Nonequilibrium dynamics of crystal lattices

Fabio Caruso

Computational Solid-State Theory group (cs2t.de) Institute of Theoretical Physics and Astrophysics University of Kiel

McGill University April 29th, 2021

Funded by

Deutsche
 Forschungsgemeinschaft
 German Research Foundation

Christian-Albrechts-Universität zu Kiel

The University of Kiel (founded in 1665)

F. Caruso - CAU Kiel

The Schrödinger equation:

$$\hat{\mathcal{H}}\Psi_{s}(r,R) = E_{s}\Psi_{s}(r,R)$$

...a single equation for the whole of matter

57 La Lanthanum 138.90547	58 Cerium 140.116	59 Praseodymium 140.90766	60 Nd Neodymium 144.242	61 Promethium (145)	62 Sm Samarium 150.36	Europium 151.964	64 Gd Gadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162.500	67 HO Holmium 164.93033	68 Erbium 167.259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
Ac	°Th	°₽a	⁹² U	^{⁰³} Np	°⁴ Pu	°⁵Am	°℃m	⁹⁷ Bk	°°Cf	^{••} Es	¹⁰⁰ Fm	™Md	No	Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

Molecules

The chemical universe database (GDB-17) [1]

10¹¹ entries

[1] J. Chem. Inf. Model. 52, 2864 (2012)

(Inorganic) Crystalline solids

The Karlsruhe Inorganic crystalstructure database (ICSD) [2]

200.000 entries

[2] icsd.fiz-karlsruhe.de

The paradigm of first-principles electronic-structure theory

 $\Psi_s(r,R)$ encodes all information (and all properties) about of a system of electrons and nuclei

Example: the H atom

$$\psi_{n\ell m}(r, heta,\phi) = \sqrt{\left(rac{2}{na_0^*}
ight)^3 rac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-
ho/2}
ho^\ell L_{n-\ell-1}^{2\ell+1}(
ho) Y_\ell^m(heta,\phi)$$

Any other material: too complex! -

Approximations are needed!

F. Caruso - CAU Kiel

The paradigm of first-principles electronic-structure theory

The Born-Oppenheimer approximation:

$$\Psi_s(r,R) \simeq \psi_{\nu}(r;R)\chi_{\nu s}(R)$$

electrons (fixed nuclei)

 $\hat{H}^{\rm el}\,\psi_{\nu}(r) = E_{\nu}^{\rm el}\psi_{\nu}(r)$

Density functional theory (DFT):

):
$$n(\mathbf{r}) \Leftrightarrow \Psi$$

nuclei (fixed electrons)

$$\hat{H}^{\mathrm{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

Hohenberg and Kohn, Phys. Rev. (1964) Kohn and Sham, Phys. Rev. (1965)

Electron band structure (Copper)

Figs.: Giustino, Materials Modelling using Density Functional Theory (2014)

Λ

Wavevector

Г

 Δ

Exp.: [1] Courths, and Hüfner, Phys. Rep. 112, 53 (1984) [2] Warren et al., Phys. Rev. 158, 805 (1967)

X

20

Г

Σ

Charge transport:

- Ohm's law: dissipation of electronic currents
- Conventional superconductivity: dissipationless conduction

Energy conversion:

- Phonon assisted optical absorption (silicon photovoltaic)
- Time-scales of hot-carrier dynamics and recombination
- Thermoelectricity (Thermal conductivity)

Designing and understanding new functions of matter

- Electron-phonon quasiparticles (polarons)
- Ultrafast dynamics of electrons and phonons

Electron-phonon interactions in solids

Nuclei at equilibrium

Atomic displacement due to a phonon

Potential: V

Perturbed potential: $V + \Delta_{\mathbf{q}\nu} V$ (t)

Modern theory of the electron-phonon interaction

Many-body perturbation theory:	V + $\Delta_{{f q} u}V$ (t)							
electronic pote	ential phonon perturbation							
Description	Expression							
Electronic charge density	$\langle \hat{n}_{\rm e}(1) \rangle = -i\hbar \sum_{\sigma_1} G(11^+)$							
Nuclear charge density	$\langle \hat{n}_{n}(\mathbf{r}t) \rangle = n_{n}^{0}(\mathbf{r}) - (i\hbar/2) \sum_{\kappa p,\alpha\alpha'} Z_{\kappa} \partial^{2} \delta(\mathbf{r} - \boldsymbol{\tau}_{\kappa p}^{0}) / \partial r_{\alpha} \partial r_{\alpha'} D_{\kappa\alpha p,\kappa\alpha' p}(t^{+}t)$							
Total electrostatic potential	$V_{\text{tot}}(1) = \int d2v(12) [\langle \hat{n}_{\text{e}}(2) \rangle + \langle \hat{n}_{\text{n}}(2) \rangle]$							
Equation of motion, electrons	$[i\hbar\partial/\partial t_1 + (\hbar^2/2m_e)\nabla^2(1) - V_{\text{tot}}(1)]G(12) - \int d3\Sigma(13)G(32) = \delta(12)$							
Equation of motion, nuclei	$\sum_{\kappa''\alpha''p''} [M_{\kappa}\omega^2 \delta_{\kappa\alpha p,\kappa''\alpha''p''} - \Pi_{\kappa\alpha p,\kappa''\alpha''p''}(\omega)] D_{\kappa''\alpha''p'',\kappa'\alpha'p'}(\omega) = \delta_{\kappa\alpha p,\kappa'\alpha'p'}(\omega)$							
Electron self-energy	$\Sigma(12) = i\hbar \int d(34)G(13)\Gamma(324)[W_{\rm e}(41^+) + W_{\rm ph}(41^+)]$							
Screened Coulomb, electrons	$W_{\rm e}(12) = v(12) + \int d(34)v(13)P_{\rm e}(34)W_{\rm e}(42)$							
Electronic polarization	$P_{\rm e}(12) = -i\hbar \sum_{\sigma_1} \int d(34) G(13) G(41^+) \Gamma(342)$							
Electronic dielectric matrix	$\epsilon_{\rm e}(12) = \delta(12) - \int d(3)v(13)P_{\rm e}(32)$							
Vertex	$\Gamma(123) = \delta(12)\delta(13) + \int d(4567) [\delta\Sigma(12)/\delta G(45)] G(46)G(75)\Gamma(673)$							
Screened Coulomb, nuclei	$W_{\rm ph}(12) = \sum_{\kappa\alpha p, \kappa'\alpha' p'} \int d(34) \epsilon_{\rm e}^{-1}(13) \nabla_{3,\alpha} V_{\kappa}(\mathbf{r}_3 - \boldsymbol{\tau}_{\kappa p}^0)$							
	$\times D_{\kappa\alpha p,\kappa'\alpha'p'}(t_3t_4)\epsilon_{\rm e}^{-1}(24)\nabla_{4,\alpha'}V_{\kappa'}(\mathbf{r}_4-\boldsymbol{\tau}_{\kappa'p'}^0)$							
Phonon self-energy	$\Pi_{\kappa\alpha p,\kappa'\alpha'p'}(\omega) = \sum_{\kappa''p''} Z_{\kappa} Z_{\kappa''}(\partial^2/\partial r_{\alpha}\partial r'_{\alpha'})$							
	$\times \left[\delta_{\kappa'p',\kappa''p''}W_{\mathrm{e}}(\mathbf{r},\mathbf{r}',\omega) - \delta_{\kappa p,\kappa'p'}W_{\mathrm{e}}(\mathbf{r},\mathbf{r}',0)\right]_{\mathbf{r}=\boldsymbol{\tau}_{\kappa p}^{0},\mathbf{r}'=\boldsymbol{\tau}_{\kappa''p''}^{0}}$							

1. The concept of quasi-particles

[1] L. Hedin, et al., Phys. Rev. B 58, 15565 (1998)

Polarons in angle-resolved ph OXFORD spectroscopy

Polaron = electron (hole) dressed by a phonon cloud Polarons at the 2DEG at the SrTiO₃(001) surface: conduction 0.0 band 2.9×10^{13} -0.1 Energy (eV) 0.0 1st polaron -0.2 satellite $\hbar\Omega_{104}$ $-E_{\mathsf{F}}$ (eV) $\hbar \Omega_{
m LO4}$ -0.3 2nd polaron -0.2 satellite **ti0**2 $\hbar \varOmega_{\rm LO4}$ -0.4 Г 0.1x - Momentum 0.45 Z -0.4 -0.3 -0.3 0.0 0.0 0.3 -0.3 Verdi, FC, Giustino, Nature k_{v} (Å⁻¹) k_{v} (Å⁻¹) Comm. 8, 15769 (2017) Wang et al., Nature Mater. 15, 835 (2016) n=9.3 x 10¹⁷ cm⁻³ a 0.1 Riley, FC, Verdi, et al. 0.0 Nature Comm. 9, 2305 -0.1 E-E_F (eV) Conduction -0.2 (2018)bands doping $k-k_{x}(A^{-1})$ -0.3 E-0.4 0.0 0.4 -0.4 k-k_× (Å⁻¹) 0.0 -0.5 -0.6 REFERENCE Wanda Andreoni Sidney Yip Editors k_x FC, Verdi, Giustino, Valence Handbook of $k_{\rm V}$ Chapter in Handbook of Materials bands Materials Modeling (2018) Modeling F. Caruso - CAU Kiel

Nonequilibrium dynamics in two dimensions

- Reduced dielectric screening
- Quantum-confinement in 2D
- Strong light-matter interactions
- Non-trivial topological properties

- Pump-probe spectroscopies
- Electron and phonon dynamics
- Light-driven phenomena

Properties on-demand using light pulses

Nonequilibrium dynamics in two dimensions

Beyer, Bauer, et al., PRL 123, 236802 (2019)

Otto, Siwick, et al., arXiv:1912.03559 (2020)

What is the influence of phonons and electron-phonon interactions on the nonequilibrium dynamics?

F. Caruso - CAU Kiel

TiSe₂

Ultrafast dynamics from first principles

Which level of theory?

Nonequilibrium Green's functions (& DMFT)

Time-dependent density-function theory

Time-dependent Boltzmann equation

Quantum Master equation

Molecular dynamics / Path integrals

Non-thermal lattice models

Check-list:

- Electron / phonon dynamics
- Electron-phonon coupling
- Full momentum resolution

Equilibrium and nonequilibrium regimes in a quantum system

Distribution function (occupation number):

 $f_{n\mathbf{k}}^{\sigma}$ Number of **electrons** in band *n* with momentum \mathbf{k}

$$\mathbf{q}
u$$
 Number of **phonons** in branch v with momentum \mathbf{q}

Equilibrium:

Fermi-Dirac statistics:

Bose-Einstein statistics:

$$f_{n\mathbf{k}}^{0}(\mu, T) = [e^{(\varepsilon_{n\mathbf{k}} - \mu)/k_{\rm B}T} + 1]^{-1}$$
$$n_{\mathbf{q}\nu}^{0}(T) = [e^{\hbar\omega_{\mathbf{q}\nu}/k_{\rm B}T} - 1]^{-1}$$

n

F. Caruso - CAU Kiel

The Boltzmann equation in solid-state physics

Books:

Ziman, Electrons and phonons, Oxford Universisty Press (1960)

Hang, Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer (1996) Bonitz, Quantum Kinetic Theory (1998)

Charge and thermal Transport:

Poncé, Li, Reichard, Giustino, Rep. Prog. Phys. 83, 036501 (2019) Li, Carrete, Katcho, Mingo, Comp. Phys. Comm.185, 1747 (2014) Mizokami, Togo, Tanaka Phys. Rev. B 97, 224306, (2018) Chaput, Phys. Rev. Lett 110, 265506 (2013) Togo, Chaput, Tanaka, Phys. Rev. B 91, 094306 (2015)

Ultrafast dynamics:

Sadasivam, Chan, Darancet, Phys. Rev. Lett. 119, 136602 (2017) Bernardi, Eur. Phys. J. B 89, 239 (2016) Jhalani, Zhou, Bernardi, Nano Letters 17, 5012 (2017) FC, J. Phys. Chem. Lett. 12, 1274 (2021)

Time-dependent Boltzmann equation

F. Caruso - CAU Kiel

First-principles approach to electron and lattice dynamics

$$\begin{aligned} \frac{\partial f_{n\mathbf{k}}}{\partial t} &= I_{n\mathbf{k}}^{\mathrm{e-ph}}[f,n] \\ \frac{\partial n_{\mathbf{q}\nu}}{\partial t} &= I_{\mathbf{q}\nu}^{\mathrm{e-ph}}[f,n] + I_{\mathbf{q}\nu}^{\mathrm{ph-ph}}[n] \end{aligned}$$

Boltzmann equation for the electron and phonon distribution function

Poncé, et. al, Rep. Prog. Phys. (2019)

F. Caruso - CAU Kiel

Ultrafast dynamics from first principles

 $\frac{\partial f_{n\mathbf{k}}}{\partial t} = I_{n\mathbf{k}}^{\mathrm{e-ph}}[f, n]$

WANNIER90

Wannier-function interpolation

G. Pizzi et al., J. Phys. Cond. Matt. 32, 165902 (2020)

Coupled-dynamics of electrons and phonons

Density functional theory

P. Giannozzi et al.,

J. Phys.: Condens. Matter 29, 465901 (2017)

Electron-phonon coupling

S. Poncé et al., Comp. Phys. Comm. (2017)

Third-order force constant

W. Li et al., Comp. Phys. Comm. 185, 1747 (2014)

Nonequilibrium electron dynamics in monolayer MoS₂

FC, J. Phys. Chem. Lett. 12, 1274 (2021)

Nonequilibrium electron dynamics

Nonequilibrium phonon dynamics

FC, J. Phys. Chem. Lett. 12, 1274 (2021)

Nonequilibrium phonon dynamics

F. Caruso - CAU Kiel

Regimes of nonequilibrium phonon dynamics

Black phosphorus

Experiments: FHI Berlin

Helene Seiler

Ralph Ernstorfer

 q_y

F. Caruso - CAU Kiel

Diffraction from a lattice

example: Cubic lattice

Scattering intensity for a perfect lattice:

$$I(\mathbf{q}) = |A(\mathbf{q})|^2 \simeq \delta_{\mathbf{q},\mathbf{G}}$$

Reciprocal lattice vector

Diffraction from a vibrating lattice

Zero-phonon term:

$$\langle I_0(\mathbf{S}) \rangle_T = N_p^2 |f_0|^2 \exp(-2W_T) \delta_{\mathbf{S},\mathbf{G}}$$

Debye-Waller factor:

$$2W_T = \frac{1}{M_{\kappa}N_p} \sum_{\mathbf{q}\nu} \left[\sum_{\alpha\alpha'} S_{\alpha} S_{\alpha'} e^{\nu}_{\kappa\alpha}(\mathbf{q}) e^{\nu*}_{\kappa\alpha'}(\mathbf{q}) \right] E_{\mathbf{q}\nu,T}$$

One-phonon (dynamical) structure factor

$$\langle I_{1}(\mathbf{S}, E) \rangle_{T} = |f_{0}|^{2} \exp(-2W_{T}) \frac{\hbar^{2} N_{p}}{2M_{\kappa}} \sum_{\mathbf{q}\nu} \left[\sum_{\alpha\alpha'} S_{\alpha} S_{\alpha'} e_{\kappa\alpha'}^{\nu}(\mathbf{q}) e_{\kappa\alpha'}^{\nu*}(\mathbf{q}) \right] \frac{1}{\hbar \omega_{\mathbf{q}\nu}}$$
(16)

$$\times \left[\delta(\mathbf{S} + \mathbf{q}) n_{\mathbf{q}\nu,T} \delta(E + \hbar \omega_{\mathbf{q}\nu}) + \delta(\mathbf{S} - \mathbf{q}) (n_{\mathbf{q}\nu,T} + 1) \delta(E - \hbar \omega_{\mathbf{q}\nu}) \right].$$

 First-principles approach to Femto-second electron diffuse scattering (FEDS)

Non-equilibrium lattice dynamics in bP from first-principles

Non-equilibrium lattice dynamics in bP from first-principles

Ultrafast dynamics of electrons and phonons

FC, Novko, Draxl, Phys. Rev. B 101 035128 (2020) FC,

Nonequilibrium lattice dynamics in MoS_2

J. Phys. Chem. Lett. 12, 1274 (2021)

Nonequilibrium carrier

dynamics in graphene

Seiler, Zahn, Zacharias, et al. arXiv (2020)

Signatures of nonequilibrium lattice dynamics in phosphorene

S

F. Caruso - CAU Kiel

THEORY

Humboldt-Universität zu Berlin

- Claudia Draxl
- Pasquale Pavone
- Ignacio Gonzales-Oliva
- Maximilian Schebek
- Sebastian Tillak

Cyprus University of Technology

• Marios Zacharias

Institut of Physics, Zagreb

• Dino Novko

University of Kiel

• Christoph Emeis

EXPERIMENTS

Fritz Haber Institute, Berlin

- Helene Seiler
- Daniela Zahn
- Ralph Ernstorfer

EPW:

S. Poncé et al., Comp. Phys. Comm. (2017)

Quantum Espresso:

P. Giannozzi et al., J. Phys.: Condens. Matter 29, 465901 (2017)

Wannier90: G. Pizzi et al., J. Phys. Cond. Matt. 32, 165902 (2020)

ShengBTE: W. Li et al., Comp. Phys. Comm. 185, 1747 (2014)

DFG Deutsche Forschungsgemeinschaft

mail: caruso@physik.uni-kiel.de
web: cs2t.de