacity utilization in durable goods.

However, the estimated values are lower than those reported in Katayama and Kim (2018),

likely due to the role of the overall volatile utilization series.

The posterior probability bands of the standard deviations of shocks indicate a limited role

for permanent technology shocks, labor supply shocks, anticipated shopping-effort shocks, and

unanticipated investment-specific shopping-effort shocks. However, a more transparent analysis

of the business cycle contribution of shocks can be obtained by examining the forecast error

variance decomposition, which we explore in the next section.

13Abraham, Bormans, Konings, and Roeger (2021) estimate the fixed cost share of output using Belgian

firm-level panel data at 23.4%.
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Table 6: Bayesian estimation of baseline model

Prior Posterior

Dist. Mean Stdev. Mean Stdev. 5% HPD 95%

σ beta 1.500 0.2500 1.808 0.1763 1.5813 2.0856

ha beta 0.500 0.2000 0.424 0.0486 0.3528 0.5045

ζ gamm 0.720 0.2500 1.845 0.1277 1.6394 2.0000

γ beta 0.500 0.2000 0.317 0.0414 0.2496 0.3818

ϕ beta 0.320 0.2000 0.858 0.0419 0.7941 0.9304

η gamm 0.200 0.1500 0.563 0.1168 0.3777 0.7266

ξ gamm 0.850 0.1000 0.918 0.0625 0.8201 1.0233

νR beta 0.200 0.1000 0.328 0.0854 0.1726 0.4438

σac invg 1.000 1.0000 1.370 0.3430 0.7120 1.8836

σai invg 1.000 1.0000 0.542 0.1498 0.3302 0.7284

Ψc gamm 4.000 1.0000 4.816 0.3461 4.2633 5.3963

Ψi gamm 4.000 1.0000 4.176 0.7375 3.1244 5.3114

θ gamm 1.000 0.5000 1.545 0.4977 0.9333 2.3192

ρg beta 0.100 0.0500 0.398 0.1006 0.2333 0.5629

ρZ beta 0.600 0.2000 0.685 0.0766 0.5639 0.8202

ρZI beta 0.600 0.2000 0.930 0.0265 0.8915 0.9699

ρN beta 0.600 0.2000 0.796 0.2183 0.4259 0.9999

ρD beta 0.600 0.2000 0.936 0.0164 0.9108 0.9638

ρDI beta 0.600 0.2000 0.995 0.0052 0.9887 0.9999

ρb beta 0.600 0.2000 0.851 0.0486 0.7667 0.9286

ρµc beta 0.600 0.2000 0.982 0.0147 0.9628 1.0000

ρµi beta 0.600 0.2000 0.982 0.0100 0.9691 0.9997

eg gamm 0.010 0.0100 0.003 0.0022 0.0000 0.0061

eg,−4 gamm 0.010 0.0100 0.009 0.0018 0.0059 0.0118

eZ gamm 0.010 0.0100 0.004 0.0007 0.0032 0.0054

eZ,−4 gamm 0.010 0.0100 0.004 0.0012 0.0021 0.0059

eZI gamm 0.010 0.0100 0.011 0.0010 0.0097 0.0128

eZI,−4 gamm 0.010 0.0100 0.002 0.0014 0.0001 0.0040

eN gamm 0.010 0.0100 0.003 0.0024 0.0001 0.0057
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eD gamm 0.010 0.0100 0.040 0.0081 0.0276 0.0523

eD,4 gamm 0.010 0.0100 0.007 0.0061 0.0001 0.0165

eDI gamm 0.010 0.0100 0.002 0.0014 0.0001 0.0040

eDI,−4 gamm 0.010 0.0100 0.020 0.0011 0.0177 0.0212

eb gamm 0.010 0.0100 0.001 0.0009 0.0001 0.0023

eb,−4 gamm 0.010 0.0100 0.006 0.0022 0.0025 0.0091

eµc gamm 0.010 0.0100 0.001 0.0014 0.0001 0.0035

eµc,−4 gamm 0.010 0.0100 0.003 0.0022 0.0001 0.0055

eµi gamm 0.010 0.0100 0.015 0.0097 0.0006 0.0290

eµi,−4 gamm 0.010 0.0100 0.023 0.0037 0.0174 0.0299

Table 6: Prior and posterior distribution.

Table 7 documents the unconditional forecast error variance decomposition of the model. Tech-

nology shocks and shopping-effort shocks are the primary drivers of forecast error variance in

output, the Solow residual, investment, the relative price of investment, and variable capital

utilization. Among these shocks, shopping-effort shocks have a particularly significant impact

on utilization and, unsurprisingly, shopping effort itself. The only significant contribution of

discount-factor, wage markup, and labor supply shocks lies in explaining portions of labor in

consumption and investment.

Here our primary focus is on the Solow residual and utilization. Shopping-effort and technol-

ogy shocks play similarly important roles for the former, but the search demand shocks explain

over 85% of utilization. Hence, the evidence strongly supports a powerful causal channel of

demand shocks into productivity operating via capacity utilization.
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Table 7: Forecast error variance decomposition

Technology Labor Supply Shopping Effort Discount Factor Wage Markup

Y 35.1 0.01 64.1 0.73 0.08

SR 41.3 0.73 52.9 3.12 2.00

I 38.1 0.01 54.9 6.90 0.03

pi 54.5 0.00 45.2 0.12 0.14

nc 14.5 14.3 31.2 23.6 16.5

ni 18.6 1.28 26.6 13.4 40.1

util 13.0 0.01 86.1 0.84 0.03

D 2.36 0.00 97.6 0.06 0.00

h 31.2 0.01 68.0 0.78 0.02

Table 7: Unconditional forecast error variance decomposition for variables in growth rates. Shocks are grouped

in respective categories.

Table 8 compares the log marginal likelihood, parameter estimates of ϕ, variance decomposi-

tion, and second moments for various specifications of the model. The baseline model accounts

for two thirds of the variance decomposition of output and nearly half of the Solow residual.

The relative variance of utilization to the Solow residual is 0.87. These statistics are similar in

the absence of variable capital utilization but fall somewhat without fixed costs. This suggests

significant complementarity between the demand channel and fixed costs.
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Table 8: Comparison of model specification

Remove

Data Baseline Fixed cost VCU SDS SDS and utilization data

LML − 4531.0 4516.9 4470.9 4202.2 −

∆ LML − 0 -14.1 -60.1 -328.8 −

90% HPDI band ϕ − (0.8, 0.94) (0.84, 0.96) (0.2467, 0.3452) (0.69, 0.72) (0.56, 0.70)

FEVD(Y, SDS) − 64.1 58.7 54.01 − −

FEVD(SR, SDS) − 52.9 36.3 54.2 − −

Var(util)/Var(SR) − 0.87 0.65 0.77 1.49 0.11

std(Y) 0.87 1.62 1.63 2.00 60.5 0.6

std(utilND) 1.26 1.15 1.1 1.27 47.9 0.27

std(utilD) 2.27 2.98 3.25 2.44 85.6 1.18

std(nc) 0.57 0.53 0.63 0.53 17.3 0.48

std(ni) 1.94 1.83 1.92 1.76 39.6 1.66

Cor(C, I) 0.54 0.63 0.55 0.58 0.99 0.26

Cor(utilND, utilD) 0.75 0.57 0.53 0.62 1.00 -0.71

Cor(nc, ni) 0.87 0.77 0.81 0.84 1.00 0.82

Cor(utilND, utilND,−1) 0.51 0.36 0.40 -0.040 0.999 0.17

Cor(utilD, utilD,−1) 0.55 0.55 0.69 0.043 0.999 0.42

Table 8: Comparison of log marginal likelihood, parameter estimates of ϕ, variance decomposition, and second

moments for various specifications of the model. The Laplace approximation is used for the marginal likelihood.

The first column describes relevant empirical moments and the second column corresponds to the baseline

model. The third, fourth, and fifth columns respectively present estimates in which fixed costs, variable capital

utilization, and search demand shocks (SDS) are removed. The sixth column also removes the utilization series

from the set of observables.

Next, consider second moments. The analysis of second moments provides further insights

into the model’s fit to the data. The baseline model tends to overestimate the volatility of

output but fits the volatility of the utilization series and labor hours quite well. Additionally, it

captures the correlation between consumption and investment, as well as the correlations of the

utilization series and labor hours, reasonably accurately. Finally, the model does a reasonable

job with respect to the autoocorrelation of the utilization series, matching that of durables and

coming close to the autocorrelation of nondurables.

Removing fixed costs causes some deterioriation in performance but removing variable capital

35



utilization is far more detrimental: the log marginal likelihood falls by about 60. We can obtain

intuition by noting that the model loses flexibility in explaining utilization and output in the

absence of variable capital utilization. There is more excess volatility of output in this case, and

the implied autocorrelation of the utilization variables is roughly zero in the model, compared

to over 0.5 in the data.

Removing demand shocks, even while preserving the goods market frictions, generates by

far the greatest deterioration in model fit: the log marginal likelihood falls by over 328. In

this case, the moments exceed the empirical values by nearly two orders of magnitude, and the

correlations approach unity. To gain a better understanding of why the model fails to explain

the data, the analysis removes the utilization series from the set of observables. The model

without demand shocks can explain the other series quite well, as it incorporates the framework

proposed by Katayama and Kim (2018). We can then identify the counterfactual implications

for utilization in this setting. The volatility of nondurables utilization is substantially below

the empirical value, echoing the finding we obtained with respect to the BRS specification.

Moreover, the autocorrelation of nondurables utilization falls to 0.17. Most strikingly, this

specification implies a strong negative correlation (−0.71) between the two utilization series.

That is, fitting standard macroeconomic series, including sectoral labor market data, comes at

the expense of fitting the volatility, comovement, and autocorrelation of the utilization series.

To better interpret these results, we examine impulse responses of consumption, investment,

their respective labor inputs, and utilization in nondurables and durables from the baseline

model with the parameters set to the posterior mean. In line with the analysis presented thus

far, the impulse responses are depicted in terms of growth rates to ensure consistency.

Figure 8 plots the impulse response to a unit standard deviation reduction in shopping effort.

This shock prompts households to increase their shopping effort, leading to a boost in matching

and utilization. As a result, firms experience a higher demand for labor in both sectors, thanks

to their improved ability to match. Consequently, the shock generates positive comovement

in the growth rates of sectoral output, sectoral input, and utilization in the nondurables and

services sectors. As expected, the Solow residual rises on impact.

Figure 9 plots the impulse response to a unit standard deviation discount-factor shock.

Households are more patient, which raises the desire to consume in the future relative to the

present. As a result, consumption falls while investment rises. Additionally, there is an increase
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Figure 8: A unit standard deviation negative shock ed to shopping effort in baseline model with parameters set

at the posterior mean. The outcome variables are presented in growth rates.

in utilization in the durables sector but a decrease in utilization in the nondurables sector. It

is worth noting that due to limited factor mobility, labor in the consumption sector does not

decrease, but the rise in labor in the investment sector is more pronounced. Hence, search

demand shocks are unique in producing positive comovement in the growth rates of all series.
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Figure 9: A unit standard deviation negative shock eb to the discount factor in baseline model with parameters

set at the posterior mean. The outcome variables are presented in growth rates.

What about technology shocks? It may appear that technology shocks can generate all the

comovement properties as search demand shocks. To that end, Figure 10 plots the impulse

response to a unit standard deviation neutral stationary technology shock. The Solow residual

rises about half as much on impact as under a demand shock. The shock generates positive

comovement in consumption and investment, as well as in the labor input of each sector. Thus, a

positive technology shock is consistent with sectoral comovement as described by Christiano and

Fitzgerald (1998) and Katayama and Kim (2018). Limited factor mobility and moderate short-

run wealth effects play a role in generating this feature. However, utilization in nondurables,

part of the consumption sector, actually falls before rising. The technology boost increases the

expected return on investment, thereby incentivizing an immediate rise in utilization in the

durable sector. Only after the effects of the technology shock subside and households enjoy

greater resources does utilization in nondurables respond positively.

38



5 10 15 20

0.000%

0.100%

0.200%

0.300%

0.400%
C

5 10 15 20

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%
I

5 10 15 20

0.0100%

0.0000%

0.0100%

0.0200%

0.0300%
N_C

5 10 15 20
0.100%

0.000%

0.100%

0.200%

0.300%

N_I

5 10 15 20

0.00%

0.10%

0.20%

0.30%

0.40%

SR

5 10 15 20
0.20%

0.10%

0.00%

0.10%

0.20%

util_ND

5 10 15 20

0.00%

0.10%

0.20%

0.30%

0.40%
util_D

5 10 15 20

0.000%

0.050%

0.100%

0.150%

D

5 10 15 20
0.75%

0.50%

0.25%

0.00%

0.25%

0.50%

h

A 1 standard-deviation shock to e_Z

Figure 10: A unit standard deviation negative shock ez to technology in the baseline model with parameters set

at the posterior mean. The outcome variables are presented in growth rates.

8. Conclusion

We use Bayesian methods to estimate a three-sectoral DSGE model which features a demand

channel operating via goods market frictions: value added is generally below capacity. Demand

shocks generate fluctuations in capacity utilization which influence the Solow residual. To

estimate the model, we adopt a novel approach that utilizes sectoral data on utilization in

both the nondurables and durables sectors, along with data on labor hours and output in the

consumption and investment sectors. This unique combination of data allows us to implicitly

incorporate information on sectoral productivity while also subjecting the model to a rigorous

test. We ask the model to not only fit dynamics of capacity utilization overall but also to

capture the comovement of utilization between different sectors of the economy.

Even without making use of shopping time, we estimate reasonably high and precise values

of the elasticity of the matching function with respect to shopping effort and associated shocks.

We show that we can approximately recover the key parameters for the model mechanism by

estimating the model on synthetic data obtained form the model. Moreover, shocks to shopping

effort and its news component explain a major part of the forecast error variance decomposition
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of output, the Solow residual, the relative price of investment, hours, and utilization. In terms

of empirical fit, the model explains comovement in labor input, output, and utilization well; as

well as the volatility of the utilization series.

The role of different model ingredients in capturing the dynamics of the data is crucial

to understanding the model’s fit. Eliminating fixed costs reduces model fit, but the main

findings remain unchanged. On the other hand, excluding variable capital utilization has a

more significant impact, as it eliminates the model’s ability to match the autocorrelation of

the utilization series. However, the most detrimental effect is observed when search-based

demand shocks are removed. In this case, the model completely fails to fit the data, resulting

in volatilities that are two orders of magnitude higher than the empirical series and correlations

that are close to unity. The reason is that search demand shocks are unique in matching

all comovement properties. Insofar as sectoral comovement is viewed as an important test of

economic models, it should be interpreted more broadly to encompass the positive correlation

of capacity utilization.

This setting actually tilts the playing field in favor of technology shocks by not making use of

nominal rigidities or otherwise imposing the findings from the literature that technology shocks

reduce labor input int he short run (Gali (1999), Basu, Fernald, and Kimball (2006), Francis

and Ramey (2005)). This deliberate abstraction aims to highlight the argument in favor of

the search-based demand channel, without relying on monetary policy transmission or using

monetary variables in estimation.

Nevertheless, it would be extremely fruitful to apply this framework within a monetary

setting that considers the implications of demand shocks for inflation and interest rates, and

includes those variables as observables. This would provide a more comprehensive understanding

of the interactions between goods market frictions, demand shocks, and monetary policy.

Additionally, it is very natural to integrate goods market frictions, demand shocks, and

unemployment, a key motivation of papers like Michaillat and Saez (2015). Labor market

frictions facilitate sectoral comovement and provide additional persistence, and unemployment is

one of the major outcome variables which has historically inspired intellectual work on aggregate

demand, as seen in the seminal work of Keynes (1936).
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Appendix A. Data appendix

Table A.9 provides the details on constructing the model variables, which are used for

summary statistics and Bayesian estimation.

Symbol Description Construction

C Nominal consumption PCND+PCESV

I Nominal gross private domestic investment PCDG+PNFI+PRFI

Deflator GDP Deflator GDPDEF

Pop Civilian non-institutional population CNP160V

Pc Price index: consumption PCEPI

Pi Price index: investment INVDEV

c Real per capita consumption C
Pop∗Pc

i Real per capita investment I
Pop∗Pi

y Real per capita output c+ i

nc Labor in consumption sector Labor in nondurables and services

ni Labor in investment sector Labor in construction and durables

n Aggregate labor nc + ni

pi Relative price of investment Pi/Pc

utilND Total capacity utilization: nondurables TCU

utilD Total capacity utilization: durables TCU

SR Solow residual Fernald (2014), FRB of San Francisco

SRutil Utilization-adjusted Solow residual Fernald (2014), FRB of San Francisco

Table A.9: Data sources used in motivating evidence and estimation.

The construction of sectoral data follows Katayama and Kim (2018). We obtain consumption

and investment as follows:

Ct =

(
Nondurable(PCND) + Services(PCESV )

Pc × CivilianNonstitutionalPopulation(CNP160V )

)
It =

(
Durable(PCDG) +NoresidentialInvestment(PNFI) +ResidentialInvestment(PRFI)

Pi × CivilianNoninstitutionalPopulation(CNP160V )

)

We use an HP-filtered trend for population (λ = 10, 000) to eliminate jumps around census

dates.
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For labor data, we make use of the BLS Current Employment Statistics (https://www.

bls.gov/ces/data). BLS Table B6 contains the number of production and non-supervisory

employees by industry, and BLS Table B7 contains average weekly hours of each sector. We

compute total hours for nondurables, services, construction, and durables by multiplying the

relevant components of each table. Then we impute labor in consumption as sum of labor

in nondurables and services. Similarly, we construct labor in investment as sum of labor in

construction and durables.

We also make use of disaggregated data on total capacity utilization from the Federal Reserve

Board. Estimates are available for 89 detailed industries (71 manufacturing, 16 mining, 2

utilities) and also for several industry groups. Our focus is on durables and nondurables. The

data can be downloaded at https://www.federalreserve.gov/datadownload/Choose.aspx?

rel=G17.

Appendix B. Details of household and firm problem

Competitive search creates additional interconnections between the household and firm prob-

lems. A complete characterization requires solving both jointly. We start with the household

problem. Let γmc, γsc, γi, λ, µmc, µsc, µi be the respective Lagrangian multipliers on the con-

straints. The first order conditions are

[ymc] : umc = γmc + λpmc

[ysc] : usc = γsc + λpsc

[ij] : −γi − λpj + µj

(
1− S ′

j(xj)xj − Sj(xj)
)
+ βθbEµ′

jS
′
j(x

′
j)(x

′
j)

2 = 0 (B.1)

[dj] : ud = −AjD
ϕ−1
j Fjγj, j ∈ {mc, sc} (B.2)

[di] : udθi = −AiD
ϕ−1
i Fiγi (B.3)

[nc] : un
∂na

∂nc

= −λW ∗
c (B.4)

[ni] : un
∂na

∂ni

= −λW ∗
i (B.5)

[hj] δh(hj)µj = λRj j ∈ {mc, sc, i} (B.6)

[k′
j] : µj = βθbE

{
λ′R′

jh
′
j + (1− δj(h

′
j))µ

′
j

}
j ∈ {mc, sc, i} (B.7)
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The multipliers γmc, γsc, γi reflect the value of an additional unit of traded output. In the

consumption submarkets, these represent a wedge between the marginal utility of consumption

and the marginal utility of wealth. For investment, the multiplier γi represents an analogous

wedge between the marginal utility of wealth and value of the investment good. Equations (B.2)

and (B.3) equate the marginal shopping disutility to the additional units obtained by search

multiplied by the value of the unit. Equations (B.4) and (B.5) equate the marginal disutility of

work in each sector to the (variable) wage multiplied by the marginal utility of wealth. Equation

(B.6) equates the marginal cost of depreciated capital to the value of additional output generated

in terms of consumption. Finally, (B.7) equates the marginal value of capital to the expected

discounted rate of return, composed of the rental income and value of undepreciated capital.

We next characterize the envelope conditions:

∂V j

∂pj
= −λj = −λdjAjD

ϕ−1
j Fj j ∈ {mc, sc, i} (B.8)

∂V j

∂Dj

= (ϕ− 1)djAjD
ϕ−2
j Fjγj j ∈ {mc, sc, i} (B.9)

∂V j

∂Fj

= djAjD
ϕ−1
j γj j ∈ {mc, sc, i}

The ratio of (B.8) and (B.9) characterizes the indifference curve between price and tightness in

a submarket:

∂V j

∂pj

∂V j

∂Dj

= − λDj

(ϕ− 1)γj
(B.10)

We next turn to the firm’s problem. The firm chooses labor type s in sector j so as to generate

an effective labor bundle nj at the lowest possible cost. The problem is

min
nj(s)

∫ 1

0

Wj(s)nj(s)ds s.t. (B.11)(∫ 1

0

nj(s)
1/µjdj

)µj

≥ n (B.12)

Take the first order condition of (B.11) and recognize Wj as the Lagrangian multiplier on

constraint (B.12). Rearrange as

nj(s) =

(
Wj(s)

Wj

)−
µj

µj−1

nj

The corresponding wage index for composite labor input in sector j is

Wj =

[∫ 1

0

Wj(s)
1/(µj−1)ds

]µj−1
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We can now examine the simplified firm problem. Let ιj and ∇j be the multipliers on partici-

pation constraint and production technology. The first order conditions are

[Fj] ∇j = pjAjD
ϕ
j + ιj

∂V j

∂F j

[nj] Wj = ∇jzjfn (B.13)

[k] hjRj = ∇jzjfk (B.14)

[pj] AjD
ϕ
j Fj + ιj

∂V j

∂pj
= 0 (B.15)

[Dj] ϕAjD
ϕ−1
j pjFj + ιj

∂V j

∂Dj
= 0 (B.16)

Take the ratio of first order conditions (B.15) and (B.16) to alternately characterize the indif-

ference curve between price and tightness:

∂V j

∂pj

∂V j

∂Dj

=
Dj

ϕpj

Plug in (B.10) to find

Dj

ϕpj
= − λDj

(ϕ− 1)γj

which we rearrange as

γj =
ϕ

1− ϕ
λpj

Since γj = uj − λpj for j = {mc, sc}, we have

λ = (1− ϕ)
uj

pj
(B.17)

which allows us to characterize γi:

γi = ϕ
uj

pj
pi j ∈ {mc, sc}

Note that (B.17) also implies that the marginal utility relative to the price is the same in each

consumption subsector. The values of γmc, γsc and λ allows us to rewrite the shopping optimality

conditions and labor leisure tradeoff:

−ud = ϕujAjD
ϕ−1
j [zjf(hjkj, nj)− νj] j ∈ {mc, sc}

−udθi = ϕ
umcpi
pmc

AiD
ϕ−1
i [zif(hiki, ni)− νi]
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un
∂na

∂nj

= −umc(1− ϕ)

pmc

W ∗
j j ∈ {c, i}

We next revisit the investment first order condition (B.1) and characterize Tobin’s Q. For

sector j ∈ {mc, sc, i} we have

λpi + γi = µj(1− S ′(xj)xj − S(xj)) + βθbEµ′
j(S

′(x′
j)(x

′
j)

2)

λpi +
ϕ

1− ϕ
λpi = µj(1− S ′(xj)xj − S(xj)) + βθbEµ′

j(S
′(x′

j)(x
′
j)

2)

λpi
1− ϕ

= µj(1− S ′(xj)xj − S(xj)) + βθbEµ′
j(S

′(x′
j)(x

′
j)

2)

Let Qj = µj/λ: relative price of capital in sector j in terms of consumption. Using Qj rewrite

the choice of optimal investment as

pi
1− ϕ

= Qj[1− S ′
j(xj)xj − Sj(xj)] + βθbE

λ′

λ
Q′

jS
′
j(x

′
j)(x

′
j)

2

We also use Tobin’s Q to rewrite the optimal utilization in j ∈ {mc, sc, i} and the Euler equation:

δh(hj)Qj = Rj

Qj = βθbE
λ′

λ

[
(1− δ(h′

j))Q
′
j +R′

jh
′
j

]
It remains to solve for the Lagrangian multipliers ιj and ∇j on the firm problem. This is

straightforward given λ and γj. First,

ιj =
Ajq

ϕ
j Fj

∂V j

∂pj

=
1

λ

Second,

∇j = pjAjD
ϕ
j + ιj

∂V j

∂F j

= pjAjD
ϕ
j +

AjD
ϕ
j γj

λ

= pjAjD
ϕ
j + AjD

ϕ
j

ϕ

1− ϕ
pj

= AjD
ϕ
j

(
pj +

ϕ

1− ϕ
pj

)
=

pjAjD
ϕ
j

1− ϕ

The value of additional production capacity ∇j exceeds the additional sales pjAjD
ϕ
j . This is

because the additional sales also relax the participation constraint of households. Finally, the
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value of these multipliers enables us to characterize the factor demands for the firms. Substitute

for ∇j in (B.13) to find

(1− ϕ)
Wj

pj
= Aj(Dj)

ϕzj
∂f(hjkj, nj)

∂n

=
αn

nj

AjD
ϕ
j zjf(hjkj, nj)

=
αn

nj

AjD
ϕ
j

(
yj

AjD
ϕ
j

+ νj

)
=

αn

nc

(yj + AjD
ϕ
j νj)

=
α

nc

yj(1 + νR)

where we use νR
j = νjΨT/yj. We can simplify the capital demand (or rental rate) (B.14) using

ratios as

Wj

Rj

=
αn

αk

hjkj
nj

Aggregating across sectors, the steady-state labor labor of income is αn(1+ νR)/(1−ϕ) and

the capital share of income is αk(1 + νR)/(1− ϕ).

Appendix C. Calibration

In general, we determine some (fixed) parameters from long-run targets, estimate the pa-

rameter set Θ described in the main text, and back out the remaining (dependent parameters)

given draws from Θ and long-run targets. The dependent parameters are thus random variables.

Here we use the term calibration more broadly to characterize the determination of dependent

parameters as a function of both estimated parameters and long-run targets.

Several key targets used for calibration are investment-to-output piI/Y , capital-to-output

pik/Y , the labor share of income, the unconditional growth rate g, and share of services Sc in

consumption. In terms of model variables at quarterly frequency, we have

κ ≡ piI/Y = 20%, pik/Y = 2.75(4) = 11, g = 0.45%, τ ≡ nW

Y
= 67%, Ssc ≡

pscysc
C

= 65%

The first two targets are identical to Bai, Rios-Rull, and Storesletten (2024), and the third

corresponds to 1.8% per capital annual growth, which is very close to the average over the data
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sample. Capital accumulation (ignoring adjustment costs) in transformed variables 14 is given

by

gk̂′ = (1− δ)k̂ + gÎ

Balanced growth, in terms of original variables, implies a steady state in terms of k̂, such that

δ = 1− g +
I

k
≈ 1.37%

Next, we characterize αn, αk and σb. Labor demand (14) for each sector implies

Wjnj =
αn

1− ϕ
pjY

j(1 + νR
j )

where νR
j = νjX/Fj. The steady state labor share is thus∑

Wjnj

Y
=

αn

1− ϕ

C + piI

Y
(1 + νR

ss) =
αn

1− ϕ
(1 + νR

ss)

so that αn = (1− ϕ)labor share/(1 + νR
ss).

In steady state, the rate of return on capital in each sector is equal, so we let R denote the

common value: R = Rj for all j. It is helpful to use the interest rate r on an illiquid bond as

the value which satisfies βg−σ = 1/(1 + r).

The Euler equations in the steady state imply

Q = βg−σ[(1− δ)Q+R] ⇒

(1 + r)Q = (1− δ)Q+R

(r + δ)Q = R

Given that capital utilization hj = 1 for all j in the steady state, the parameter σb satisfies

σb =
R

Q
= r + δ

Combining with Tobin’s Q, pi/(1− ϕ) = Q, we have

(1− ϕ)
R

pi
= r + δ

14Investment is divided by the stochastic trend Ît = It/Xt while the capital stock is divided by the lagged

stochastic trend K̂t = Kt/Xt−1 to maintain its status as a predetermined variable.
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Now, turn to the firm demand for capital (15):

(1− ϕ)
Rj

pj
= αk

Yj

kj
(1 + νR)

An immediate corollary is that Yj/kj = Y/k for all k and hence

r + δ = αk
Y

k
(1 + νR)

so that

αk =
r + δ

1 + νR

k

Y

We pin down the weight of services ωsc as the empirical measure Sc = pscYsc/C and set Sc = 0.65.

The ratio of demand in consumption subsectors implies

Ymc

Ysc

=

(
pmc

psc

)−ξ
ωmc

ωsc

Multiply each side by pmc/psc, so that

pmcYmc

pscYsc

=

(
pmc

psc

)1−ξ
ωmc

ωsc

and plug in Sc: (
1− Sc

Sc

)
=

(
pmc

psc

)1−ξ
1− Sc

Sc

so that pmc = psc. Since we normalize psc = 1 and have also normalized the consumption price

index to unity, we have pmc = psc = pc = 1.

Given the target for capacity utilization ΨT,j, we wish to find the corresponding level coef-

ficient Aj = ΨT,j/D
ϕ
j . This entails solving for each Dj. We first solve for D. Let us sum each

side of the shopping optimality condition across sectors:∑
j

D1/ηDj =
∑
j

ϕpjYj

D
η+1
η = ϕY

Given that we choose technology coefficients such that Y = 1, we obtain D = ϕ
η

η+1 .

Now, take the ratio of the shopping conditions rearrange for relative shopping effort:

Dmc

Dsc

=
pmc

psc

Ymc

Ysc

=
1− Sc

Sc

(C.1)
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Similarly,

Dj

Di

= Sj
1− I/Y

I/Y
(C.2)

Now, we put (C.1) and (C.2) together to characterize shopping effort in each sector:

Dmc = (1− Sc)(1− I/Y )D

Dsc = Sc(1− I/Y )D

Di = (I/Y )D

Appendix D. Cyclical deviations of Solow residual and total capacity utilization

In the main text we analyze the relationship between the Solow residual and capacity uti-

lization in growth rates. Here we compare them in terms of cyclical deviations. Using (18), the

cyclical component of the Solow residual is

ŜRj ≡
SRj

Xτ
=

AjD
ϕ
j zjh

αk
j g1−αk−τ k̂αk−1+τ

j nαn−τ
j

1 + νR
j

= g1−τ Ŷj

k̂1−τ
j nτ

j

The log linear representation is

˜̂
SRj = ϕD̃j + z̃j + αkh̃j + (1− αk − τ)g̃ + (αk − 1 + τ)

˜̂
kj + (αn − τ)ñj −

νR
ss

1 + νR
ss

ν̃R
j

and note that g̃t = log gt − log g which is first-order equivalent to Xobs. Log linearizing (21)

yields

ũtilj = ϕD̃j + (1 + νR
ss)αkh̃j

Thus, in the absence of fixed costs, we have

˜̂
SRj|νj=0 = ũtilj + z̃j + (1− αk − τ)(log gt − log g) + (αk − 1 + τ)

˜̂
kj + (αn − τ)ñj

Given the detrending, the coefficient on nonstationary technology is 1 − αk − τ rather than

1 − αk. Otherwise, the relationship between cyclical components of the Solow residual and

utilization has the same form as the one in growth rates.

The relationship between the cyclical form and growth rate form is

dSRt = ∆ logSRt
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= log ŜRt + τ logXt − (log ŜRt−1 + τ logXt−1)

= ∆
˜̂
SRjt + τ log gt

The growth rate of the Solow residual equals the growth rate of cyclical deviations plus the log

deviation of the stochastic trend growth rate relative to the unconditional mean multiplied by

the labor share.

Appendix E. Shopping costs in the form of expenditure

Michaillat and Saez (2015) also use matching frictions in the goods market and emphasizes

the impact of aggregate-demand shocks on output and employment. At first glance, it is difficult

to compare the two settings because Michaillat and Saez (2015) specify the matching frictions

differently, formalize matching costs in terms of expenditure rather than disutility, and also

incorporate money demand via money in the utility. Accordingly, we represent matching costs

in terms of expenditures in a static form of BRS and show that the same key logic holds.

However, the labor share of income turns out to be different since expenditure shows up in the

national income accounts, but effort does not.

As in the static model in the main text, each firm has a location production function F =

znαn using just labor. Each unit of search requires an expenditure ρ. In terms of national

income accounting, these expenditures are part of consumption, but they yield no utility to

households. The remaining part of consumption, ce, does directly yield utility.

Household preferences take the form u(ce, n) = U(Γ) where U is increasing, strictly concave,

and differentiable

Γ = ce − θn
n1+1/ζ

1 + 1/ζ

Thus, there are zero wealth effects on labor supply (GHH).

The link between effective consumption and overall consumption satisfies

ce = C − dρ

= d(ΨdF − ρ)

The necessary units of shopping to consume one service are 1/(ΨdF − ρ). The associated

expenditures are thus

T (D) =
ρ

ΨdF − ρ
(E.1)
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The expression for T in (E.1) differs from the analogue in Michaillat and Saez (2015) only by

the fact that the Ψd is multiplied by capacity F , which is a consequence of one unit traded per

match in their setup.

A household who chooses a particular submarket (p,D) has expenditure pce(1+T (D)) = pC

and associated income π + nW , where π denotes firms’ profits.

The problem of the household in submarket (p,D) is

maxu(ce, n) s.t.

pce(1 + T (D)) = π + nW

The first order conditions with respect to c and n yield the following labor-leisure or labor

supply condition:

θnn
1/ζ =

W/p

1 + T (D)

The search wedge 1/(1+T (D)) reduces the return to working, analogous to a consumption tax

or labor income tax.

We next solve the problem of the firm. To keep customers from deviating to another sub-

market, it must post a combination of price and tightness (p,D) such that p(1 + T (D)) ≤ H

for some H. The problem is

max
n,p,D

pΨT (D)znαn − nW s.t.

p(1 + T (D)) ≤ H

The first order condition for n is

αn
ΨTF

n
= W

Aggregate consumption satisfies C = ΨTF , so that nW/C = αn. Hence, the labor share of in-

come is αn. By contrast, if the matching costs were in terms of disutility, then the corresponding

labor share of income would be αn/(1− ϕ).

The problem over the price-tightness pair (p,D) can be simplified by substituting for the

constraint in the objective as

ΨT (D)

1 + T (D)
=

ΨT

ΨD

(ΨdF − ρ) =
D

F
(ADϕ−1F − ρ)
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Differentiating with respect to D yields

ρ = ϕΨDF

or, in closed form,

D =

(
ϕAznαn

ρ

)1/(1−ϕ)

(E.2)

Notice that (E.2) depends not only on both the parameters of matching technology ϕ,A and

cost ρ but also on z and n.

Thus, we normalize p = 1 and define equilibrium as a tuple (D,C, ce, n,W ) satisfying

ρ = ϕΨD

C = ADϕznαn

ce =
C

1 + T (D)

W =
αnC

n

θnn
1/ζ =

W

1 + T (D)

Compared to the baseline setup, the wedge on labor supply is now 1/(1 + T (D)) instead of

1 − ϕ and the labor share of income is αn. Moreover, the cost of shopping is linear, which is

analogous to letting η → ∞ in the BRS specification.

A key difference in the labor share of income is that purchased shopping services are still

part of GDP. Thus, the Solow residual is SR = C/nαn = ADϕz. Both matching frictions and

technology enter into GDP, but, unlike BRS, there is no input share mismeasurement.

Michaillat and Saez (2015) argue that the effect of aggregate demand shocks on output and

employment depends on sticky prices. The reason is that the demand shocks they consider–

consumption preference or money supply–do not affect efficient level of market tightness. Under

competitive search, tightness is necessarily at the efficient level, so some deviation would thus

be necessary for such demand shocks to matter.

However, under the matching setup considered here, the efficient level of market tightness

also depends on labor hours and technology. It follows that any demand shock that affects labor

demand also raises D and the Solow residual. In the current bare-bones setup, a reduction in

θn stimulates labor demand, which raises shopping and tightness. Additionally, we included
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money as Michaillat and Saez (2015), then a consumption preference shock or shock to the level

of money supply would also affect labor and hence tightness.

In general, the influence of labor hours on the efficient level of tightness holds provided

that the expenditure ρ does not scale one-for-one with capacity. If the cost of a shopping were

ρF instead of ρ, then we would instead have T = ρ/(Ψd − ρ) and D would be determined

by ρ = ϕΨd. The efficient level of tightness would just depend on ϕ,A, and ρ. We believe it

plausible a priori that shopping expenditure costs scale less than one-for-one with firm capacity,

though of course parsing these micro-level features require more granular data and research.

Appendix F. Equilibrium in basic BRS model

Given initial states {kc0, ki0} and {g0, θd0, θn0, zc0, zi0}, an equilibrium is a sequence of prices

{pit, Rct, Rit,Wt}∞t=0 and quantities {kct, kit, kt, Ct, It, Dct, Dit, Dt, nct, nit, nt, gt, θdt, θnt, zct, zIt}∞t=0

which solve the following system given the realization of shocks {egt, evt}∞t=0:

θntn
1/ν
t = (1− ϕ)Wt

θdtD
1/η
t = ϕ

Ct

Dct

θdtD
1/η
t = ϕpit

It
Dit

Γt = Ct − θdt
D

1+1/η
t

1 + 1/η
− θnt

(nt)
1+1/ζ

1 + 1/ζ

Γ−σ
t pit = βE

{
[(1− ϕ)Rc,t+1 + pi,t+1(1− δ)](Γt+1gt+1)

−σ
}

E(Rc,t+1 −Ri,t+1) = 0

Ct = Ac(Dct)
ϕzctg

−αk
t kαk

ct n
αn
ct

It = Ai(Dit)
ϕzitg

−αk
t kαk

it n
αn
it

Itgt = (kc,t+1 + ki,t+1)gt − (1− δ)(kct + kit)

(1− ϕ)
Wt

pt
= αn

Ct

nct

j ∈ {c, i}, with pct = 1

Wt

Rjt

=
αn

αk

kjt
njt

j ∈ {c, i}

nt = nct + nit, kt = kct + kit, Dt = Dct +Dit

log gt = (1− ρg)g + ρg log gt−1 + egt

log vt = ρv log vt−1 + ev,t, v ∈ {θd, θn, zc, zI}
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log zit = log zct + log zIt
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Appendix G. Equilibrium of baseline model

Given initial states {kmc0, ksc0, k0} and {g0, θb0, θd0, θi0, θn0, zc0, zI0, µc0, µi0}, an equilibrium is

a sequence of prices {pit, Rjt, Qjt,Wct,Wit}∞t=0 and quantities {kjt, ijt, Yjt, Ct, Djt, n
a
t , njt, nct, nt, gt,

θbt, θdt, θit, θnt, zct, zIt, µct, µit}∞t=0 for j ∈ {mc, sc, i} that solves the following system given the

realization of shocks {e0gt, e4gt, e0vt, e4vt}∞t=0:

θn(n
a
t )

1/ν

(
nct

na
t

)θ

ω−θ = (1− ϕ)
Wct

µctSt

θn(n
a
t )

1/ν

(
nit

na
t

)θ

(1− ω)−θ = (1− ϕ)
Wit

µitSt

na
t =

[
ω−θn1+θ

ct + (1− ω)−θn1+θ
it

] 1
1+θ

St =

(
Ct − haCt,−1 − θdt

D
1+1/η
t

1 + 1/η

)γ

S1−γ
t−1

Γt = Ct − θdt
D

1+1/η
t

1 + 1/η
− θnt

(nt)
1+1/ζ

1 + 1/ζ

θdtD
1/η
t = ϕpjt

Yjt
Djt

j ∈ {mc, sc}

θitθdtD
1/η
t = ϕpit

It
Dit

pit
1− ϕ

= Qjt[1− S′
j(xjt)xjt − Sj(xjt)] + βθbEt

(
Γt+1

Γt

)−σ

g−σ
t+1Qj,t+1S

′
j(xj,t+1)(xj,t+1)

2 j ∈ {mc, sc, i}

Qjt = βθbtEt
(
Γt+1

Γt

)−σ

g−σ
t+1 [(1− δj(hj,t+1))Qj,t+1 +Rj,t+1hj,t+1] j ∈ {mc, sc, i}

Ct = [ω1−ρc
c Y ρc

mc,t + (1− ωc)
1−ρcY ρc

sc,t]
1/ρc

Yjt = p
−1/(1−ρc)
jt ωjCt j ∈ {mc, sc, i}

Ct = pmc,tYmc,t + psc,tYsc,t

δh(hjt)Qjt = Rjt, j ∈ mc, sc, i

Yjt = Aj(Djt)
ϕ(zjtg

−αk
t (hjtkjt)

αk(Njt)
αn − νj) j ∈ {mc, sc, i}

kj,t+1gt = (1− δj(hjt))kjt + [1− Sj(xjt)]Ijtgt j ∈ {mc, sc, i}

(1− ϕ)
Wjt

pjt
= αn

Yjt +AjD
ϕ
jtνj

njt
j ∈ {mc, sc, i}

Wjt

Rjt
=

αn

αk

hjtkjt
njt

j ∈ {mc, sc, i}

nct = nmct + nsct, nt = nct + nit, Dt = Dmct +Dsct +Dit

kt = kmct + ksct + kit, It = Imct + Isct + Iit
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log gt = (1− ρg) log g + ρg log gt−1 + e0g,t + e4g,t−4

log vt = ρf log vt−1 + e0v,t + e4f,t−4, v ∈ {θb, θd, θn, θi, zc, zI , µc, µi}, e4θn,t−4 = 0 ∀t

Appendix H. The forecast error variance decomposition for specific demand and

technology shocks

Here we decompose the variance decomposition of demand and technology shocks into the

contribution of its subcomponents. The main takeaway from Table H.10 is that the unan-

ticipated component of neutral search demand shocks matter the most overall. However, the

anticipated component of investment-specific search demand shocks is very important for the

relative price of investment and also matters a significant amount for investment and its labor

component.

Table H.10: Forecast error variance decomposition

eD eD,news eDI eDInews

Y 93.61 1.14 0.08 5.16

SR 92.91 1.06 0.11 5.92

I 77.04 0.85 0.35 21.76

pi 6.12 0.12 0.98 92.77

nc 80.37 1.76 0.21 17.66

ni 70.78 1.08 0.23 27.91

util 93.91 1.14 0.08 4.88

D 98.20 1.49 0.00 0.30

h 90.95 1.72 0.05 7.28

Table H.10: Contribution of components to forecast error variance decomposition of search shocks.

In a similar vein, H.11, dissects the various constituent elements of technology shocks. No-

tably, the least significant factors by a considerable margin are an unanticipated shock to the

stochastic trend growth or a news shock pertaining to investment-specific technological change.

Conversely, when considering the Solow residual and output, the most pivotal contributors are

news shocks associated with the stochastic trend growth and unanticipated shocks to stationary

neutral technology. However, both the anticipated and unanticipated components of stationary

neutral productivity shocks play a crucial role in elucidating variations in utilization.
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Table H.11: Forecast error variance decomposition

eg egnews eZ eZnews eZI eZInews

Y 4.30 33.78 35.27 19.91 6.50 0.24

SR 4.94 38.72 31.14 16.70 8.23 0.27

I 0.89 6.83 42.13 20.60 28.54 1.01

pi 0.01 0.07 23.26 15.94 57.85 2.86

nc 2.59 23.97 18.96 19.74 33.09 1.64

ni 1.75 16.13 20.72 19.43 39.37 2.60

util 0.22 4.27 39.98 33.81 20.19 1.53

D 1.94 23.11 42.21 26.15 6.17 0.42

h 0.51 3.03 46.53 41.13 8.16 0.64

Table H.11: Contribution of components to forecast error variance decomposition of technology shocks.

Appendix I. Estimation on artificial data and identification of parameters

To assess the identifiability of key parameters, we conduct an analysis employing artificial

data inspired by Schmitt-Grohé and Uribe (2012). This involves setting the parameters at

their posterior mean values and following the calibration strategy outlined in Section Appendix

C. We generate an artificial dataset comprising 223 observations for each observable variable.

Subsequently, we estimate the model using this artificial data, employing the same estimation

techniques as in the baseline model, and incorporating the same prior distributions.

Table I.12 plots the true value used in generating the artificial data alongside the 5th, 50th,

and 95th percentiles of the posterior distribution for each parameter value. We find that the

highest posterior density intervals usually contain and are often even centered around the true

parameter value. In particular, the posterior median for ϕ, 0.866, is very close to 0.864. The

parameters associated with search demand shocks ρD, ρDI , eD,−4, eDI,−4 are also well identified.

Interestingly, the persistence of stationary technology shocks is well-identified (true value 0.708

compared to posterior median 0.714) but that of permanent technology shocks substantially

less so (true value 0.435 compared to posterior median 0.243).
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Table I.12: Estimation on artificial data

Posterior distribution

Parameter True value Median 5% 95%

σ 1.903 1.810 1.601 2.215

ha 0.431 0.390 0.356 0.427

ζ 1.856 1.419 1.132 1.760

γ 0.305 0.307 0.268 0.349

ϕ 0.864 0.866 0.828 0.903

η 0.560 0.643 0.559 0.725

ξ 0.905 0.847 0.730 0.967

νR 0.346 0.303 0.216 0.369

σac 1.618 1.429 1.053 1.876

σai 0.567 0.455 0.309 0.608

Ψc 4.948 4.766 3.979 5.704

Ψi 4.910 3.642 2.751 4.331

θ 1.492 1.680 1.366 1.992

ρg 0.435 0.243 0.103 0.306

ρZ 0.708 0.714 0.598 0.830

ρZI 0.922 0.903 0.844 0.952

ρN 0.834 0.699 0.549 0.820

ρD 0.933 0.931 0.893 0.969

ρDI 0.995 0.967 0.942 0.999

ρb 0.861 0.719 0.577 0.873

ρµc 0.975 0.834 0.746 0.921

ρµi 0.981 0.930 0.892 0.972

eg 0.00277 0.00358 1.93e-07 0.00882

eg,−4 0.00843 0.00818 0.00232 0.0103

eZ 0.00440 0.00505 0.00393 0.00621

eZ,−4 0.00384 0.00388 0.00227 0.00531

eZI 0.0109 0.00992 0.00878 0.0111

eZI,−4 0.00252 0.00165 0.000100 0.00361

eN 0.00296 0.00215 0.000100 0.00380
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eD 0.0411 0.0353 0.0304 0.0406

eD,−4 0.00520 0.00425 0.000100 0.0111

eDI 0.00188 0.00310 0.000100 0.00707

eDI,−4 0.0192 0.0194 0.0173 0.0212

eb 0.00118 0.00250 0.000100 0.00558

eb,−4 0.00171 0.00170 0.000100 0.00384

eµc 0.00163 0.00206 0.000100 0.00496

eµc,−4 0.00163 0.00206 0.000100 0.00496

eµi 0.00222 0.00307 0.000100 0.00688

eµI,−4 0.00222 0.00307 0.000100 0.00688

Table I.12: We generate artificial data from the model with parameter values equal to the posterior mean of

the Bayesian estimation on the actual data, in tandem with the calibration strategy. We then use this artificial

data as observables in estimation. The posterior median, 5th percentile, and 95th percentile from the posterior

distribution are compared alongside the true values.

Appendix J. Estimation using cross-sectional evidence on price dispersion

Kaplan and Menzio (2016) emphasize the link between cross-sectional price dispersion of

identical goods and search frictions. BRS incorporate such information, alongside shopping

time, to calibrate the novel parameters ϕ and η.

Here we modify the baseline specification to match the microeconomic evidence on price

dispersion. To derive the relationship between prices and expenditure, consider a static economy

with J types of agents who differ in their consumption expenditure yj ∈ {1, . . . , J}. Given a

consumption price P = 1, aggregate expenditure satisfies
∑

j yj = C. There is a unit measure

of firms with production function f(k, n) = kαknαn . BRS show that all firms supply the same

capacity F .

Lemma 1. All firms supply the same capacity of consumption goods: F = zf(kc, nc)

Then conjecture that there are J different markets open. Let Dj and Tj be the aggregate

search effort and mass of firms in each submarket j. Each submarket has the same capacity F

but differ in the price-tightness pair (pj, qj). By lack of arbitrage, each submarket must have

the same expected profit π:
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pj =
π

F
q−ϕ
j =

π

F

(
Dj

Tj

)−ϕ

The matching function implies cj = Dϕ
j T

1−ϕ
j F . Hence, the income of a household is

yj = pjcj = πTj

Since the number of firms adds up to 1,
∫
Tjdj = 1, aggregate revenue equals aggregate expen-

diture: π =
∫
yjdj = C.

Hence, Tj = yj/C, so that

pj =
C

F

(
Dj

yj/C

)−ϕ

=
C1−ϕ

F
yϕj D

−ϕ
j (J.1)

Optimal search effort satisfies

θdd
1/η
j = ϕDϕ−1

j y1−ϕ
j F

Using dj = Dj and applying logs, we have

(1 + 1/η − ϕ) logDj = (1− ϕ) log yj + log

(
ϕF

θd

)
(J.2)

Substitute (J.2) into (J.1) to obtain

log pj = (1− ϕ) logC − logF +
ϕ

η(1− ϕ) + 1
log y − ηϕ

η(1− ϕ) + 1
log(ϕF/θd)

Hence, the search parameters can be linked to empirical moments using

m ≡ std(log(pj))

std(log(yj))
=

ϕ

η(1− ϕ) + 1
(J.3)

We use the same target as BRS. Kaplan and Menzio (2016) estimate cross-sectional standard

deviation of household price indices of 15% using the Kielts-Nielsen Consumer Panel Data.

Heathcote, Storesletten, and Violante (2010) estimate the standard deviation of log consumption

expenditures on services and nondurables equal to 0.524. Hence, m = 0.15/0.524 = 0.286. Thus,

with the value of m fixed, (J.3) characterizes a curve between ϕ and η. Given a draw η from

the posterior distribution, it pins down the value of ϕ.
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We thus drop ϕ from the set of estimated parameters and use (J.3) to obtain values of ϕ

given draws of η. The prior distribution of η is the same as the baseline.

Table J.13 reports the estimates of the structural parameters and shock processes related

to shopping effort. Most posterior means and probability bands are similar to the baseline,

but some important differences emerge. The posterior mean of η is 1.70, much higher than the

value 0.563 in the baseline. We can use (J.3) to map the posterior probability band of η to

ϕ. Doing so we obtain the tight interval (0.49, 0.56). Though this range is not as high as the

baseline estimates, it nevertheless indicates substantial evidence of goods market frictions, is

substantially higher than the calibrated value in BRS, and is very tight.

The posterior mean of γ, 0.595, significantly exceeds the baseline value of 0.317, and thus

makes preferences lean more closely toward KPR. The posterior mean of θ, 1.05 is significantly

lower than baseline value of 1.55, indicating more substitutability of labor between sectors. The

persistence parameters of shopping-effort shocks are similar.

Table J.13: Bayesian estimation of model with cross-sectional evidence on price dispersion

Prior Posterior

Dist. Mean Stdev. Mean Stdev. HPD inf HPD sup

σ beta 1.500 0.2500 1.464 0.1678 1.2235 1.7395

ha beta 0.500 0.2000 0.312 0.0199 0.2830 0.3422

ζ gamm 0.720 0.2500 1.827 0.1185 1.6420 1.9999

γ beta 0.500 0.2000 0.595 0.0564 0.5123 0.6973

η gamm 0.200 0.1500 1.698 0.2304 1.4060 2.1357

ξ gamm 0.850 0.1000 0.844 0.0748 0.7031 0.9416

νR beta 0.200 0.1000 0.403 0.0900 0.2912 0.5000

σac invg 1.000 1.0000 1.199 0.2720 0.7942 1.6163

σai invg 1.000 1.0000 0.514 0.1257 0.3185 0.7216

Ψc gamm 4.000 1.0000 3.478 0.8189 2.2389 4.9814

Ψi gamm 4.000 1.0000 3.731 0.7652 2.6089 4.8856

θ gamm 1.000 0.5000 1.052 0.6126 0.3357 1.8254

ρD beta 0.600 0.2000 0.933 0.0217 0.8980 0.9693

ρDI beta 0.600 0.2000 0.991 0.0080 0.9798 0.9999
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eD gamm 0.010 0.0100 0.033 0.0042 0.0236 0.0374

eD,−4 gamm 0.010 0.0100 0.011 0.0069 0.0001 0.0198

eDI gamm 0.010 0.0100 0.002 0.0017 0.0001 0.0049

eDI,−4 gamm 0.010 0.0100 0.026 0.0017 0.0231 0.0285

Table J.13: Posterior and prior distributions of model with cross-sectional evidence on price dispersion

Table J.14 describes the unconditional forecast error variance decomposition of the model

imposing the price dispersion target. There is a small drop in the role of shopping-effort shocks,

but they remain extremely important. The biggest effect is on labor in the consumption sector.

Discount-factor shocks play a much bigger role, at the expense of shopping-effort and wage-

markup shocks.

Table 7: Forecast error variance decomposition: imposing cross-sectional evidence on price

dispersion

Technology Labor Supply Shopping Effort Discount Factor Wage Markup

Y 43.49 0.65 53.87 1.77 0.22

SR 45.66 1.03 48.73 4.38 0.20

I 43.23 0.42 42.00 14.14 0.21

pi 56.63 0.04 38.60 2.53 2.20

nc 4.21 50.93 4.32 39.46 1.08

ni 19.21 5.85 17.34 37.65 19.95

util 17.82 0.29 78.95 2.81 0.12

D 4.77 0.09 94.87 0.26 0.01

h 39.13 0.58 55.56 4.59 0.14

Table J.14: Unconditional forecast error variance decomposition for variables in growth rates. Shocks are grouped

in respective categories. The model is identical to the baseline except that we impose the price-dispersion target

m = 0.286. We thus drop ϕ from the estimated parameters and instead recover it using (J.3) given a draw of η.
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Table J.15: Comparison of model with cross-sectional evidence on price dispersion

Data Baseline Price dispersion

LML − 4531.0 4505.9

∆ LML − 0 −25.1

Var(util)/Var(SR) − 0.79 0.62

std(Y) 0.87 1.63 1.77

std(utilND) 1.26 1.14 1.28

std(utilD) 2.27 3.00 2.44

std(nc) 0.57 0.53 0.54

std(ni) 1.94 1.8 1.80

Cor(C, I) 0.54 0.62 0.68

Cor(utilND, utilD) 0.75 0.57 0.63

Cor(nc, ni) 0.87 0.78 0.68

Cor(utilND, utilND,−1) 0.51 0.36 0.41

Cor(utilD, utilD,−1) 0.55 0.55 0.48

Table J.15: Comparison of log marginal likelihood, unconditional variance decomposition, and second moments.

The first column describes relevant empirical moments and the second column corresponds to the baseline model.

The third column presents estimates that imposes the price-dispersion target m = 0.286. We thus drop ϕ from

the estimated parameters and instead recover it using (J.3) given each draw of η.
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