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Abstract

U.S. households’ housing price expectations deviate systematically from rational
expectations: (i) expectations are updated on average too sluggishly; (ii) following
housing price changes, expectations initially underreact but subsequently overreact;
(iii) households are overly optimistic (pessimistic) about capital gains when the
price-to-rent ratio is high (low). We show that weak forms of capital gain
extrapolation allow to simultaneously replicate the behavior of housing prices and
these deviations from rational expectations as an equilibrium outcome. Embedding
capital gain extrapolation into a sticky price model featuring a lower-bound
constraint on nominal interest rates, we show that lower natural rates of interest
increase the volatility of housing prices and thereby the volatility of the natural rate
of interest. This exacerbates the relevance of the lower bound constraint and causes
the optimal inflation target to increase strongly as the natural rate falls.
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1 Introduction

The large and sustained booms and busts in housing prices in advanced economies are often
attributed to households’ holding excessively optimistic or pessimistic beliefs about future
housing prices (Piazzesi and Schneider (2006), Kaplan, Mitman, and Violante (2020)). This
view is supported by a nascent literature that documents puzzling facts about the behavior
of housing price expectations. Survey measures of expected future housing prices have been
found to be influenced by past housing price changes, but appear to underreact to these
changes, and they also miss the tendency of housing prices to mean revert over time (Kuchler
and Zafar (2019), Case, Shiller, and Thompson (2012), Ma (2020) and Armona, Fuster, and
Zafar (2018)).

Documenting in which ways households’ housing price expectations deviate from the
rational expectations benchmark is an important task but is in itself uninformative about
how important the observed deviations are for economic outcomes in housing markets and
for the conduct of monetary policy. Understanding these features requires a structural
equilibrium model that quantitatively replicates how households’ expectations deviate from
rational expectations. Constructing such a model, calibrating it to the behavior of household
beliefs in survey data, and understanding its implications for the optimal design of monetary
policy is the main objective of the present paper. To the best of our knowledge, it is the
first paper pursuing this task.

We begin our analysis by comprehensively quantifying the dimensions along which
households’ housing price expectations deviate from the full-information rational
expectations benchmark. To this end, we consider the Michigan Survey of Consumers,
which provides the longest available time series of quantitative housing price expectations
for the United States, covering the years 2007-2021.

We document three dimensions along which household expectations deviate from rational
expectations. First, expectations about future housing prices are revised too sluggishly over
time, a feature that housing price expectations share with other household expectations
(Coibion and Gorodnichenko (2015)). Second, households’ capital gain expectations covary
positively with market valuation, i.e., the price-to-rent ratio, while actual future capital
gains covary negatively with market valuation. We show that the difference is striking,
highly statistically significant, and in line with findings on investor expectations in stock
markets (Greenwood and Shleifer (2014), Adam, Marcet, and Beutel (2017)).1 Third, in a
dynamic sense, households’ capital gain expectations initially underreact to observed capital
gains, i.e., households are too pessimistic in the first few quarters following a positive capital
gain, but later on overreact, i.e., households hold too optimistic expectations after about
twelve quarters. The pattern of initial underreaction and subsequent overreaction is similarly
present in other macroeconomic expectations, see Angeletos, Huo, and Sastry (2020).

Equipped with these facts, we construct first a simple housing model with optimizing
households that hold subjective beliefs about housing price behavior. Bayesian belief
updating implies that households weakly extrapolate past capital gains into the future.
The model reproduces – as an equilibrium outcome – important patterns of the behavior of

1For stock markets, Adam, Matveev, and Nagel (2021) show that this cannot be explained by investors
reporting risk-adjusted expectations.
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U.S. housing prices, in particular, the large and protracted swings in the price-to-rent ratio
over time, as well as the three dimensions mentioned above along which household
expectations deviate from the rational expectations benchmark. The quantitative fit is
surprisingly good, despite the simplicity of the model.

The simple model also offers two important insights. First, it shows that the standard
deviation for the price-to-rent ratio would be much lower in the presence of rational housing
expectations. This suggests that the observed volatility of housing prices is to a large extent
due to the presence of subjective beliefs. This lends credence to the view that deviations
from rational expectations substantially contribute to booms and busts in housing markets.

Second, the simple model connects the secular decline in natural rates of interest with
higher volatility of housing prices. Specifically, the model predicts that lower real interest
rates imply larger effects of belief fluctuations on equilibrium housing prices. This prediction
does not emerge in the presence of rational housing price expectations, but is consistent with
the data. We show that in a number of advanced economies, including the United States,
the volatility of housing prices has increased considerably at the same time as the level of
the natural rate of interest has fallen.

We then seek to understand the monetary policy implications generated by a setting
where households (weakly) extrapolate capital gains into the future. We are particularly
interested in the optimal policy response to increased housing price volatility that is induced
by falling natural rates of interest in a setting where policy rates cannot move into negative
territory. To this end, we introduce capital gain extrapolation into an otherwise standard
New Keynesian model featuring a housing sector and a lower bound constraint on nominal
interest rates.

The sticky-price model shares the implications for housing price behavior and household
beliefs with the simpler model considered before and introduces subjective housing beliefs in
a way that monetary policy is unable to manipulate household beliefs to its own advantage.
The latter allows for a meaningful discussion of Ramsey optimal monetary policy in the
presence of subjective beliefs. Household and firm expectations about variables other than
housing prices are assumed rational and all actors maximize utility under their (subjective)
belief measure.

To gain analytic insights, we derive a linear-quadratic approximation to the optimal
policy problem and show how it is affected by the presence of subjective housing beliefs. We
find that housing price gaps, i.e., a deviation of housing prices from their efficient level, affect
the economy via two channels. First, inefficiently high housing prices, driven by capital gain
optimism, give rise to negative cost-push terms in the Phillips curve.2 This feature allows
the model to potentially generate a non-inflationary housing boom. Yet, a second channel is
more important: rising housing price volatility increases the volatility of the natural rate of
interest. Since increased housing price volatility is itself triggered by a fall in the average level
of the natural rate, this dramatically exacerbates the lower-bound problem for a monetary
policy authority confronted with falling natural rates.

The natural rate is affected by housing prices, because higher housing prices make it
optimal to allocate more resources to housing investment. This exerts positive pressure on

2Conversely, inefficiently low housing prices, driven by capital gain pessimism, cause positive cost-push
terms.
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the output gap and counteracting these – so as to keep the output gap stable – requires policy
to increase the real interest rate. Under rational expectations, housing prices never deviate
from their efficient value, so that policy never has to work against inefficient investment
pressures. With rational expectations, the volatility of the natural rate is thus independent
of the average level of the natural rate.

These contrasting predictions of the model under rational and subjective housing beliefs
also lead to rather different policy messages on how the optimal inflation target, i.e., the
average inflation rate implied by optimal monetary policy, should respond to a fall in the
natural rate of interest. Under rational expectations, the optimal inflation target is nearly
invariant to the average level of the natural rate.

In the presence of capital gain extrapolation, the optimal inflation target increases
considerably in response to a fall in the average natural rate. This is due to the increased
volatility in the natural rate and cost-push shocks, which causes the lower bound on the
nominal rate to become more restrictive. A more restrictive lower bound forces monetary
policy to rely more strongly on promising future inflation in order to lower the real interest
rate. This increases the average inflation rate under optimal policy. For our calibrated
model, we find that the optimal inflation target should increase approximately by one third
of a percent in response to a one percent fall in the natural rate with the increase becoming
non-linear for very low levels of the natural rate.

We also investigate the optimal policy response to housing demand shocks. While
inflation and the output gap do not respond to these shocks under rational expectations,
capital gains induced by housing demand shocks get amplified by capital gain
extrapolation and thereby generate persistent housing price gaps to which monetary policy
optimally responds. Housing price gaps, however, generate opposing effects. On the one
hand, inefficiently high housing prices generate negative cost-push pressures, which calls for
a decrease in the policy rate; on the other hand, inefficiently high housing prices trigger a
housing investment boom, which puts upward pressure on the output gap. Counteracting
this second effect requires hiking policy rates.

In our calibrated model, the second effect quantitatively dominates. Optimal monetary
policy thus ‘leans against’ housing price movements, but the optimal strength of the
reaction depends on the direction of the shock. Following a positive housing preference
shock, the increase in the interest rate (nominal and real) is more pronounced than the
interest rate decrease following a negative housing demand shock. The presence of the
lower-bound constraint thus attenuates the degree to which monetary policy leans against
negative housing demand shocks.

We also consider whether macroprudential policies could address the housing market
inefficiencies generated by capital gain extrapolation. We do so by considering housing taxes
that might be levied on households in order to insulate monetary policymakers from the
fluctuations in the housing price gap. We find that the required taxes would have to be large
and very volatile. For our calibrated model, taxes must often exceed 20% of the rental value
of housing per period and also often require equally sized or even larger housing subsidies.
It appears somewhat unlikely that any of the existing macroprudential tools are capable
of generating effects of such magnitude. And to the best of our knowledge, none of the
available macroprudential tools allows subsidizing private sector behavior. Less aggressive
tax policies turn out to be considerably less effective in bringing down the volatility of the
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housing price gap. This suggests that macroprudential policies are unable to substantially
reduce the monetary policy trade-offs arising from subjective housing price expectations.

This paper is related to work by Andrade, Gaĺı, Le Bihan, and Matheron (2019, 2021)
who study how the optimal inflation target depends on the natural rate of interest in a
setting with a lower bound constraint. In line with our findings, they show that an increase
in the inflation target is a promising approach to deal with the lower-bound problem. While
their work considers optimized Taylor rules in a medium-scale sticky price model without a
housing sector and rational expectations, the present paper studies Ramsey optimal policy
in a model featuring a housing sector and subjective housing expectations.

A number of papers consider Ramsey optimal policy in the presence of a lower-bound
constraint, but also abstract from housing markets and the presence of subjective beliefs
(Eggertsson and Woodford (2003), Adam and Billi (2006), Coibion, Gorodnichenko, and
Wieland (2012)). This literature finds that lower bound episodes tend to be short and
infrequent under optimal policy, so that average inflation is very close to zero under optimal
policy. The present paper shows that this conclusion is substantially altered in the presence
of subjective housing price expectations.

Optimal monetary policy with subjective beliefs has previously been analyzed in Caines
and Winkler (2021) and Adam and Woodford (2021). These papers abstract from the lower-
bound constraint and consider different belief setups that are not calibrated to replicate
patterns of deviations from rational housing price expectations as observed in survey data.3

We show that taking into account the existence of a lower-bound constraint on nominal rates
is quantitatively important for understanding how the optimal inflation target responds to
lower natural rates.

The rest of the paper is structured as follows. Section 2 documents how survey
expectations about future housing prices deviate from rational expectations. Section 3
presents a simple housing model in which households extrapolate capital gains. It shows
how this simple model can jointly replicate in equilibrium the behavior of housing prices
and the pattern of deviations from rational expectations. Section 4 then presents the full
housing model with sticky prices, subjective housing beliefs, and a lower-bound constraint
on nominal rates. Section 5 derives a quadratic approximation to the monetary policy
problem, which allows obtaining important analytic insights into the new economic forces
arising from the presence of subjective housing price beliefs. We calibrate the model in
Section 6 and present quantitative results about the optimal inflation target and the
optimal policy response to housing shocks in Section 7. Section 8 discusses
macroprudential policies and Section 9 concludes.

2 Cyclical Properties of Housing Price Expectations

This section documents that households’ housing price expectations deviate in systematic
ways from the full-information rational expectations (RE) benchmark. We consider three
rationality tests that have recently been proposed in the literature (Coibion and

3Adam and Woodford (2021) consider ‘worst-case’ belief distortions, while Caines and Winkler (2021)
consider a setting with ‘conditionally model-consistent beliefs’. Both setups generate deviations from rational
expectations for variables other than housing prices.
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Gorodnichenko (2015), Adam, Marcet, and Beutel (2017) and Angeletos, Huo, and Sastry
(2020)). These tests cover different dimensions along which subjective expectations deviate
from RE.

We measure housing prices using the S&P/Case-Shiller U.S. National Home Price Index
and let qt denote the quarterly average of the monthly housing price index. We consider
both nominal and real housing prices with real housing prices being obtained by deflating
nominal housing prices with the CPI.4,5

Expectations about housing capital gains are taken from the Michigan household
survey. The survey provides subjective expectations about nominal four-quarter-ahead
housing price growth, EPt [qt+4/qt], for the period 2007-2021. The survey also provides
housing price growth expectations over the next five years. We focus on the shorter horizon
because these expectations determine housing prices according to our model. The shorter
horizon also allows performing a dynamic decomposition of forecast errors over time in
response to realized capital gains.6

We consider both mean and median household expectations.7 When considering real
housing price expectations, we deflate the nominal mean (median) capital gain expectations
with the mean (median) inflation expectation over the same period, as obtained from the
Michigan survey.8

Sluggish Updating About the Expected Housing Price Level. We start by
documenting that the mean/median household expectation about the future level of housing
prices is updated too sluggishly. This can be tested following the approach of Coibion and
Gorodnichenko (2015), which involves considering regressions of the form

qt+4 − EPt [qt+4] = aCG + bCG ·
(
EPt [qt+4]− EPt−1 [qt+3]

)
+ εt. (1)

The regression projects forecast errors about the future housing price level on past forecast
revisions. Under the RE hypothesis, information that is contained in agents’ information
set, i.e., past forecasts and their revisions, should not predict future forecast errors (H0 :
bCG = 0).

We estimate equation (1) for nominal and real capital gains, using mean and median
expectations, respectively. Expectations of the future house price level are computed as

4The simplified model in the next section makes predictions about real housing prices only, while the
survey data contains information about nominal capital gain expectations. This leads us to consider nominal
and real housing prices.

5We use the “Consumer Price Index for All Urban Consumers: All Items in U.S. City Average”obtained
from FRED.

6Data limitations make such a decomposition difficult for five-year-ahead forecasts: with only 15 years
of data, the dynamic decompositions become largely insignificant. Appendix A.1 shows, however, that all
other patterns documented below are equally present in five-year-ahead expectations.

7Analyzing the dynamics of individual expectations over time is difficult because households in the
Michigan survey are sampled at most twice. In general, cross-sectional disagreement between households
might partly reflect heterogeneous information on the part of households, see Kohlhas and Walther (2021).

8As is well-known, these inflation expectations feature an upward bias relative to actual inflation
outcomes. This, however, will not be the source of rejection of the RE hypothesis: all our tests focus
on the cyclical properties of capital gain expectations and eliminate mean differences between forecasts and
realizations using appropriate regression constants that will not be used in our rationality tests.
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Table 1: Sluggish adjustment of housing price expectations

Mean Expectations Median Expectations
Nominal Housing Prices

b̂CG 2.22∗∗∗ 2.85∗∗∗

(0.507) (0.513)
Real Housing Prices

b̂CG 2.00∗∗∗ 2.47∗∗∗

(0.332) (0.366)

Notes: This figure shows the empirical estimates of regression (1) for nominal and real housings price
and considers mean and median expectations. The reported standard errors are robust with respect to
heteroskedasticity and serial correlation (Newey-West with four lags). Significance levels: ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.1.

EPt [qt+4] = EPt [qt+4/qt] qt, where EPt [qt+4/qt] denotes the capital gain expectations from the
Michigan survey and qt the S&P/Case-Shiller Index.9

Table 1 reports the estimated bCG from regression (1). We find that b̂CG > 0, which is
inconsistent with the RE hypothesis. The regression coefficient is positive and statistically
significant at the 1% level in all considered specifications. This implies that the mean/median
agent updates beliefs too sluggishly: future realizations move (on average) by more than
what is suggested by past forecast revisions. The magnitude of the estimates is also large
in economic terms: a coefficient estimate of two suggests that forecast revisions should
approximately be three times as strong than they actually are.

Overall, sluggish belief updating is consistent with previous findings on the behavior of
survey expectations about output, inflation and unemployment (Coibion and Gorodnichenko
(2015), Angeletos, Huo, and Sastry (2020), Kohlhas and Walther (2021)). Furthermore,
Bordalo, Gennaioli, Ma, and Shleifer (2020) provide evidence of sluggish belief adjustment
in consensus forecasts for other housing variables, such as residential investment and new
housing starts.

Appendix A.2 shows that our findings are robust to using an instrumental-variable
approach for estimating regression (1), in which forecast revisions are instrumented with
monetary policy shocks obtained via high-frequency identification. Appendix A.3 shows
that similar results emerge when using capital gains and expected capital gains in equation
1 instead of the level and expected level of the housing price.

Opposing Cyclicality of Actual and Expected Capital Gains. Our second test
documents the different cyclicality of actual and expected capital gains in housing markets.
Differences between the cyclicality of actual and expected capital gains have previously been
documented for stock markets, where actual and expected stock market capital gains covary
differently with the price-to-dividend ratio (Greenwood and Shleifer (2014), Adam, Marcet,
and Beutel (2017)). We consider here the cyclicality of expected and actual capital gains in

9When considering real housing prices, nominal capital gain expectations from the Michigan survey are
deflated using the subjective (mean or median) inflation expectations from the Michigan survey.
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Table 2: Cyclicality of expected vs. actual capital gains

bias (in %) p-value
ĉ (in %) ĉ (in %) −E(ĉ− ĉ) H0 : c = c

Nominal Housing Prices
Mean Expectations 0.033 -0.102 0.006 0.000

(0.008) (0.007)
Median Expectations 0.014 -0.102 0.009 0.000

(0.001) (0.007)

Real Housing Prices
Mean Expectations 0.030 -0.113 -0.003 0.000

(0.017) (0.009)
Median Expectations 0.010 -0.113 0.006 0.000

(0.004) (0.009)

Notes: ĉ is the estimate of c in equation (2) and ĉ the estimate of c in equation (3). The Stambaugh (1999)
small sample bias correction is reported in the second-to-last column and the last column reports the p-values
for the null hypothesis c = c. Newey-West standard errors using four lags are in parentheses.

the housing market with the price-to-rent ratio PR:

EPt

[
qt+4

qt

]
= a+ c · PRt−1 + ut (2)

qt+4

qt
= a + c · PRt−1 + ut. (3)

The rational expectations hypothesis implies H0 : c = c, whenever the agents’ information
set contains the past price-to-rent ratio as an observable.10 Since the predictor variable used
on the right-hand side of the preceding regressions equations is highly persistent, we correct
for small sample bias in the coefficient estimates (Stambaugh (1999)).11

Table 2 reports the regression results. It shows that expected capital gains are positively
associated with the PR-ratio, while realized capital gains are negatively associated. Expected
capital gains are pro-cyclical, i.e., are high when market valuation is high, while realized
capital gains are counter-cyclical, i.e., are low when market valuation is high. This pattern
of is akin to the one documented in stock markets.

Quantitatively, the results imply that a two standard deviation increase of the PR-ratio by
15.5 units increases the mean household expectations about four-quarter-ahead real capital
gains by around 0.5%. Actual four-quarter ahead capital gains, however, fall by around
1.5%, so that the forecast error is approximately 2%.

10In the regressions, we use the lagged PR-ratio, PRt−1, instead of the current value, because the PR-ratio
is computed using the average price over a quarter. In Adam, Marcet, and Beutel (2017) the price-to-dividend
ratio was computed using the beginning of quarter stock price, which allowed using the current value in the
regression.

11The small sample bias correction in Table 2 follows the same approach as the one in Table 1A in Adam,
Marcet, and Beutel (2017).
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Figure 1: Dynamic responses to a realized capital gain

(a) Cumulative Capital Gains (b) Capital Gain Forecast Errors

Notes: Panel (a) shows the dynamic response of cumulative real capital gains at horizon h to a one standard
deviation innovation in the housing capital gain. Panel (b) reports the dynamic response of housing-price
forecast errors at horizon h of one-year ahead expectations to a one standard deviation innovation in the
housing capital gain. Positive (negative) values indicate that realized capital gains exceed (fall short of)
expected capital gains. The shaded area shows the 90%-confidence intervals, standard errors are robust with
respect to serial correlation and heteroskedasticity (Newey-West with h+ 1 lags).

The last column in Table 2 performs a test of the rational expectations hypothesis that
the cyclicality of actual and expected returns are equal (H0 : c = c). The test corrects for
small sample bias, which is reported in the second to last column. We find that the difference
in the cyclicality of actual and expected capital gains is highly statistically significant in all
cases. Appendix A.4 shows that similar results are obtained when first subtracting equation
(2) from (3) and estimating the resulting equation with forecast errors on the left-hand side,
as in Kohlhas and Walther (2021).

Initial under- and subsequent over-reaction of housing price expectations.
While the results in Table 1 show that households adjust short-term housing price beliefs
on average too sluggishly, the results in Table 2 indicate over-optimism (over-pessimism) in
housing price expectations when the current market valuation is high (low), which points to
some form of overreaction to past housing price increases. It turns out that both patterns can
be jointly understood by considering the dynamic response of actual and expected capital
gains to housing price changes.

Following the approach in Angeletos, Huo, and Sastry (2020), who analyze forecast errors
about unemployment and inflation, we investigate how capital gains and forecast errors
about these capital gains evolve over time in response to realized capital gains.12 Provided
households observe realized capital gains, the RE hypothesis implies that it should not be
possible to predict future forecast errors with current capital gains.

12These dynamic responses are well-defined in econometric terms, even if they cannot be given a structural
interpretation, because past capital gains are likely driven by a combination of past shocks.
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We estimate the dynamic responses using local projections (Jorda (2005)) of the form

Xt+h = ah + bh
qt−1

qt−2

+ uht , (4)

where the left-hand side variable Xt+h is either the cumulative capital gain (qt+h+4/qt), or the
forecast error about the four-quarter-ahead capital gain (qt+h+4/qt+h−EPt+h[qt+h+4/qt+h]), and
uht a serially correlated and heteroskedastic error term. Note that forecast errors are positive
when households are overly pessimistic about capital gains and negative if households are
overly optimistic.

Figure 1 reports the estimated coefficients bh from local projection (4). Panel (a) depicts
the response of cumulative capital gains. It shows that the initial capital gains is not only
persistent, but increases further over time, reaching a plateau after around twelve quarters.
Given the high serial correlation displayed by capital gains in housing markets, this feature
is perhaps not too surprising.

Panel (b) depicts the dynamic response of forecast errors. Forecast errors are initially
positive but later on – once cumulative capital gains reach their plateau – become negative
before eventually disappearing. The positive values initial periods indicates that agents’
expectations react too sluggishly: realized capital gains are persistently larger than the
expected gains. This also implies an underreaction in terms of the expected level of housing
prices. Subsequently, when all actual capital gains have materialized and housing prices start
to slightly mean revert, agents are too optimistic about future capital gains. This aligns well
with the prior observation that capital gain expectations display the wrong cyclicality with
housing market valuation.13 It also implies that households entirely miss the mean-reversion
in capital gains: forecast errors turn negative once housing prices level off and start to slightly
mean-revert. This pattern is consistent with the experimental evidence provided in Armona,
Fuster, and Zafar (2018).

In Appendix A.5, we show that the nominal forecast error responses look very similar.
Likewise, using median expectations instead of mean expectations makes no noticeable
difference of the results. In Appendix A.6, we show all our results obtained thus far are
robust to excluding the Corona Virus period, i.e., to letting the sample period end in the
last quarter of 2019.

Analysis Using Regional Data. As is well known, housing prices often display
considerable regional variation across the United States. We thus checked whether the
three deviations from the RE documented above are also present in regional housing prices
and housing price beliefs. Appendix A.7 uses regional housing price indices and exploits
local information contained in the Michigan survey that allows grouping survey
respondents into four different U.S. regions (North East, North Central/Midwest, South,
and West). Repeating the above analyses at the regional level, it shows that one obtains
quantitatively similar results.

The next section presents a simple housing model that can quantitatively replicate the
forecast error deviations documented in this section.

13Since rents move only very slowly over time, changes in housing prices capture changes in the price-to-
rent ratio rather well.
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3 Simple Model with Capital Gain Extrapolation

This section presents a bare-bones housing model in which households (weakly) extrapolate
past capital gains. The model makes equilibrium predictions for the joint dynamics of
housing prices and housing price beliefs. Housing prices in the model depend on households’
housing price beliefs, with the latter being influenced by past housing price behavior. We
show that equilibrium dynamics of housing prices and housing price beliefs quantitatively
replicate key features of housing price behavior in the U.S., as well as the deviations from
rational expectations documented in the previous section. The simple model also predicts
that low levels of the natural rate of interest give rise to increased housing price volatility.
As we show, this prediction is consistent with the evolution of natural rates and housing
prices in advanced economies over the past decades.

The full model in Section 4 additionally features nominal rigidities, a lower bound
constraint on nominal rates, generalized preferences, and endogenous production of
consumption goods and housing. The present section abstracts from these features, but
nevertheless shares its implications for housing price behavior and housing price beliefs
with the full model.

The Household Problem. There is a measure one of identical households.14

Households are internally rational, as in Adam and Marcet (2011), i.e., maximize utility
holding potentially subjective beliefs about variables beyond their control. The
representative household chooses consumption Ct, housing units to own Dt, and housing
units to rent DR

t , to maximize

max
{Ct≥0,Dt∈[0,Dmax],DRt ≥0}∞

t=0

EPt

∞∑
t=0

βt
[
Ct + ξdt

(
Dt +DR

t

)]
s.t. : Ct + (Dt − (1− δ)Dt−1) qt +RtD

R
t = Yt for all t ≥ 0,

where Yt is an exogenous (and sufficiently large) endowment, qt the real price of housing,
Rt the real rental price and δ > 0 the housing depreciation rate. Rental units and housing
units owned are perfect substitutes and ξdt ≥ 0 denotes a housing preference shock. The
household’s subjective probability measure P allows for subjective housing price beliefs.
For simplicity, we assume beliefs about other variables beyond the household’s control,
{Yt, ξdt , Rt}∞t=1, to be rational. The latter assumption is not important for the results
derived in this section.

Housing choices are subject to a short-selling constraint Dt ≥ 0, which is standard, and
to a long constraint Dt ≤ Dmax. The latter insures existence of optimal plans in the presence
of distorted housing beliefs. The long constraint is chosen such that it will never bind in
equilibrium, i.e., Dmax > D, where D denotes the exogenously fixed housing supply. Without
loss of generality, rental units are assumed to be in zero net supply.

The household first-order conditions imply that rents are given by

Rt = ξdt (5)

14The fact that households are identical is not common knowledge among households.
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and that equilibrium housing prices satisfy15

qt = ξdt + β(1− δ)EPt qt+1. (6)

Capital Gain Extrapolation. We now introduce subjective price beliefs that give
rise to capital gain extrapolation, using the setup in Adam, Marcet, and Nicolini (2016).
Importantly, the precise details generating capital gain extrapolation are not essential for
the results in this section and we could have used alternative belief assumptions, e.g., learning
from life-time experience as in Nagel and Xu (2018) and Malmendier and Nagel (2011, 2015),
or could have directly assumed extrapolative behavior as in Barberis, Greenwood, Jin, and
Shleifer (2015).

Households perceive capital gains to evolve according to

qt
qt−1

= bt + εt, (7)

where εt ∼ iiN(0, σ2
ε) is a transitory component of capital gains and bt a persistent

component, which itself evolves according to bt = bt−1 + νt, with νt ∼ iiN(0, σ2
ν).

16

Households observe the realized capital gains (qt/qt−1) and use Bayesian belief updating to
decompose observed capital gains into their persistent and transitory components. With
conjugate prior beliefs, the subjective conditional one-step-ahead capital gain expectations

βt ≡ EPt (qt+1/qt) (8)

evolve according to

βt = min

{
βt−1 +

1

α

(
qt−1

qt−2

− βt−1

)
, βU

}
, (9)

where 1/α is the Kalman gain determining how strongly households’ capital gain expectations
respond to past capital gain surprises.17 The Kalman gain thus captures the degree to which
past capital gain surprises are extrapolated into the future. The upper bound βU on the
beliefs in equation (9) is there to insure that capital gain optimism is bounded from above,
so as to keep subjectively expected utility finite.18

Figure 2 illustrates the relationship between belief revisions and forecast errors implied by
equation (9) using the Michigan survey data. The figure plots on the vertical axis a measure

of the quarterly revision in capital gain expectations,
(
EPt (qt+4/qt)

) 1
4 −

(
EPt−1 (qt+3/qt−1)

) 1
4 ,

15This holds true in equilibrium because 0 < D < Dmax. For the household, however, first-order conditions
may hold only with inequality under the subjectively optimal plans, due to the presence of short and long
constraints. The latter explains why rational households can hold price expectations that differ from the
discounted sum of future rents, see Adam and Marcet (2011) for details and Adam and Nagel (2022) for
related arguments.

16In the full model in Section 4, we will assume the same beliefs for risk-adjusted house price growth.
With risk neutrality, the two coincide.

17The (steady-state) Kalman gain depends on the subjectively perceived values for (σ2
ε , σ

2
ν).

18The bound can be interpreted as a short-cut for a truncated prior support or bt. The bounding function
in (9) is a special case of the bounding function used in Adam, Marcet, and Nicolini (2016), obtained by
setting βL = βU .
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Figure 2: Capital gain surprises and revisions

Notes: This figure plots the capital gain surprises against capital gain revisions in the Michigan survey
(2007-2021), along with a linear regression line.

and on the horizontal axis a measure of the forecast error in quarterly capital gains, qt
qt−1
−(

EPt−1 (qt+3/qt−1)
) 1

4 , for all quarters in the Michigan survey. Consistent with equation (9),
there is a clear positive and approximately linear relationship between capital gain surprises
and belief revisions in Figure 2. The most notable deviations from the regression line are the
ones around the Great Recession (2008Q3 and 2009Q2) and the Covid Recession (2020Q2
and 2020Q3).

Equilibrium Dynamics of Housing Prices and Capital Gain Expectations. From
equation (6) and the definition of subjective beliefs βt it follows that the equilibrium housing
price is given by

qt =
1

1− β(1− δ)βt
ξdt , (10)

where βt evolves according to (9). Equations (9) and (10) thus jointly characterize the
equilibrium dynamics of housing prices and subjective beliefs. From equations (5) and (10)
follows that the equilibrium price-to-rent ratio is given by

PRt ≡
qt
Rt

=
1

1− β(1− δ)βt
. (11)

Calibration. The simple model just described can generate empirically plausible housing
price behavior and the resulting housing price beliefs quantitatively match the deviations
from rational expectations presented in the previous section. The calibration in this section
is identical to the one for the full model, with the exception for the standard deviation of
the innovations to housing preferences.19 We consider housing preference shocks evolving

19This is so because the present section matches moments for a different time period than the full model,
i.e., the period for which we have subjective expectations data (2007-2021).
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Table 3: Housing price moments: data versus model

Data Subjective Belief Model RE Model
std (PRt) 8.6 8.6 2.69

corr(PRt, PRt−1) 0.99 0.99 0.99

std(qt/qt−1) 0.06 0.04 0.003

corr(qt/qt−1, qt−1/qt−2) 0.97 0.94 -0.01

Notes: The table reports the standard deviation and first-order autocorrelation of price-to-rent ratios and
capital gains in the data, for the model under subjective housing beliefs and the model under rational
expectations.

according to
log ξdt = (1− ρξ) log ξd + ρξ log ξdt−1 + εdt , (12)

where εdt ∼ iiN satisfies E[eε
d
t ] = 1. Following Adam and Woodford (2021), we set ρξ = 0.99

and δ = 0.03/4. The standard deviation of εdt is set to 0.0067, so that the model replicates the
empirical standard deviation of the price-to-rent ratio, expressed in percent deviation from
its mean, over the period for which we have survey data on housing expectations (2007-2021).
The average value of the housing preference ξd > 0 is irrelevant, as we are only concerned
with moments characterizing cyclical properties (deviations from average values).

For the subjective belief process, we completely tie our hands and set 1/α = 0.007, which
is the value estimated in Adam, Marcet, and Nicolini (2016) using stock market expectations.
The low value for the Kalman gain implies that agents extrapolate only weakly, as they
believe most of the realized capital gains being due to transitory components. The value
for the upper belief bound βU is set as in the full model, where it matches the maximum
observed deviation of the price-to-rent ratio from its mean. Finally, the quarterly discount
factor β is set such that the real interest rate is equal to 0.75%, which is the average value
of the estimated U.S. natural rate over the period 2007-2021, according to estimates using
the approach of Holston, Laubach, and Williams (2017).

Housing Price Behavior. Table 3 illustrates that the subjective belief model replicates
surprisingly well the empirical behavior of the price-to-rent ratio and of capital gains. While
the standard deviation of the price-to-rent ratio is a targeted moment, all other moments are
untargeted. The model matches very well the high quarterly autocorrelation of the price-
to-rent ratio and the fairly high quarterly autocorrelation of capital gains. It undershoots
somewhat the standard deviation of quarterly capital gains, illustrating that it features
perhaps too little high-frequency variation in prices.20

Table 3 also reports the rational expectations (RE) outcome using the same calibration as
for the subjective belief model. It shows that the about 70% of the fluctuations in the price-
dividend ratio in the subjective belief model is due to capital gain extrapolation. Adam,
Marcet, and Nicolini (2016) explain how capital gain extrapolation generates momentum
and mean reversion in prices and thus contributes to asset price volatility.

20This could easily be remedied by adding some iid shocks, say iid shocks to the discount factor β.
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Table 4: Patterns of deviations from rational expectations: data versus model

Subjective Belief Model Data
Mean Expectations Median Expectations

bCG from (1) 2.09 1.68 2.12

(0.355) (0.394)
c (in %) from (2) 0.03 0.030 0.010

(0.172) (0.043)
c (in %) from (3) -0.063 -0.113 -0.113

(0.009) (0.009)

Notes: This table shows the model-implied regression coefficients of regressions (1), (2) and (3) for a natural
rate of 0.75% (annualized) in the first column and the empirical results (for real housing prices) in the second
and third column.

While the ability of capital gain extrapolation to increase the price volatility is well-
known, we now turn to the new question of whether the model with capital gain extrapolation
matches the structure of forecast errors documented in Section 2.

Belief revisions and forecast errors. The simple model quantitatively matches the
three deviations from rational housing price expectations documented in Section 2.

Table 4 reports the outcomes of population regressions of equations (1), (2) and (3) for the
calibrated subjective belief model. The results shows the model matches sluggish updating
about expected housing prices (bCG > 0) and the opposing cyclicality of actual and expected
capital gains (c > 0 and c < 0). For better comparison, Table 4 also reports also the
empirical estimates of the corresponding coefficients from Tables 1 and 2. The magnitude of
the coefficients generated by the model closely match the ones obtained using survey data,
with the exception that the model underpredicts the counter-cyclicality of actual capital
gains.

Figure 3 shows that the simple model is able to match the dynamic response of forecast
errors documented empirically in Figure 1(b). We compute model-implied forecast errors as
FEmodel

t+h = qt+4+h

qt+h
− (βt+h)

4 and compute the population local projections (4). Consistent

with the data, the model generates initial underprediction of capital gains (over-pessimism)
and subsequently overprediction (over-optimism).

Appendix B.1 reports the dynamic forecast error responses for the model and in the data
about the expected housing price level (rather than the expected capital gain). It shows that
the model matches equally well the patterns of forecasts errors about the future housing price
level.

Falling Natural Rates and Rising Housing Price Volatility. Using equations (9)
and (10), we can analyze how housing prices are affected by the level of the natural rate of
interest. In our simple model, the natural rate of interest is given by r∗ = 1/β − 1 and only
depends on the discount factor β ∈ (0, 1). A discount factor closer to one thus lowers the
natural rate of interest.
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Figure 3: Dynamic forecast error response: data versus model

Notes: The figure shows impulse-response functions of housing-price forecast errors of one-year ahead
expectations to a one standard deviation innovation in the housing capital gain from the model and the
data. The shaded area shows the 90%-confidence intervals of the empirical estimates, standard errors are
robust with respect to serial correlation and heteroskedasticity (Newey-West with h+ 1 lags).

Figure 4(a) presents the impulse response of real housing prices to a positive housing
preference shock ξdt for different values of the natural rate. It depicts the impulse response
for the calibrated model, where the natural rate is equal to 0.75%, and for a lower natural
rate equal to 0.25%. To account for the higher housing price levels associated with lower
natural rates, we show impulse responses in terms of percent deviations from their respective
steady state values. The model-implied response for the PR-ratio to a housing preference
shock looks very similar and is shown in Appendix B.2.

The key message of Figure 4(a) is that housing prices respond considerably stronger
to housing demand shocks when natural rates are lower: the same shock gives rise to an
approximately 75% stronger housing price response when the natural rate is 0.5% lower.
Therefore, lower natural rates lead to higher housing price volatility.

This somewhat surprising outcome can be explained as follows. The capital gain increase
triggered by the fundamental shock in the initial period leads to an upward revision of
capital gain expectations. Equation (10) implies, however, that these higher capital gain
expectations produce larger realized capital gains, the higher is the value for β, i.e., the
lower is the natural rate of interest. Higher realized capital gains produce stronger upward
revisions in beliefs in the future and thus feed stronger capital gains in the subsequent period.
Through this feedback loop, low natural rates generate more momentum in housing price
changes following fundamental shocks, which leads to a larger volatility of housing prices.

Figure 4(b) shows that the relationship between the level of the natural rate and the
volatility of housing prices predicted by the model is consistent with the data. It plots the
decline in the average level of the natural rate from the period before 1990 to the period after
1990 for the U.S., Canada, France, Germany, and the United Kingdom, against the change
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Figure 4: Level of the natural rate and housing price fluctuations in the model and in the
data

(a) Model impulse response of real housing (b) Natural rates and housing price volatilities
price for high and low natural rates in the data across advanced economies
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Notes: Panel (a) shows the structural impulse response functions of real housing prices (in percent deviations
from steady state) to a one standard deviation housing-preference shock for different natural rates. Panel
(b) plots the pre-/post-1990 changes in the average natural rate against the changes in the volatility of
the price-to-rent ratio for different advanced economies. The volatilities of the price-to-rent ratios in the
pre-/post-1990 periods are the standard deviations relative to the period-specific mean values.

in the standard deviation of the price-to-rent ratio over the same periods.21 To take possible
shifts in the mean of the PR-ratio over time into account, e.g., due to falling real interest
rates, the standard deviation of the PR-ratio is computed in each of the two sub-periods
for the percent deviation of PR-ratio from its period-specific mean.22 In all six advanced
economies, the PR-ratio has become more volatile as the average level of the natural rate
has declined.

4 Full Model with Capital Gain Extrapolation

This section studies the monetary policy implications of falling natural rates of interest
and rising housing price volatility. To this end, we embed capital gain extrapolation into
a sticky price model with a housing sector. The model features endogenous production of
consumption goods and housing and generalizes the setup in Adam and Woodford (2021) by
allowing for belief distortions that are not absolutely continuous with respect to the beliefs
held by the policymaker. This permits analyzing the subjective housing beliefs as in equation
(7), which give rise to capital gain extrapolation and deviations from rational expectations

21Figure 4(b) compares long periods of time to get more reliable estimates for the standard deviation of
the PR ratio, which is difficult to estimate given the high degree of serial correlation. For the natural rate
of interest, we use the estimates of Holston, Laubach, and Williams (2017). We use the estimated euro area
natural rate for both France and Germany. Appendix F discusses the statistical significance in more detail
and provides robustness exercises.

22This normalization is in line with the theoretical exercise above. The empirical results become even
stronger if one considers instead the absolute standard deviation of the PR-ratio.
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matching patterns in the survey data. In addition, we consider a lower-bound constraint
on nominal rates, which we show to be quantitatively important for understanding how the
optimal inflation target responds to lower natural rates in the presence of subjective housing
beliefs.

We consider an economy populated by internally rational decision makers (Adam and
Marcet (2011)): households maximize utility and firms maximize profits, but both do so using
a potentially subjective probability measure P , which assigns probabilities to all external
variables, i.e., to all variables that are beyond agents’ control. These variables include
fundamental shocks, as well as competitive market prices (wages, goods prices, housing
prices and rents). The setup delivers rational expectations in the special case where P is the
objective probability measure.

The economy is made up of identical infinitely-lived households, each of which maximizes
the following objective function23

U ≡ EP0

∞∑
t=0

βt
[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj + ω̃(Dt +DR
t ; ξt)

]
, (13)

subject to the sequence of flow budget constraints

Ct +Bt + (Dt − (1− δ)Dt−1)
qut

ũC(Ct; ξt)
+ kt +RtD

R
t =

d̃(kt; ξt)
qut

ũC(Ct; ξt)
+

∫ 1

0

wt(j)Ht(j)dj +
Bt−1

Πt

(1 + it−1) +
Σt

Pt
+
Tt
Pt
, (14)

where Ct is an aggregate consumption good, Ht(j) is the quantity supplied of labor of type
j and wt(j) the associated real wage, Dt the stock of owned houses, DR

t the units of rented
houses, δ ∈ [0, 1] the housing depreciation rate, and qut the real price of houses in marginal
utility units, defined as

qut ≡ qtũC(Ct; ξt),

where qt is the real house price in units of consumption.24 The variable qut provides a
measure of whether housing is currently expensive or inexpensive, in units that are
particularly relevant for determining housing demand. The variable kt denotes investment
in new houses and d̃(kt; ξt) the resulting production of new houses.25 Bt ≡ B̃t/Pt denotes

the real value of nominal government bond holdings B̃t and Pt the nominal price of
consumption. Πt = Pt/Pt−1 is the inflation rate, it the nominal interest rate, Rt the real
rental rate for housing units, and ξt is a vector of exogenous disturbances, which may
induce random shifts in the functions ũ, ṽ, ω̃ and d̃. Tt denotes nominal lump sum
transfers (taxes if negative) from the government and Σt nominal profits accruing to
households from the ownership of firms.

Households discount future payoffs at the rate β ∈ (0, 1). Since our model is formulated in
terms of growth-detrended variables, the discount rate β jointly captures the time preference

23It cannot be common knowledge to households that they are representative whenever P deviates from
the rational measure.

24In Section 3, qut and qt coincide due to risk-neutrality.
25We consolidate housing production into the household budget constraint. It would be equivalent to

have instead a separate housing production sector that is owned by households.
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rate β̃ ∈ (0, 1) and the steady-state growth rate of marginal utility. Letting gc ≥ 0 denote
the steady-state growth rate of consumption in non-detrended terms, we have

β ≡ β̃
ũC(C(1 + gc); ξ)

ũC(C; ξ)
, (15)

where ξ denotes the steady state value of the disturbance ξt. When the growth rate gc of the
economy falls, the discount rate β increases because marginal utility falls less strongly. We
can thus capture a fall in the trend growth rate of the economy simply via an increase in the
time discount rate β. Declining trend growth causes the steady-state real interest rate and
thus the average natural rate of interest to fall, which is in line with the estimates provided
in Holston, Laubach, and Williams (2017) (see Appendix F).

The aggregate consumption good is a Dixit-Stiglitz aggregate of each of a continuum of
differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
η−1
η di

] η
η−1

, (16)

with an elasticity of substitution η > 1. We further assume isoelastic functional forms

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1
,

ṽ(Ht(j); ξt) ≡
λ

1 + ν
(Ht(j))

1+ν H̄−νt ,

ω̃(Dt +DR
t ; ξt) ≡ ξdt

(
Dt +DR

t

)
, (17)

d̃(kt; ξt) ≡
Adt
α̃
kα̃t ,

where σ̃, ν > 0, α̃ ∈ (0, 1) and {C̄t, H̄t, ξ
d
t , A

d
t } are bounded, exogenous and positive

disturbance processes which are among the exogenous disturbances included in the vector
ξt.

Our specification includes two housing-related disturbances, namely ξdt , which captures
shocks to housing preferences, and Adt , which captures shocks to the productivity in the
construction of new houses. We impose linearity in the utility function (17), because it
greatly facilitates the characterization of optimal policy, with rented and owned housing
units being perfect substitutes. Introducing a weight on rental units relative to housing
units would allow us to perfectly match the average price-to-rent ratio we observe in the
data. However, since this does not change any other results, we abstract from such a scaling
parameter and assign equal weight to housing and renting in the utility.

Each differentiated good is supplied by a single monopolistically competitive producer;
there is a common technology for the production of all goods, in which (industry-specific)
labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ, (18)

where At is an exogenously varying technology factor, and φ > 1. The Dixit-Stiglitz
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preferences (16) imply that the quantity demanded of each individual good i will equal26

yt(i) = Yt

(
pt(i)

Pt

)−η
, (19)

where Yt is the total demand for the composite good defined in (16), pt(i) is the price of the
individual good, and Pt is the price index,

Pt ≡
[∫ 1

0

pt(i)
1−ηdi

] 1
1−η

, (20)

corresponding to the minimum cost for which a unit of the composite good can be purchased
in period t. Total demand is given by

Yt = Ct + kt + gtYt, (21)

where gt is the share of the total amount of composite goods purchased by the government,
treated here as an exogenous disturbance process.

4.1 Household Optimality Conditions

Internally rational households choose state-contingent sequences for the choice variables{
Ct, Ht(j), Dt, D

R
t , kt, Bt

}
so as to maximize (13), subject to the budget constraints (14),

taking as given their beliefs about the processes {Pt, wt(j), qut , Rt, it,Σt/Pt, Tt/Pt}, as
determined by the (subjective) measure P .

We shall be particularly interested in the policy implications generated by subjective
housing price beliefs. To insure that an optimum exists in the presence of potentially
distorted beliefs about the housing price qut , we require housing choices to lie in some
compact choice set Dt ∈ [0, Dmax], as discussed in Section 3, where the upper bound can be
arbitrarily large.

The first order conditions give rise to an optimal labor supply relation

wt(j) =
ṽH(Ht(j); ξt)

ũC(Ct; ξt)
, (22)

a consumption Euler equation

ũC(Ct; ξt) = βEPt

[
ũC(Ct+1; ξt+1)

1 + it
Pt+1/Pt

]
, (23)

an equation characterizing optimal investment in new houses

kt =

(
Adt q

u
t

C σ̃−1

t

C̄ σ̃−1

t

) 1
1−α̃

, (24)

26In addition to assuming that household utility depends only on the quantity obtained of Ct, we assume
that the government also cares only about the quantity obtained of the composite good defined by (16), and
that it seeks to obtain this good through a minimum-cost combination of purchases of individual goods.
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an optimality condition for rental units

ξdt = RtũC(Ct, ξt), (25)

and a set of conditions determining the optimal housing demand Dt:

qut < ξdt + β(1− δ)EPt qut+1 if Dt = Dmax

qut = ξdt + β(1− δ)EPt qut+1 if Dt ∈ (0, Dmax)
qut > ξdt + β(1− δ)EPt qut+1 if Dt = 0.

(26)

With rational expectations, the upper and lower holding bounds never bind.27 Since we are
interested in how the presence of belief distortions about future housing values affect
equilibrium outcomes, the bounds in equation (26) can potentially bind under the
subjectively optimal plans. This explains why an internally rational household can hold
subjective housing price expectations, even if she holds rational expectations about the
preference shocks ξdt in equation (26).

Forward-iterating on equation (23), which holds with equality under all
belief-specifications, delivers a present-value formulation of the consumption Euler equation

ũC(Ct; ξt) = lim
T→∞

EPt

[
ũC(CT ; ξT )βT

T−t∏
k=0

1 + it+k
Pt+k+1/Pt+k

]
, (27)

which will be convenient to work with, especially under subjective belief specifications.
Household choices must also satisfy the transversality constraint

lim
T→∞

βTEPt [ũC(CT ; ξT )BT +DT q
u
T ] = 0. (28)

Optimal household behavior under potentially distorted beliefs is jointly characterized by
equations (22) and (24)-(28).

4.2 Optimal Price Setting by Firms

The producers in each industry fix the prices of their goods in monetary units for a random
interval of time, as in the model of staggered pricing introduced by Calvo (1983) and Yun
(1996). Producers use the representative households’ subjectively optimal consumption plans
to discount profits and are assumed to know the product demand function (19). They need
to formulate beliefs about the future price levels PT , industry-specific wages wT (j), aggregate
demand YT , and productivity AT .

Let 0 ≤ α < 1 be the fraction of prices that remain unchanged in any period. A supplier
i in industry j that changes its price in period t chooses its new price pt(i) to maximize

EPt

∞∑
T=t

αT−tQt,TΠ (pt(i), PT , wT (j), YT , AT ) , (29)

27The upper bound Dmax has been chosen sufficiently large for this to be true. The lower bound is never
reached because the housing production function satisfies Inada conditions.
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where EPt denotes the expectations of price setters conditional on time t information, which
are identical to the expectations held by consumers. Firms discount random nominal income
in period T using households’ subjective stochastic discount factor Qt,T , which is given by

Qt,T = βT−t
ũC (CT , ξT )

ũC (Ct, ξt)

Pt
PT

.

The term αT−t in equation (29) captures the probability that a price chosen in period t will
not have been revised by period T , and the function Π (pt(i), ...) indicates the nominal profits
of the firm in period t, as discussed next.

Profits are equal to after-tax sales revenues net of the wage bill. Sales revenues are
determined by the demand function (19), so that (nominal) after-tax revenue equals

(1− τt) pt(i)Yt
(
pt(i)

Pt

)−η
.

Here τt is a proportional tax on sales revenues in period t, {τt} is treated as an exogenous
disturbance process, taken as given by the monetary policymaker. We assume that τt
fluctuates over a small interval around a non-zero steady state level τ . We allow for
exogenous variations in the tax rate in order to include the possibility of “pure cost-push
shocks” that affect the equilibrium pricing behavior while implying no change in the
efficient allocation of resources.

The labor demand of firm i at a given industry-specific wage wt(j) can be written as

ht(i) =

(
Yt
At

)φ
pt(i)

−ηφP ηφ
t , (30)

which follows from (18) and (19). Using this, the nominal wage bill is given by

Ptwt(j)ht(i) = Ptwt(j)

(
Yt
At

)φ
pt(i)

−ηφP ηφ
t .

Subtracting the nominal wage bill from the above expression for nominal after tax revenue,
we obtain the function Π (pt(i), PT , wT (j), YT , AT ) used in (29).

Each of the suppliers that revise their prices in period t chooses the same new price p∗t ,
that maximizes (29). The first-order condition with respect to pt(i) is given by28

EPt

∞∑
T=t

αT−tQt,TΠ1 (pt(i), PT , wT (j), YT , AT ) = 0.

The equilibrium choice p∗t , which is the same for each firm i in industry j, is the solution to
this equation. Letting pjt denote the price charged by firms in industry j at time t, we have
pjt = p∗t in periods in which industry j resets its prices and pjt = pjt−1 otherwise.

28Note that supplier i’s profits in (29) are a concave function of the quantity sold yt(i), since revenues

are proportional to yt(i)
η−1
η and hence concave in yt(i), while costs are convex in yt(i). Moreover, since

yt(i) is proportional to pt(i)
−η, the profit function is also concave in pt(i)

−η. The first-order condition for
the optimal choice of the price pt(i) is the same as the one with respect to pt(i)

−η; hence the first-order
condition with respect to pt(i) is both necessary and sufficient for an optimum.
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Under the assumed isoelastic functional forms, the optimal choice has a closed-form
solution (

p∗t
Pt

)1+η(φ−1)

=
EPt
∑∞

T=t α
T−tQt,T

η
η−1

φwT (j)
(
YT
AT

)φ (
PT
Pt

)ηφ+1

EPt
∑∞

T=t α
T−tQt,T (1− τT )YT

(
PT
Pt

)η . (31)

The price index evolves according to a law of motion

Pt =
[
(1− α) p∗1−ηt + αP 1−η

t−1

] 1
1−η , (32)

as a consequence of (20). The equilibrium inflation in any period is characterized by

(
Pt
Pt−1

)η−1

=
1− (1− α)

(
p∗t
Pt

)1−η

α
. (33)

The welfare loss from price adjustment frictions can be captured by price dispersion, which
is defined as

∆t ≡
∫ 1

0

(
pjt
Pt

)−η(1+ω)

dj ≥ 1, (34)

where
ω ≡ φ(1 + ν)− 1 > 0

is the elasticity of real marginal cost in an industry with respect to industry output.
Using equation (32) together with the fact that the relative prices of the industries that

do not change their prices in period t remain the same, one can derive a law of motion for
the price dispersion term ∆t of the form

∆t = h(∆t−1, Pt/Pt−1), (35)

with

h(∆t, Pt/Pt−1) ≡ α∆t

(
Pt
Pt−1

)η(1+ω)

+ (1− α)

1− α
(

Pt
Pt−1

)η−1

1− α


η(1+ω)
η−1

.

As is commonly done, we assume that the initial degree of price dispersion is small (∆−1 ∼
O(2)).

Equations (31), (33), and (35) jointly define a short-run aggregate supply relation
between inflation, output and house prices (via the aggregate demand equation (21) and
(24)), given the current disturbances ξt, and expectations regarding future wages, prices,
output, consumption and disturbances. Equation (35) describes the evolution of the costs
of price dispersion over time.

For future reference, we remark that all firms together make total profits equal to

Σt

Pt
= (1− τt)Yt − wtHt, (36)

where wtHt =
∫ 1

0
wt(j)Ht(j)dj.
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4.3 Government Budget Constraint and Market Clearing
Conditions

The government consumes goods gtYt, imposes a sales tax τt, issues nominal bonds B̃t ≡ PtBt,
and pays lump sum transfers Tt to households. The government budget constraint is given
by

Bt = Bt−1
1 + it−1

Pt/Pt−1

+
Tt
Pt

+ (gt − τt)Yt.

For simplicity, we assume that lump sum transfers (taxes if negative) are set such that they
keep real government debt constant at some initial level B−1. This implies that government
transfers are given by

Tt
Pt

= −(gt − τt)Yt +Bt−1

(
1− 1 + it−1

Pt/Pt−1

)
. (37)

Using (21) and (24), one can express the market clearing condition for the
consumption/investment good as

Yt =
Ct + ΩtC

σ̃−1

1−α̃
t

1− gt
, (38)

where

Ωt ≡
(
Adt C̄

−σ̃−1

t qut

) 1
1−α̃

> 0 (39)

is a term that depends on exogenous shocks and belief distortions in the housing market
only, see equation (26). The previous two equations implicitly define a function

Ct = C(Yt, q
u
t , ξt), (40)

which delivers the market clearing consumption level, for a given output level Yt, given
housing prices qut and given exogenous disturbances ξt.

The market clearing condition for housing is

Dt = (1− δ)Dt−1 + d̃(kt; ξt), (41)

and rental market clearing requires
DR
t = 0. (42)

Labor market clearing requires that the supply of labor of type j in (22) is equal to labor
demand of industry j, which is given by (30), as all firms in the industry charge the same
price. This delivers

wt(j) =
ṽH(Ht(j); ξt)

ũC(Ct; ξt)
=
λ (Ht(j))

ν H̄−νt

C−σ̃
−1

t C̄ σ̃−1

t

= λ
H̄−νt
C̄ σ̃−1

t

(
Yt
At

)νφ
C σ̃−1

t

(
pjt
Pt

)−νηφ
, (43)

where pjt = p∗t in periods where industry j can adjust prices and pjt = pjt−1 otherwise.

24



4.4 Equilibrium and Ramsey Problem with Subjective Beliefs

We now define the equilibrium in the presence of subjective beliefs, as well as the nonlinear
Ramsey problem characterizing the monetary policymaker’s optimization problem in the
presence of subjective beliefs.

We start by defining an Internally Rational Expectations Equilibrium (IREE), which is a
generalization of the notion of a Rational Expectations Equilibrium (REE) to settings with
subjective private sector beliefs:

Definition 1 An internally rational expectations equilibrium (IREE) is a bounded
stochastic process for {Yt, Ct, kt, Dt, {wt(j)}, p∗t , Pt,∆t, q

u
t , it}

∞
t=0 satisfying the aggregate

supply equations (31), and (33), the law of motion for the evolution of price distortions
(35), the household optimality conditions (24), (26), (27), and the market clearing
conditions (38), (41) and (43) for all j.

The equilibrium features ten variables (counting the continuum of wages as a single
variable) that must satisfy nine conditions, leaving one degree of freedom to be determined
by monetary policy.29 In the special case with rational beliefs (EPt [·] = Et[·]), the IREE is a
Rational Expectations Equilibrium (REE).

Given the equilibrium outcome, the remaining model variables can be determined as
follows. Equilibrium profits are given by equation (36) and equilibrium taxes by equation
(37). Equilibrium labor supply Ht(j) follows from equation (22) for each labor type j.
Equilibrium bond holdings satisfy Bt = B−1 and equilibrium inflation is Πt ≡ Pt/Pt−1.
Equilibrium rental units are given by equation (42) and equilibrium rental prices by equation
(25).

The Ramsey problem allows the policymaker to choose the sequence of policy rates,
prices and allocations to maximize household utility, subject to the constraint that prices
and allocations constitute an IREE. The policymaker thereby maximizes household utility
under rational expectations, i.e., under a probability measure that is different from the one
entertained by households, whenever the latter hold distorted beliefs. Benigno and Paciello
(2014) refer to such a policymaker as a ‘paternalistic’ policymaker. The non-linear Ramsey
problem is spelled out in Appendix C. To gain economic insights into the forces shaping
the policy problem, the next section considers a quadratic approximation to the nonlinear
problem.

5 The Monetary Policy Problem: Analytic Insights

This section presents a quadratic approximation to the policymaker’s Ramsey problem that
provides interesting economic insights into the new economic forces that monetary policy has

29The transversality condition (28) must also be satisfied in equilibrium, but is not imposed as an
equilibrium condition, as it will hold for all belief specifications considered below.
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to deal with in the presence of capital gain extrapolation.30 It shows how subjective capital
gain expectations shift the Phillips curve and how they affect the natural rate of interest in
the IS equation.

The quadratic approximation derived below is valid for two alternative belief settings.31

The first setting is standard and assumes rational expectations. While constituting a useful
benchmark, the assumption of rational housing price expectations is strongly rejected by the
survey evidence in Section 2.

The second setting considers subjective housing beliefs. In particular, it considers capital
gain extrapolation according to equations (7)-(9) introduced in the simple model in Section 3,
but with the variable qt being replaced by qut . The latter implies that households extrapolate
capital gains in units of marginal utility rather than in units of consumption.

Specifying subjective beliefs in units of marginal utility leaves the ability of the learning
rule to replicate the survey evidence unchanged.32 It has, however, three advantages: (1)
the belief setup prevents the policymaker from being able to ‘manipulate’ households’
subjective housing price beliefs and thus to achieve outcomes that are potentially better
than under rational expectations;33 (2) unlike housing prices in units of consumption,
housing prices in units of marginal utility are unaffected by monetary policy; this allows
side-stepping the otherwise thorny issue of how the learning rule should respond to the
conduct of monetary policy; (3) the belief specification also greatly simplifies the algebra
associated with deriving the second-order approximation to the Ramsey problem, as it
allows for a relatively straightforward determination of the equilibrium path of subjectively
optimal consumption choices.

Overall, we seek to consider a minimal deviation from rational expectations, therefore
keep expectations about all other variables rational to the extent possible.34 Finally, to
insure that households’ subjectively optimal plans satisfy the transversality condition, we
assume that household hold rational capital gain expectations in the very long run, i.e., after

30The nonlinear problem can be found in Appendix C. The quadratic approximation delivers a valid
second-order approximation to the problem, whenever (i) the steady-state Lagrange multipliers associated
with the nonlinear constraints are of order O(1), which is the case when the steady state output distortion

Θ ≡ log
(

η
η−1

1−g
1−τ

)
is of order O(1), and (ii) the gap between the steady-state interest rate and the lower

bound, i.e., 1
β − 1, is also of O(1), i.e., when steady state real interest rates/natural rates are low.

31Recall from our earlier discussion that firms must hold beliefs about future values of Pt, wt(j), Yt and
that households must hold beliefs about future values of (Pt, wt(j), q

u
t , Rt, it,Σt/Pt, Tt/Pt). Both actors must

additionally hold beliefs about the fundamental shocks entering their decision problem.
32This is so because we consider consumption preferences with very low degrees of risk aversion (log

utility). Contributions from fluctuations in marginal utility to housing prices (in units of consumption) are
then orders of magnitude smaller than those generated by subjective beliefs.

33This is a key distinction to the setups analyzed in Molnar and Santoro (2014), Mele, Molnar, and
Santoro (2020), and Caines and Winkler (2021).

34In particular, household continue to hold rational expectations about all other prices, i.e., about
{Pt, wt(j), it} and firms hold rational expectations about {Pt, wt(j), Yt}. Furthermore, all actors continue
to hold rational expectations about the exogenous fundamentals. Beliefs about profits and lump sum
taxes, {Σt/Pt, Tt/Pt} continue to be determined by equations (36) and (37), evaluated with rational output
expectations and the state-contingent optimal choices for {Ht, kt, Bt}. Rental price expectations, however,
cannot be kept rational: they need to satisfy equation (25), which shows that they are influenced by the
subjectively optimal consumption plans implied by equation (27).
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some arbitrarily large but finite period T̄ <∞.35 We then consider the policy problem with
subjective beliefs in periods t� T .

For the two belief settings just described, the quadratic approximation of the Ramsey
problem is given by36

max
{πt,ygapt ,q̂ut ,it≥i}

−E0

∞∑
t=0

βt
1

2

(
Λππ

2
t + Λy (ygapt )2 + Λq (q̂ut − q̂u∗t )2

)
(44)

s.t.:

πt = βEtπt+1 + κyy
gap
t + κq (q̂ut − q̂u∗t ) + ut for t ≥ 0 (45)

ygapt = lim
T→∞

Ety
gap
T − ϕEt

∞∑
k=0

(
it+k − πt+1+k − r∗,REt+k

)
− Cq
CY

(q̂ut − q̂u∗t ) for t ≥ 0 (46)

as well as equations determining (q̂ut − q̂u∗t ) and initial pre-commitments,

where πt = log Πt denotes inflation and ygapt the output gap, which is defined as ygapt =
log Yt − log Y ∗t , with Y ∗t denoting the efficient level of output, as defined in equation (E.1)
in appendix E. The housing price gap q̂ut − q̂u∗t is the difference between the housing price
q̂ut = log qut and its efficient welfare-maximizing level q̂u∗t , which is given by37

qu∗t = ξ
d

t , (47)

where ξ
d

t ≡
∑∞

T=tEt[(1− δ)
T−t βT−tξdT ].

The policymaker’s objective (44) involves the standard terms of squared inflation and the
squared output gap, but also depends on the squared housing price gap. The latter arises
because any deviation of housing prices from their efficient level distorts – for a given level
of the output gap – housing investment, as we explain below. The equilibrium value of the
housing price gap will depend on the belief specification and will be discussed in detail in
the next two sections.

Constraint (45) is the New Keynesian Phillips Curve and depends on the housing price
gap. The coefficients κq < 0 and κy > 0 are defined in Appendix E.3 and imply that
positive housing price gaps exert negative cost-push effects: high housing prices increase
housing investment and – for a given output gap – decrease non-housing consumption. The
latter raises the marginal utility of non-housing consumption and thereby depresses wages
and marginal costs. This allows the model to potentially produce a non-inflationary boom
in housing prices and housing investment. The mark-up disturbance ut is a function of
exogenous disturbances only.

Constraint (46) is the linearized and forward-iterated IS equation. A key new insight
here is that the IS equation also depends on the housing price gap. This implies that the

35Appendix D shows that this is sufficient to insure that subjectively optimal plans satisfy the
transversality constraint (28).

36See Appendix E for a derivation.
37See the derivation in Appendix G.4. All variables in the approximation are expressed in terms of log

deviations from the efficient steady state.
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housing price gap affects the natural rate of interest, as discussed in detail below. The
coefficients Cq < 0 and CY > 0 are the derivatives of the function C(·) defined in (40) with

respect to qu and Y , respectively, evaluated at the efficient steady state. The variable r∗,REt

in equation (46) denotes the natural interest rate under RE and is a function of exogenous
disturbances only.38 The long-run output gap expectations limT Ety

gap
T in equation (46) are

the ones associated with a setting in which agents hold rational housing expectations.39

Note, that the policymaker’s choice of the nominal interest rate it is subject to an effective
lower bound it ≥ i, where the bound i < 0 is expressed in terms of deviations from the interest
rate in a zero-inflation steady state. For the special case with a zero lower bound, we have
i = −(1− β)/β. In the absence of a lower bound constraint or when economic shocks never
cause the bound to become binding, the IS equation (46) can be dropped from the policy
problem.

Interestingly, the expectations showing up in the monetary policy problem (E.11) are all
rational. The way subjective housing price expectations affect the monetary policy problem
are thus fully captured through their effects on the housing price gap. The next two sections
determine the housing price gaps under rational and subjective beliefs and what they imply
for optimal policy.

5.1 Rational Housing Price Expectations

With fully rational expectations we have

q̂u,REt = q̂u∗t , (48)

which shows that the housing price gap is zero at all times, independently of monetary
policy and independently of the economic disturbances hitting the economy.40 Under RE,
the Ramsey problem with a lower bound constraint (44) is thus isomorphic to the Ramsey
problem in a standard New Keynesian model without a housing sector, as considered for
instance in Adam and Billi (2006). This result may appear surprising because monetary
policy decisions do affect the housing price in units of consumption q̂t. Yet, as the policy
problem (44) makes clear, it is only the housing price gap in units of marginal utility, q̂ut −q̂u∗t ,
that is relevant from a welfare perspective. Under RE, the presence of a housing sector thus
generates no fundamentally new economic insights into the monetary policy problem.41

The RE setup also has difficulties in making a connection between the average natural
rate of interest and the volatility of the price-to-rent (PR) ratio. Under RE, the equilibrium
PR-ratio is

PRRE
t =

qut
ξdt
, (49)

38More precisely, r∗,REt is the real interest rate consistent with the optimal consumption level in a setting
with flexible prices and fully rational expectations, see Appendix E.4 for details.

39Recall that housing expectations are assumed rational in the long-run in both belief settings.
40See Appendix G.1 for proofs on the results about housing prices and the price-rent ratio presented in

this section.
41The inclusion of a housing sector only affects the definition of the output gap, which now also depends

on housing sector disturbances.
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which to a first-order approximation is given by

P̂R
RE

t = Z · ξ̂dt , (50)

with Z ≡ β(1 − δ) (ρξ − 1) /(1 − β(1 − δ)ρξ). Equation (50) shows that the PR-ratio

displays persistent variation under RE, if and only if housing demand shocks ξ̂dt are
persistent. In fact, replicating the high quarterly auto-correlation of the PR-ratio in Table
3 requires choosing a shock persistence ρξ very close to one. Yet, in the limit ρξ → 1, the
derivative ∂Z/∂β uniformly converges to zero for all β ∈ [0, 1]. This implies that the
volatility of the PR ratio will be largely independent of the natural rate of interest when
housing demand shocks are sufficiently persistent. Under RE, there is thus no
quantitatively important relationship between the average natural rate of interest and the
volatility of the PR ratio, unlike in the case with capital gain extrapolation.

Given equation (48), the IS equation (46) implies that setting

it − Etπt+1 = r∗,REt for all t ≥ 0 (51)

is consistent with a constant output gap, i.e.,

ygapt = lim
T
Ety

gap
T for all t ≥ 0.

This justifies our interpretation of r∗,REt as the natural rate of interest under RE.42 It also
shows that the volatility of the natural rate of interest is independent of the average value of
the natural rate under RE. This will cease to be the case under subjective housing beliefs.

5.2 Subjective Housing Price Expectations

This section discusses three new economic forces showing up in the monetary policy problem
in the presence of subjective housing price beliefs. It shows (i) how housing price fluctuations
are affected by the average level of the natural rate of interest, (ii) how these fluctuations
affect the volatility of the natural rate of interest, and (iii) how these fluctuations distort the
allocation of output.

Housing prices under subjective beliefs are jointly determined by equations (9) and (10),
where qt should again be replaced by qut . Since these equations do not depend on policy, the
policymaker can treat the housing price gap as exogenous, as is the case with RE.43 Yet, the
housing price gap will now generally differ from zero, as the housing price gap can become
positive or negative depending on the degree of capital gain optimism/pessimism.

The average natural rate and housing price volatility. With subjective housing
price expectations, the equilibrium housing price is given by44

qu,Pt =
1

1− β(1− δ)βt
ξdt (52)

42In the presence of a lower bound constraint on nominal rates, it might not be feasible to implement
(51) at all times.

43This does not imply that the housing price qt is invariant to monetary policy: monetary can determine
how variations in qut get split up into variations of the housing price qt and variations in marginal utility
ũC(Ct; ξt).

44See Appendix G.1 for a derivation of this and subsequent results, including the generalized expressions
for the case with ρξ < 1.

29



and the price-to-rent ratio by

PRPt =
qu,Pt
ξdt

. (53)

For the limit with persistent housing demand shocks (ρξ → 1), we can derive the first-order
approximation

q̂u,Pt = q̂u,REt + (βt − 1)
β(1− δ)

1− β(1− δ)βt

(
1 + ξ̂dt

)
, (54)

which decomposes the equilibrium housing price into its RE value plus a contribution coming
from the presence of subjective beliefs. We then also have

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

(
1 + ξ̂dt

)]
, (55)

which shows that subjective housing price expectations are equal to their RE equilibrium
value whenever expected capital gains are equal to one (βt = 1). Capital gain extrapolation,
however, will induce fluctuations of βt around one and thus drive a wedge between the
housing price under learning and RE.45

As explained for the simple model in Section 3, lower values for the average natural
rate (discount factors β closer to one), will induce stronger fluctuations in capital gain
expectations (βt), because housing prices are more sensitive to belief revisions, see equation
(52). Lower average values for the natural rates will thus be associated with increased
fluctuations in housing prices and the PR-ratio, in line with empirical evidence presented in
Section 3.

Housing price fluctuations and the natural rate of interest. The presence of
non-zero housing price gaps also affects the natural rate of interest. This can be seen by
considering a policy that sets real interest rates equal to the RE natural real rate (r∗,REt ).
Such a policy now ceases to deliver a constant output gap, instead implies

ygapt = lim
T
Ety

gap
T − Cq

CY
(q̂ut − q̂u∗t ) . (56)

Since Cq/CY < 0, a positive (negative) housing price gap is then associated with a positive
(negative) output gap: high housing prices stimulate housing investment and thereby output.
Since the output expansion is inefficient, the policymaker might find it optimal to lean against
housing prices. The extent to which this is optimal will be explored quantitatively in Section
7 below.

The following lemma derives the natural rate r∗,Pt for our setting with subjective housing
price beliefs:46

Lemma 1 Let the natural rate of interest under subjective beliefs be given by

r∗,Pt ≡ r∗,REt − 1

ϕ

Cq
CY

(
(q̂ut − q̂u∗t )− Et

(
q̂ut+1 − q̂u∗t+1

))
for all t. (57)

45In the limit where the Kalman gain (1/α) in the updating equation (9) approaches zero, the model with
capital gain extrapolation converges to the RE model.

46As is the case with RE, it will generally not be optimal (or not even feasible) to set interest rates equal
to the natural rate at all times due to the presence of a lower bound constraint on nominal rates
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Figure 5: Changes in the average natural rate vs. changes in the volatility of the natural
rate
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Notes: This figure plots the pre-/post-1990 changes in the average natural rates against the changes in the
natural rate volatility for several advanced economies. The volatilities of the natural rates in the pre-/post-
1990 periods are the standard deviations of the linearly detrended series.

When real interest rates are equal to r∗,Pt for all t ≥ 0, then the IS equation (46) is consistent
with

ygapt = lim
T
Ety

gap
T for all t. (58)

The proof can be found in Appendix G.1. Equation (57) generalizes the natural interest
rate definition under RE to a setting with potentially subjective beliefs. In the special case
with a constant housing price gap, we have r∗,Pt = r∗,REt , even when the constant housing
price gap differs from zero. This shows that the natural rate under subjective beliefs differs
from it RE value if and only if the housing price gap is expected to go up or down. Since
Cq/CY < 0, the natural rate will exceed (fall short of) its RE level, when the current housing
price gap is higher (lower) than tomorrow’s (expected) gap.

Since fluctuations in housing prices become larger when the average natural rate falls, the
expected changes in the housing price gap will also become more volatile. A lower average
level of the natural rate is thus not only associated with more volatile housing prices but
also with more volatile natural rates of interest.

Figure 5 shows that this model prediction is consistent with the data. The figure plots
the changes in the average level of the natural rate from the period before 1990 to the period
after 1990 on the horizontal axis and the corresponding change in the natural rate volatility
on the vertical axis. The volatilities of the natural rates in the pre-/post-1990 periods are
the standard deviations of the linearly detrended series. The figure is again based on the
estimates in Holston, Laubach, and Williams (2017). While the level of the natural rate
decreased, the volatility of it increased in four out of the five advanced economies. Appendix
F discusses the robustness of these results.

Housing price fluctuations and the misallocation of output. We now show that
fluctuations in the housing price gap distort the allocation of output between its alternative
uses, i.e., between housing investment and non-housing consumption. The housing
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investment gap, i.e., the difference between actual investment k̂t and its efficient level k̂∗t , is
– to a first-order approximation – given by

k̂t − k̂∗t =
σ̃−1CY
1− α̃

ygapt +
1 + σ̃−1Cq

1− α̃
(q̂ut − q̂u∗t ) . (59)

Under rational expectations, the housing price gap is zero and the investment gap is only
distorted to the extent that the output gap is not closed. Additional output then gets
allocated in constant proportions to housing investment and non-housing consumption, as
(σ̃−1CY )/(1− α̃) > 0. In the presence of subjective beliefs, however, an additional distortion
arises: the housing investment gap is then also driven by the housing price gap. Given the
calibration considered later on, we have (1 + σ̃−1Cq)/(1− α̃) > 0, so that a positive housing
price gap (q̂ut − q̂u∗t > 0) reinforces the investment distortions generated by a positive output
gap.47 This explains why the squared housing price gap shows up in the policymaker’s
objective function (44). While monetary policy cannot affect the housing price gap within
our belief setup, it is the case that larger housing price gap fluctuations, as induced by lower
natural rates, contribute to increased welfare losses.

6 Model Calibration

To explore the quantitative implications for monetary policy arising from the presence of
capital gain extrapolation, we consider a calibrated model. The calibration strategy consists
of choosing a set of standard parameter values previously considered in the literature and of
matching salient features of the behavior of natural interest rates and housing prices in the
United States in the pre-1990 period. We then test the model by considering its predictions
for the lower natural rate levels observed in the post-1990 period up to 2021. We compare
across long time spans of 30 years each to obtain more reliable estimates of housing price
volatility, which is difficult to estimate given the high degree of serial correlation of housing
prices.

Calibration to the pre-1990 period. Table 5 summarizes the model parameterization.
The quarterly discount factor β is chosen such that the steady-state natural rate equals the
pre-1990 average of the U.S. natural rate of 3.34%, as estimated by Holston, Laubach, and
Williams (2017). The interest rate elasticity of output ϕ, the slope of the Phillips curve κy,

and the welfare weight Λy
Λπ

are taken from Table 2 in Adam and Billi (2006). The Phillips

Curve coefficient κq and the ratio Cq/Cy are set as in Adam and Woodford (2021).48

We now discuss the parameterization of the exogenous shock processes. The persistence
of the housing preference shock ρξ is set such that the RE model captures the high serial
autocorrelation of the PR ratio in the data. The standard deviation of the innovations to

47This distortion in the allocation of output between housing investment and non-housing consumption
is present independently of other frictions such as sticky prices or the lower-bound constraint on nominal
interest rates.

48The calibration target for the ratio Cq/Cy is the ratio of residential fixed investment over the sum of
nonresidential fixed investment and personal consumption expenditure, which is on average approximately
equal to 6.3% in the US. This and the remaining parameters then imply κq = −0.0023, see Appendix G.8
for details.
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Table 5: Model calibration

Parameter Value Source/Target

Preferences and technology
β 0.9917 Average U.S. natural rate pre 1990
ϕ 1 Adam and Billi (2006)
κy 0.057 Adam and Billi (2006)
Λy
Λπ

0.007 Adam and Billi (2006)

κq −0.0023 Adam and Woodford (2021)
Cq
CY

−0.29633 Adam and Woodford (2021)

δ 0.03/4 Adam and Woodford (2021)

Exogenous shock processes
ρr∗ 0.8 Adam and Billi (2006)
σr∗ 0.2940% (RE) Adam and Billi (2006)

0.1394% (subj. beliefs)
ρξ 0.99 Quarterly autocorrel. of the PR-ratio of 0.99
σξd 0.0233 (RE) Std. dev. of price-to-rent ratio pre 1990

0.0165 (subj. beliefs)

Subjective belief parameters
α 1/0.007 Adam, Marcet and Nicolini (2016)
βU 1.0031 Max. percentage deviation of PR-ratio from mean

the housing preferences σξ are set such that the rational expectations and subjective belief
models both replicate the pre-1990 standard deviation of the PR-ratio. For the subjective
belief model, this is achieved by simulating equations (9) and (11), which requires specifying
the belief updating parameters α and βU . We set α = 1/0.007 following Adam, Marcet,
and Nicolini (2016) and determine σξd and βU jointly such that (i) we match the volatility
of the price-to-rent ratio and (ii) the simulated data matches the maximum deviation of
the price-to-rent ratio in the data from its sample mean. The latter statistic identifies
βu. This procedure yields βU = 1.0031 and σξd = 0.0165. Housing demand disturbances
are less volatile than under RE because fluctuations in subjective beliefs contribute to the
fluctuations in housing prices. In fact, the calibration implies that about 50% of housing
price fluctuations are due to subjective beliefs.

We consider the natural rate process

r∗,REt = ρr∗r
∗,RE
t−1 + εrt , (60)

where εrt ∼ iiN(0, σ2
r∗). For the RE model, we set ρr∗ and σr∗ equal to the values in

Adam and Billi (2006). For the subjective believe model, we use the same value for ρr∗ but
choose σr∗ such that the generalized natural rate for the subjective belief model, defined
in equation (57), has the same volatility as the natural rate in the RE model. This yields
σr∗,RE = 0.1393%, which is lower than under RE, because fluctuations in the housing price
gap contribute to fluctuations in the natural rate in the presence of subjective beliefs. To
economize on the number of state variables in the policy problem, we abstract from the
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Figure 6: Standard deviation of price-to-rent ratio and natural rate

(a) Standard deviation of price-to-rent ratio (b) Standard deviation of the natural rate
(relative to corresponding mean) relative to case with r∗,RE = 3.34%
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Notes: This figure plots, for different steady state levels of the natural rate, the standard deviation of the
price-to-rent ratio (relative to its mean) and the standard deviation of the natural rate.

presence of mark-up shocks.49

Evaluation of the model in the post-1990 period. Figure 6 illustrates the
predictions of the RE model (dashed line) and subjective belief model (solid line) for the
standard deviation of the price-to-rent ratio (panel a) and the standard deviation of the
natural rate of interest (panel b). The panels depict these outcomes, which are
independent of monetary policy, on the vertical axis for various levels of the steady-state
natural rate on the horizontal axis. Variations in the steady-state level of the natural rate
are achieved via appropriate variations in the discount factor.50 The dots in Figure 6
report the average values for the pre- and post-1990 U.S. sample periods, where the
average natural rate was equal to 3.34% and 1.91%, respectively.51

Since the model has been calibrated to the pre-1990 period, the RE and subjective belief
model both match the pre-1990 data points in Figure 6. The subjective belief model also
performs quite well in matching the post-1990 outcomes, despite the fact that these outcomes
are not calibration targets. In particular, the standard deviation of the price-to-rent ratio
and the standard deviation of the natural rate endogenously increase as the natural rate falls,
with the magnitudes roughly matching the increase observed in the data. In contrast, the
RE model produces no increase in the volatility of the natural rate and only a weak increase
in the volatility of the price-to-rent ratio, for reasons discussed in Section 5.1. Matching

49Adam and Billi (2006) show that mark-up shocks are too small and display too little persistence to
cause the lower-bound constraint to become binding.

50As discussed before, variations in the discount factor may be driven by variations in the long-term
growth rate and/or by variations in time-preferences.

51The reported increase in the standard deviation of the natural rate is again based on the estimates in
Holston, Laubach, and Williams (2017).
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Figure 7: Average inflation under optimal monetary policy
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Notes: The figure reports the optimal inflation target for different average levels of the natural rate in the
presence of a zero lower bound constraint. The red line depicts the optimal target for the case with rational
housing price beliefs and the blue line the one with subjective housing price beliefs. The yellow line shows
the optimal average inflation under RE where the exogenous volatility of the natural rate is adjusted such
that it matches the endogenous volatility increase under subjective beliefs.

the increase in housing price volatility under RE requires increasing the volatility of housing
demand shocks. Since such an increase is irrelevant for monetary policy under RE, we leave
the volatility of housing preference shocks unchanged. Similarly, matching the increase in
the natural rate volatility under RE would require increasing σr∗ . We will consider such
increases when discussing our quantitative results.

7 Quantitative Implications for Monetary Policy

This section illustrates the quantitative implications of falling natural rates and rising
housing price volatility for the conduct of optimal monetary policy. It starts by
determining the implications of falling natural rates for the optimal inflation target, i.e., for
the average inflation rate implied by optimal monetary policy. It then illustrates the
dramatically different optimal response to housing demand shocks under subjective and
objective housing beliefs. Details of the nonlinear numerical solution procedure underlying
the results in this section can be found in Appendix G.6.

7.1 The Optimal Inflation Target

Figure 7 depicts the optimal inflation target for different steady-state levels of the natural
rate of interest, i.e., the average inflation rate implied by optimal monetary policy. It shows
the optimal target for the setup with subjective housing beliefs (upper line), for the case
with rational housing price beliefs (lower line), and for a third case that we discuss below.

We find that the optimal target is close to zero, whenever housing expectations are
rational. This holds quite independently of the average level of the natural rate, confirming
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earlier findings in Adam and Billi (2006) who considered the value for the average natural
rate at the upper end of the range shown in Figure 7. This may appear surprising given
that it is optimal for monetary policy to promise future inflation, so as to lower real interest
rates, whenever adverse natural rate shocks cause the lower-bound constraint on nominal
rates to bind. While the lower bound is reached more often when the average natural rate is
low, inflation promises still have to be made relatively infrequently and can be quite modest.
Hence, they do not significantly affect the average rate of inflation.

This result differs quite substantially from the ones reported in Andrade, Gaĺı, Le Bihan,
and Matheron (2019), who find that the optimal target should move up approximately one-
to-one with a fall in the natural rate under rational expectations. Besides that Andrade, Gaĺı,
Le Bihan, and Matheron (2019) consider a medium-scale sticky price model without housing,
the main difference to our approach is that they study Taylor rules with optimized intercepts
rather than optimal monetary policy. As shown in Coibion, Gorodnichenko, and Wieland
(2012) it makes a big difference for the optimal inflation target whether the monetary policy
maker follows a Taylor rule or Ramsey optimal policy.

While lower natural rates trigger (slightly) larger housing price fluctuations under rational
expectations, increased volatility is fully efficient and does not affect the natural rate of
interest. Under rational expectations, the optimal inflation target is thus unaffected by
housing price fluctuations, including for very low levels of the natural rate.

The upper line in Figure 7 shows that the situation is quite different with subjective
housing beliefs. The optimal inflation target is overall substantially higher and also reacts
more strongly to a fall in the average natural rate of interest. In fact, a fall in the steady-
state natural rate from its pre-1990 average (3.34%) to its post-1990 average (1.9%) causes
the optimal inflation target to increase by almost 0.5%. The corresponding increase under
rational expectations is less than 0.05%. This difference is due to the fact that the endogenous
volatility component of the natural rate increases once the natural rate drops. This reinforces
the stringency of the zero lower bound, but is an effect that is absent under RE. It requires
that the central bank engages more often in inflation promises, as it faces the lower bound
constraint.

The optimal inflation target with subjective housing beliefs is substantially higher than
the optimal target with RE, even at the pre-1990 average level of the natural rate. This is
the case although the volatility of the natural rate is calibrated at this point to be equal
across both models. This is due to two reasons: First, fluctuations in the housing price
gap also generate cost-push term in the Phillips curve. Second, belief fluctuations induce
more persistent variations in the natural rate than the exogenous natural rate shocks. This
puts further upward pressure on the optimal inflation rate, as it requires larger and more
persistent inflation promises by the central bank.

To illustrate this last point, the middle line in Figure 7 depicts the optimal inflation
rate under rational expectations, when we set the volatility of the (exogenous) natural rate
in the RE model such that it matches the volatility of the natural rate in the subjective
belief model, for each considered level of the natural rate. While the optimal inflation rate
increases relative to the benchmark RE setting, the level of the optimal inflation target still
falls short of the one implied by subjective beliefs.
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Figure 8: Impulse responses to a housing preference shock
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Notes: The figure reports the average impulse responses of the economy under subjective beliefs (at r∗ =
1.91%) after a three-standard-deviation housing demand shock. The blue lines show the responses after a
positive shock and the red lines after a negative shock.

7.2 Leaning Against Housing Demand Shocks

We now examine the optimal monetary policy response to housing demand shocks. Under
RE, housing demand shocks affect the housing price and the efficient housing price identically,
so that the housing price gap remains at zero. As a result, neither the output gap nor inflation
respond to housing demand shocks. In contrast, it becomes optimal to “lean against” housing
demand shocks in the presence of subjective beliefs. Yet, due to the lower bound constraint,
the optimal response to positive and negative housing demand shocks displays considerable
asymmetry.

The top row in Figure 8 shows the response of housing-related variables to a persistent
positive/negative housing demand shock of 5%.52 On impact, the shock triggers capital gains
of an equal amount, which then trigger belief revisions that fuel further upward movements

52We initialize the economy at its ergodic mean and then hit the economy with a one-time shock of three
standard deviations. We then average the subsequent response over the possible future shock realizations.
We assume a steady-state natural rate equal to its post-1990 mean (1.91%).
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of the housing price in the same direction. The positive shock, for instance, pushes housing
prices up by about 5% on impact, with belief momentum generating approximately another
5% in the first six quarters after the shock. This causes the housing price gap to become
significantly positive (not shown in the figure). Once actual housing price increases start to
fall short of the expected housing price increases, the housing boom reverts direction.

Higher housing prices push up housing investment, which causes upward pressure on the
output gap. Optimal monetary policy leans strongly against the housing price and increases
nominal and real interest rates. It does so despite the fact that the natural rate of interest
falls in response to the shock. The policy response causes a fall in inflation, which is amplified
by the fact that the increase in housing prices and investment increases the marginal utility of
consumption, hence, dampens wages and marginal costs. A positive housing demand shock
thus results – in the presence of subjective housing beliefs – in a disinflationary housing
boom episode under optimal monetary policy.

The policy response to a positive housing demand shock is much stronger than that
to a negative housing demand shock. In particular, nominal and real interest rates fall
considerably less following a negative shock realization. This is so because a negative housing
price gap is inflationary and inflation is already high to start with. Negative housing demand
shocks thus move inflation further away from its optimal level of zero.53 Yet, policy still
“leans against” the housing price decrease: real interest rates fall despite the fact that the
natural rate increases.

The fact that leaning against housing prices can be optimal in the presence of capital gain
extrapolation is in line with results in Caines and Winkler (2021), who consider a setting
with ‘conditionally model consistent beliefs’ in which expectations differ for many variables
from rational expectations, and with results in Adam and Woodford (2021), who consider a
setting where the policymaker fears ‘worst-case’ belief distortions about inflation and housing
price expectations. As none of these papers consider a lower-bound constraint, the policy
response to positive and negative shocks is symmetric in their settings.

8 The Role of Macroprudential Policy

It is often argued that macroprudential policies can be used to stabilize financial markets
and that this would allow monetary policy to ignore disturbances coming from the housing
sector, see Svensson (2018) for a prominent exposition of this view. In this section, we
evaluate the quantitative plausibility of this view within our setup with subjective housing
beliefs.

We show below that fully eliminating fluctuations in the housing price gap requires
imposing large and volatile macroprudential taxes. None of the macroprudential
instruments thus far available in advanced economies appear suited to achieve economic
effects anywhere near the required size. In addition, it is often necessary for
macroprudential policy to pay substantial subsidies. To the best of our knowledge, none of
the available macroprudential instruments acts in a way that subsidizes actions by
economic actors. Less aggressive policies, that aim at only partly eliminating the housing

53While the output gap is moved closer to its optimal level, the weight on the output gap in the welfare
function is two orders so magnitude smaller than that on inflation, see Table 5.
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price gap, still require considerable tax volatility, because fluctuations in subjective beliefs
turn out not to be independent of tax policy pursued.

We analyze the issue by considering a setup in which the policymaker can tax or subsidize
the ownership of housing. While actual macroprudential policies often operate via constraints
imposed on the banking sector, their ultimate effect is to make housing more or less expensive
to households. For this reason, we consider taxes and subsidies at the household level.

Specifically, we analyze a proportional and time-varying tax τDt that is applied to the
rental value of housing in every period t. A household owning Dt units of houses, then has
to pay taxes of

τDt DtRt (61)

units of consumption.54 We find this specification more plausible than a policy that taxes
the market value of housing, as it is difficult to determine market values in real time. A
setup that taxes the physical housing units, i.e., where taxes are equal to τDt Dt, delivers
very similar results, but is analytically more cumbersome. Furthermore, the tax setup in
equation (61) is equivalent to a setup where taxes directly affect household utility, i.e., where
the utility contribution from owning houses would instead be given by ξdt

(
1− τDt

)
Dt and no

monetary taxes would have to be paid. We prefer the formulation in equation (61) because
it allows expressing taxes in monetary units.

In the presence of these taxes, housing prices under subjective beliefs are given by

qut =

(
1− τDt

)
ξdt

1− β(1− δ)βt
, (62)

and the housing-price gap in percentage deviations from the steady state (where τD = 0) is

q̂ut−q̂u∗t =
(1− β(1− δ))

(
1− τDt

)
ξ̂dt

1− β(1− δ)βt
+
β(1− δ)(βt − 1)

1− β(1− δ)βt
− 1− β(1− δ)

1− β(1− δ)βt
τDt −

1− β(1− δ)
1− β(1− δ)ρξ

ξ̂dt .

The previous equation shows that macroprudential policy must eliminate housing price gap
fluctuations that are due to housing demand shocks (ξ̂dt ) and due to fluctuations in subjective
capital gain expectations (βt). Doing so requires setting the tax according to

τD∗t =
β(1− δ)
1 + ξ̂dt

[
(βt − ρξ)

1− β(1− δ)ρξ
ξ̂dt +

1

1− β(1− δ)
(βt − 1)

]
. (63)

To understand what the preceding equation implies for the behavior of taxes, one has to take
into account that the fluctuations in subjective beliefs (βt) depend themselves on the tax:
the tax influences housing prices, see equation (62), and thus – via capital gain extrapolation
– the evolution of subjective beliefs.

To analyze the behavior of taxes, we consider the calibrated subjective belief model
from Section 6 for the case where the average natural rate is equal to its post-1990 average
(1.9%). We consider also intermediate forms of taxation that do not aim at fully eliminating
the housing gap, by specifying taxes as

τDt = λDτD∗t ,

54To keep the rest of the model unchanged, the household also needs to expect lump sum tax rebates that
are equal to the amount of subjectively expected tax payments.
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Table 6: Taxes and housing price gap fluctuations for alternative tax sensitivities λD

Tax sensitivity λD Housing Price Gap q̂ut − q̂u∗t Housing Taxes τDt
Value Std. dev. Std. dev. Maximum Minimum

0.0 14.2% 0.0% 0.0% 0.0%
0.2 9.8% 2.4% 7.0% -12.1%
0.4 6.4% 4.2% 13.8% -21.7%
0.6 3.7% 5.7% 18.0% -30.0%
0.8 1.7% 7.0% 21.3% -36.2%
1.0 0.0% 8.0% 23.9% -41.8%

Notes: The table reports the standard deviation of the housing gap, q̂ut − q̂u∗t , as well as the standard
deviation, minimum value and maximum value of the macroprudential tax τD, for different tax sensitivities
λD.

where λD ∈ [0, 1] is a sensitivity parameter. Our prior setup assumed λD = 0, while fully
eliminating the housing price gap using macroprudential policy requires setting λD = 1. We
then simulate the dynamics of housing prices, beliefs and taxes for alternative values of λD.

Table 6 reports the main outcomes. It shows that a higher tax sensitivity (λD) steadily
reduces the standard deviation of the housing price gap (second column). However, the
standard deviation of taxes has to steadily increase. For a policy that fully eliminates the
housing price gap (λD = 1), the standard deviation of taxes is a staggering 8% of the rental
value of housing. Taxes reach maximum values up to 24% and minimum values deeply in
negative territory, with subsidies above 40% of the rental value. These taxes fully stabilize
the housing price gap but still induce substantial variation in subjective beliefs. The latter
explains why taxes have to remain rather volatile. Intermediate policies, say ones that set
λD = 0.4, substantially reduce the volatility of the housing gap, but still require rather
volatile taxes and often very large subsidies.

Given the outcomes in Table 6, we conclude that the currently available macroprudential
instruments will unlikely be able to insulate the monetary authority from disturbances in
the housing sector arising from capital gain extrapolation.

9 Conclusions

This paper documents systematic deviations from rational housing price expectations and
constructs a structural equilibrium model that jointly replicates the behavior of housing
prices and the patterns of deviations from rational expectations. The model shows that
subjective housing price beliefs significantly contribute to housing price fluctuations and
that lower natural rates of interest generate increased volatility for housing prices and the
natural rate.

Optimal monetary policy responds to falling and more volatile natural rates by
implementing higher average rates of inflation. Monetary policy should also lean against
housing price fluctuations induced by housing demand shocks, with reactions to housing
price increases being more forceful than the reaction to housing price downturns. None of
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these features is optimal if households hold rational housing price expectations. This
highlights the importance of basing policy advice on economic models featuring empirically
plausible specifications for household beliefs.
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A Additional Results for Section 2

A.1 Five-Year-Ahead Capital Gain Expectations

While for our baseline results in Section 2 we focus on short-term housing price expectations,
our findings equally hold for medium-term five-year-ahead expectations. We estimate the
five-year analogue of regression (1) as follows:

qt+20 − EPt [qt+20] = aCG + bCG ·
(
EPt [qt+20]− EPt−1 [qt+19]

)
+ εt. (A.1)

Table A.1 reports the estimates of bCG showing that five-year expectations are updated
sluggishly.

Table A.1: Sluggish adjustment of five-year-ahead housing price expectations

Mean Expectations Median Expectations

b̂CG 6.95∗∗∗ 6.89∗∗∗

(1.703) (1.680)

Notes: This table reports the empirical estimates of regression (A.1) using nominal housing-price
expectations. The reported standard errors are robust with respect to heteroskedasticity and serial
correlation (Newey-West with four lags). Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

We also run five-year-ahead versions of the regressions (2) and (3):

EPt

[
qt+20

qt

]
= a+ c · PRt−1 + ut (A.2)

qt+20

qt
= a + c · PRt−1 + ut. (A.3)

Table A.2 shows that five-year-ahead capital gain expectations covary positively with the
price-to-rent ratio, whereas actual capital gains covary negatively.

Table A.2: Expected vs. actual capital gains using five-year-ahead housing price expectations

bias (in %) p-value
ĉ (in %) ĉ (in %) −E(ĉ− ĉ) H0 : c = c

Mean Expectations 0.045 -1.889 0.0159 0.000
(0.0001) (0.01997)

Median Expectations 0.044 -1.889 0.0155 0.000
(0.00024) (0.01997)

Notes: ĉ is the estimate of c in equation (A.2) and ĉ the estimate of c in equation (A.3). The Stambaugh
(1999) small sample bias correction is reported in the second-to-last column and the last column reports the
p-values for the null hypothesis c = c. Newey-West standard errors using four lags in parentheses.

44



A.2 IV Estimation of Sluggish Belief Updating

To insure that the results obtained from regression (1) in Section 2 are not driven by forecast
revisions being correlated with the error term, we follow Coibion and Gorodnichenko (2015)
by adopting an Instrumental Variable approach. Specifically, we consider monetary policy
shocks as an instrument for forecast revisions. We identify daily monetary policy shocks as
changes of the current-month federal funds future in a 30-minute window around scheduled
FOMC announcements (following the approach in Gürkaynak, Sack, and Swanson (2005)
and Gorodnichenko and Weber (2016)). We then aggregate shocks to quarterly frequency by
assigning daily shocks partly to the current quarter and partly to the consecutive quarter,
based on the number of remaining days in the current quarter. Table A.3 reports the results
of the IV regression. The coefficients are positive and statistically significant, with point
estimates that are even larger than the ones reported in Section 2.

Table A.3: Instrumental variable regression

Mean Expectations Median Expectations
Nominal Housing Prices

b̂CG 2.85∗∗ 3.84∗∗∗

(1.259) (1.497)
First-stage F -statistic 21.88 17.78

Real Housing Prices

b̂CG 2.62∗∗∗ 3.45∗∗∗

(0.745) (0.649)
First-stage F -statistic 44.49 34.13

Notes: b̂CG report the results from regression (1), instrumenting forecast revisions using monetary policy
shocks, obtained via high-frequency identification. Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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A.3 Sluggish Adjustment of Capital Gain Expectations

Regression (1) in Section 2 studies sluggish adjustment of expectations about the housing
price level. Similar results can be obtained when considering expectations about capital
gains. Specification 1 in Table A.4 reports the regression coefficient when one replaces
actual and expected housing price levels on the left-hand side of equation (1) with actual
and expected capital gains. The coefficient estimates remain positive and highly statistically
significant. Specification 2 in Table A.4 reports results when replacing expectations about
housing price levels with expectations about capital gains on the right-hand side of equation
(1) and Specification 3 reports results when replacing levels by (actual and expected) capital
gains on both sides of equation (1). The coefficient estimates remain positive, but the
significance levels are lower for Specifications 2 and 3.
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Table A.4: Sluggish adjustment of housing price growth expectations

Mean Expectations Median Expectations

Specification 1

Nominal Housing Prices

b̂CG 0.023∗∗∗ 0.030∗∗∗

(0.005) (0.005)
Real Housing Prices

b̂CG 0.024∗∗∗ 0.031∗∗∗

(0.004) (0.004)

Specification 2

Nominal Housing Prices

b̂CG 492∗ 182
(279) (210)

Real Housing Prices

b̂CG 302∗ 158
(164) (168)

Specification 3

Nominal Housing Prices

b̂CG 5.20∗ 2.16
(2.896) (2.06)

Real Housing Prices

b̂CG 3.23∗ 2.06
(1.678) (1.835)

Notes: This table shows the results of regression (1) in terms of house-price growth rates instead of house-
price levels. Specification 1 denotes the case in which we replace housing-price levels with capital gains on
the left-hand side of regression (1), Specification 2 the case in which we replace the right-hand side and
Specification 3 denotes the case in which we replace levels with capital gains on both sides of regression (1).
The reported standard errors are robust with respect to heteroskedasticity and serial correlation (Newey-
West with four lags). Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

47



A.4 Cyclicality of Housing Price Forecast Errors

A similar version of the test from Adam, Marcet, and Beutel (2017) presented in Section
2, which considers the cyclicality of expected gains, is proposed by Kohlhas and Walther
(2021). In this case, we regress forecast errors about housing prices on the price-to-rent
ratio. Formally, we estimate

qt+4

qt
− EPt

[
qt+4

qt

]
= α + γ · PRt−1 + εt. (A.4)

Table A.5 shows the results. We find a negative and statistically significant coefficient in
all cases. Thus, consumers tend to become too optimistic (pessimistic) when they observe
high (low) housing valuations, inconsistent with rational expectations.

Table A.5: Forecast errors and price-to-rent ratios

Mean Expectations Median Expectations
Nominal Housing Prices

γ̂ −0.5∗∗∗ −0.5∗∗∗

(0.09) (0.10)
Real Housing Prices

γ̂ −0.5∗∗∗ −0.5∗∗∗

(0.08) (0.10)

Notes: This table shows the results of regression (A.4), whereas the estimated regression coefficients (and
standard errors) are multiplied by one hundred for better readability. The reported standard errors are
robust with respect to heteroskedasticity and serial correlation (Newey-West with four lags). Significance
levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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A.5 Dynamics of forecast errors with median and nominal housing
price expectations

Figure A.1 shows alternative specifications of the dynamic forecast error responses presented
in Section 2. Panel (a) presents the response of forecast errors for nominal housing prices.
Panel (b) shows the response of forecast errors for real housing prices (as in Section 2) but
considering median expectations. The figure shows that these responses are very close to
the baseline specification shown in Section 2.

Figure A.1: Dynamic Forecast error response to realized capital gains

(a) Nominal (Mean) Capital Gain Expectations (b) Median (Real) Capital Gain Expectations

Notes: Panel (a) shows impulse-response functions of nominal capital gain forecast errors to a one standard
deviation innovation in the housing capital gain. Panel (b) shows the impulse-response functions of median
(real) capital gain forecast errors of one-year ahead expectations to a one standard deviation innovation in
the housing capital gain. The shaded area shows the 90%-confidence intervals, standard errors are robust
with respect to serial correlation and heteroskedasticity (Newey-West with h+ 1 lags).
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A.6 Results when Excluding the Corona Virus Period

The empirical results reported in Section 2 are based on the entire period for which household-
survey expectations are available, i.e., 2007-2021. This section reports results obtained when
ending the sample in 2019, thereby excluding the recent Corona Virus crisis period. This
is motivated by the fact that the two largest outliers in Figure 2 fall into the period after
2019. Tables A.6 and A.7 show, however, that our results are qualitatively and quantitatively
robust to excluding observations from the years 2020 and 2021.

Table A.6: Sluggish adjustment of housing price expectations: excluding coronavirus crisis

Mean Expectations Median Expectations
Nominal Housing Prices

b̂CG 2.18∗∗∗ 2.80∗∗∗

(0.503) (0.502)
Real Housing Prices

b̂CG 1.97∗∗∗ 2.43∗∗∗

(0.332) (0.360)

Notes: This table shows the results of regression (1) excluding the coronavirus crisis, i.e., we exclude the
years 2020 and 2021. The reported standard errors are robust with respect to heteroskedasticity and serial
correlation (Newey-West with four lags). Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Table A.7: Expected vs. actual capital gains: excluding coronavirus crisis

bias (in %) p-value
ĉ (in %) ĉ (in %) −E(ĉ− ĉ) H0 : c = c

Nominal Housing Prices
Mean Expectations 0.058 -0.065 0.0036 0.000

(0.0066) (0.0126)
Median Expectations 0.018 -0.065 0.0118 0.042

(0.0010) (0.0126)

Real Housing Prices
Mean Expectations 0.0614 -0.0483 -0.0009 0.000

(0.0136) (0.0090)
Median Expectations 0.196 -0.483 0.076 0.017

(0.0034) (0.0090)

Notes: This table shows the results of regressions (2) and (3) excluding the coronavirus period, i.e., we
exclude the years 2020 and 2021. ĉ is the estimate of c in equation (2) and ĉ the estimate of c in equation
(3). The small sample bias correction is reported in the second to last column and the last column reports
the p-values for the null hypothesis c = c in the fifth column. Newey-West standard errors using four lags
in parentheses.
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A.7 Regional Housing Prices and Expectations

This appendix considers regional variation in housing prices and housing price expectations.
This is possible because the Michigan Survey reports the location of respondents using four
different regions: West, North East, North Central (or Midwest) and South. While the Case-
Shiller Price Index is not available at this level of regional disaggregation, we can construct
a regional housing price index using the Case-Shiller Index that is available for twenty large
U.S. cities. Following the definition of the regions in the Michigan Survey, we assign the
twenty cities to the four regions and then aggregate city price indices to a regional index
using two alternative approaches. The first approach weighs cities by population (as of 2019)
within each region, while the second approach uses equal weights for all cities within a region.

Table A.8 lists all twenty cities, the region to which we allocate them and their regional
population weights.55 As in our baseline approach using aggregate data, we deflate nominal
housing price indices by the aggregate CPI to obtain a real housing price index. We obtain
real housing price expectations by deflating nominal (mean) expectations with region-specific
(mean) inflation expectations.

Table A.8: Regions, cities and their weights

City Region Weight City Region Weight

Denver West 0.705
10.595

Chicago North Central 2.71
4.189

Las Vegas West 0.634
10.595

Cleveland North Central 0.385
4.189

Los Angeles West 3.97
10.595

Detroit North Central 0.674
4.189

Phoenix West 1.633
10.595

Minneapolis North Central 0.42
4.189

Portland West 0.645
10.595

Atlanta South 0.488
4.209

San Diego West 1.41
10.595

Charlotte South 0.857
4.209

San Francisco West 0.874
10.595

Dallas South 1.331
4.209

Seattle West 0.724
10.595

Miami South 0.454
4.209

Boston North East 0.68
9.1

Tampa South 0.387
4.209

New York North East 8.42
9.1

Washington DC South 0.692
4.209

Notes: This table lists the twenty cities for which the Case-Shiller Home Price Index is available, the region
to which the cities are allocated based on the Michigan Survey and their respective weights within region.

Table A.9 reports the region-specific estimates of bCG in regression equation (1). All point
estimates are positive with magnitudes that are broadly in line with the estimates at the
national level. Furthermore, all regional estimates are significant at the 1% level. This shows
that households update expectations sluggishly in all regions, consistent with the findings
reported for the national level reported in the main text.

Table A.10 reports the region-specific estimates of c and c from regressions (2) and (3).
Since regional price-to-rent ratios are not available, the regression uses real housing prices

55The weights are calculated as the ratio of the population in the considered city, divided by the sum of
populations in all cities in the respective region.

52



Table A.9: Sluggish adjustment of housing price expectations across regions crisis

Weighted Unweighted

b̂CG,W 2.00∗∗∗ 1.95∗∗∗

(0.411) (0.374)

b̂CG,NE 1.24∗∗∗ 1.15∗∗∗

(0.385) (0.441)

b̂CG,NC 1.97∗∗∗ 1.95∗∗∗

(0.461) (0.459)

b̂CG,S 1.74∗∗∗ 1.94∗∗∗

(0.385) (0.393)

Notes: This table shows the results of regression (1) using regional housing prices and expectations. The
superscripts W , NE, NC and S denote the regions West, North East, North Central (or Midwest) and
South, respectively. The reported standard errors are robust with respect to heteroskedasticity and serial
correlation (Newey-West with four lags). Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

on the right-hand side. In line with our findings at the aggregate level, we find c > 0 and
c < 0 in all the regions with the differences being largely highly statistically significant.

Figure A.2 shows the dynamic forecast errors responses to a one standard deviation
innovation in the real housing capital gain in each of the four regions. Figure A.3 shows the
results for the case in which the cities within regions are equally weighted. In line with the
findings reported in the main text, households’ housing capital gain expectations initially
underreact but overshoot after some time.
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Table A.10: Expected vs. actual capital gains across regions

bias (in %) p-value
ĉ (in %) ĉ (in %) −E(ĉ− ĉ) H0 : c = c

West
Population-weighted 0.109 -0.216 0.090 0.083

(0.0036) (0.1360)
Equally weighted 0.132 -0132 0.137 0.183

(0.0034) (0.1197)

North Central
Population-weighted 0.045 -0.544 0.008 0.000

(0.0089) (0.0256)
Equally weighted 0.088 -0.458 0.0191 0.000

(0.0118) (0.0769)
North East
Population-weighted 0.013 -0.474 0.001 0.000

(0.0089) (0.0072)
Equally weighted 0.126 -0.315 0.023 0.000

(0.0187) (0.0838)

South
Population-weighted 0.210 -0.008 0.137 0.144

(0.0023) (0.1067)
Equally weighted 0.163 -0.238 0.055 0.014

(0.0044) (0.1250)

Notes: This table shows the results of regressions (2) and (3) for different regions. ĉ is the estimate of c in
equation (2) and ĉ the estimate of c in equation (3). The small sample bias correction is reported in the
second to last column and the last column reports the p-values for the null hypothesis c = c in the fifth
column. Newey-West standard errors using four lags in parentheses.
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Figure A.2: Regional dynamic forecast error responses to realized capital gains (population-
weighted city housing price index)

(a) West (b) North Central

(a) South (b) North East

Notes: The figure shows the dynamic response of real capital gain forecast errors across the four different
regions (in which cities’ housing indices are weighted by their population share) to a one standard deviation
innovation in the housing capital gain. The shaded area shows the 90%-confidence intervals, standard errors
are robust with respect to serial correlation and heteroskedasticity (Newey-West with h+ 1 lags).
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Figure A.3: Regional dynamic forecast error response to realized capital gains (equal weights)

(a) West (b) North Central

(a) South (b) North East

Notes: The figure shows the dynamic response of real capital gain forecast errors across the four different
regions (in which cities are equally weighted) to a one standard deviation innovation in the housing capital
gain. The shaded area shows the 90%-confidence intervals, standard errors are robust with respect to serial
correlation and heteroskedasticity (Newey-West with h+ 1 lags).
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B Additional Results for Section 3

B.1 Dynamic Forecast Error Responses: Housing Price Level

Figure B.1 shows that the simple housing model also not only matches the empirical dynamic
forecast error response about capital gains well, but also does a good job in matching the
forecast errors about the level of future housing prices. The results are obtained by defining
the forecast error Xt+h in equation (4) as

Xt+h ≡ qt+4+h − EPt+h [qt+4+h] (B.1)

and estimating the resulting local projections in the data and the population local projection
for the model. Figure B.1 shows that households’ expectations about the future level of
housing prices initially undershoot and subsequently overshoot, as is the case with expected
capital gains.

Figure B.1: Dynamic forecast error responses: housing price levels

Notes: The figure shows impulse-response functions of housing-price level forecast errors of one-year ahead
expectations to a one standard deviation innovation in the housing capital gain from the data and in the
data. The shaded area shows the 90%-confidence intervals of the empirical estimates, standard errors are
robust with respect to serial correlation and heteroskedasticity (Newey-West with h+ 1 lags).
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B.2 Model Response of the PR-Ratio to Housing Demand Shocks

Section 3 shows that real housing prices are more sensitive to housing demand shocks at
lower levels of the natural rate. Figure B.2 illustrates that the same holds true for the
model-implied price-to-rent ratio. The figure depicts the structural impulse response of the
price-to-rent ratio (in percent deviations from steady state) to a one standard deviation
housing-preference shock. It shows the response for a natural rate of 0.75% (blue line) and
0.25% (red line). The IRFs for the price-to-rent ration look very similar to the ones for real
housing prices, shown in Figure 4(a).

Figure B.2: Impulse response functions

Notes: This figure shows the structural impulse response functions of the price-to-rent ratio (in percent
deviations from steady state) to a one standard deviation housing-preference shock for different natural
rates.
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C The Nonlinear Optimal Policy Problem

We shall consider Ramsey optimal policies in which the policymaker chooses the sequence of
policy rates, prices, and allocations to maximize rationally expected household utility, subject
to the constraint that prices and allocations constitute an Internally Rational Expectations
Equilibrium. Note that the policymaker maximizes utility under a probability measure that
is different from the one entertained by households, whenever the latter hold subjective
beliefs. Benigno and Paciello (2014) refer to such a policymaker as being ‘paternalistic’.

The objective of the policymaker is to maximize household utility. Using equation (19) to
express the relative quantities demanded of the differentiated goods each period as a function
of their relative prices and the linear dependence of utility on the stock of assets, we can
write the utility flow to the representative household in the form

u(Yt, q
u
t ; ξt)− v(Yt; ξt)∆t + ξ̄dt

Adt
α̃
kα̃t ,

with

u(Yt, q
u
t ; ξt) ≡ ũ(C(Yt, q

u
t , ξt); ξt)

v(yjt ; ξt) ≡ ṽ(f−1(yjt/At); ξt),

where ∆t, defined in equation (34), captures the misallocations from price dispersion. The
term

ξ̄dt ≡
∞∑
T=t

Et[(1− δ)T−t βT−tξdT ]

captures the present value contribution from new housing investment. We can use (24) and
(40) to express kt in terms of Yt, q

u
t and exogenous shocks. Hence, we can express the policy

maker’s objective of maximizing (13) under rational expectations, as maximizing

U = E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt),

where the flow utility is given by

U(Yt,∆t, q
u
t ; ξt) ≡

C̄ σ̃−1

t C(Yt, q
u
t , ξt)

1−σ̃−1

1− σ̃−1

− λ

1 + ν
H̄−νt

(
Yt
At

)1+ω

∆t

+
Adt ξ̄

d
t

α̃
Ω(qut , ξt)

α̃ C(Yt, q
u
t , ξt)

α̃
1−α̃ σ̃

−1

, (C.1)

which is a monotonically decreasing function of ∆ given Y , qu and ξ, and where Ω(qu, ξ) is
the function defined in (39). The only endogenous variables that are relevant for evaluating
the policymaker’s objective function are thus Yt, ∆t and qut .
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The non-linear optimal monetary policy problem is then given by

max
{Yt,qut ,p∗t ,wt(j),Pt,∆t,it≥0}

E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt) (C.2)

subject to

(
p∗t
Pt

)1+η(φ−1)

=
EPt
∑∞

T=t (α)T−tQt,T
η
η−1

φwT (j)
(
YT
AT

)φ (
PT
Pt

)ηφ+1

EPt
∑∞

T=t (α)T−tQt,T (1− τT )YT

(
PT
Pt

)η (C.3)

wt(j) = λ
H̄−νt
C̄ σ̃−1

t

(
Yt
At

)φν
C (Yt, q

u
t , ξt)

σ̃−1

(
p∗t
Pt

)−ηφν
(C.4)

(Pt/Pt−1)η−1 =
1− (1− α)

(
p∗t
Pt

)1−η

α
(C.5)

∆t = h(∆t−1, Pt/Pt−1) (C.6)

ũC(C(Yt, q
u
t , ξt); ξt) = lim

T→∞
EPt

[
ũC(CT ; ξT )βT

T−t∏
k=0

1 + it+k
Pt+k+1/Pt+k

]
(C.7)

qut = ξdt + β(1− δ)EPt qut+1, (C.8)

where the initial price level P−1 and initial price dispersion ∆−1 are given. Equation (C.4)
insures that wages clear current labor markets. Similarly, by setting Ct = C(Yt, q

u
t , ξt) on the

left-hand side of the consumption Euler equation (C.7), we impose market clearing for output
goods in period t. Similarly, setting qut equal to the value defined in (C.8) insures market
clearing in the housing market.56 Firms’ subjective expectations about future wages and
households’ subjectively optimal consumption plans for the future, however, will generally
not be consistent with labor market or goods market clearing in the future in all subjectively
perceived contingencies, when beliefs deviate from rational ones.

To be able to analyze the policy problem further, it is necessary to be more specific about
the beliefs P entertained by households and firms.

D Assumptions about Long-Run Beliefs

To insure that the subjectively optimal consumption plans satisfy the transversality condition
(28), we impose that equation (7) describes subjective housing price beliefs for an arbitrarily
long but finite amount of time t < T̄ < ∞ and that households hold rational expectations
in the long-run, i.e. for all periods t ≥ T . Agents thus perceive

qut = qu∗t for all t ≥ T̄ ,P almost surely,

where qu∗t = ξ̄dt ≡
∑∞

T=tEt[(1− δ)
T−t βT−tξdT ] is the rational expectations housing price.

Appendix G.3 shows that this assumption is sufficient to insure that the transversality

56This holds as long as Dmax is chosen sufficiently large, such that it never binds along the equilibrium
path.
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condition is satisfied. The transversality condition may also hold under weaker conditions,
but actually showing this turns out to be difficult. The fact that agents will eventually
hold rational housing and rental price expectations could be interpreted as agents learning
to make rational predictions in the long-run.

E Quadratic Approximation of the Policy Problem

This appendix derives the linear-quadratic approximation to the nonlinear policy problem
in Appendix C.

E.1 Optimal Dynamics and the Housing Price Gap

It will be convenient to determine the welfare-maximizing level of output and the welfare-
maximizing housing price under flexible prices, so as to express output and housing prices
in terms of gaps relative to these maximizing values. We thus define (Y ∗t , q

u∗
t ) as the values

(Yt, q
u
t ) that maximize U(Yt, 1, q

u
t ; ξt), which are implicitly defined by57

UY (Y ∗t , 1, q
u∗
t ; ξt) = Uqu(Y ∗t , 1, q

u∗
t ; ξt) = 0.

In particular, we have

qu∗t = ξ
d

t , (E.1)

as shown in Appendix G.4. We have

q̂u,REt = q̂u∗t , (E.2)

which shows that housing price fluctuations are indeed efficient under RE.
The output gap is defined as

ygapt ≡ log(Yt)− log(Y ∗t ) = ŷt − ŷ∗t , (E.3)

i.e. the log-difference of output from its dynamically optimal value.
Under subjective beliefs, it follows from equations (54) and the linearization of (E.1) (see

Appendix G.1 below) that

q̂u,Pt − q̂u∗t =

(
1− β(1− δ)

1− β(1− δ)βt
− 1− β(1− δ)

1− β(1− δ)ρξ

)
ξ̂dt +

β(1− δ)(βt − 1)

1− β(1− δ)βt
. (E.4)

Again, for the case where βt = 1 and with persistent housing demand shocks (ρξ → 1),
the housing price gap under subjective beliefs is equal to the housing price gap under RE.
Belief fluctuations, however, now contribute to fluctuations in the housing price gap.

For the real housing price gap, q̂t − q̂∗t , this implies

q̂t − q̂∗t =
(
1 + σ̃−1Cq

)
(q̂ut − q̂u∗t ) + σ̃−1CY y

gap
t . (E.5)

57The optimal path for {Y ∗
t , q

u∗
t } can then be used to determine optimal dynamics for the remaining

variables. In particular, equation (40) determines C∗
t , equation (24) determines k∗t and thus D∗

t , and equation
(18) determines H∗

t .
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E.2 Quadratically Approximated Welfare Objective

A second-order approximation to the utility function delivers

1

2
UŶ Ŷ (ŷt − ŷ∗t )

2 +
1

2
Uq̂uq̂u (q̂ut − q̂u∗t )2 +

1

2
γ∗h22π

2
t + t.i.p.,

where t.i.p. denotes terms independent of policy and γ∗ is the Lagrange multiplier
associated with equation (C.6) at the optimal steady state. See Appendix G.5 for a
detailed derivation. The dependence of the objective function on inflation follows from a
second-order approximation of the constraint (C.6), which allows expressing the
second-order utility losses associated with price distortions ∆t as a function of squared
inflation terms.

Since the fluctuations in the housing price gap, q̂ut − q̂u∗t , are either constant (with RE)
or determined independently of policy (under subjective beliefs, see Equation (E.4)), the
endogenous part of the loss function can be written as

∞∑
t=0

βt
1

2

(
Λππ

2
t + Λy (ygapt )2

)
.

E.3 New Keynesian Phillips Curve

Linearizing Equations (C.3)-(C.5) delivers the linearized Phillips curve. The condition for
the equilibrium wage (C.4) in period T in industry j in which firms last updated their prices
in period t is given by

wT (j) = w̃T (j)

(
pjt
Pt

)−ηφν (
PT
Pt

)ηφν
,

where

w̃T (j) ≡ λ
H̄−νT
C̄ σ̃−1

T

(
YT
AT

)φν
C (YT , q

u
T , ξT )σ̃

−1

.

Since firms’ expectations about wT (j) and PT are rational, their expectations about w̃T (j)
are rational as well. Using the expression for wT (j), noting that pt(i) = pjt = p∗t , and writing
out Qt,T , it follows that

(
p∗t
Pt

)
=

EPt
∑∞

T=t (αβ)T−t η
η−1

φC̄ σ̃−1

T C−σ̃
−1

T w̃T (j)
(
YT
AT

)φ (
PT
Pt

)η(1+ω)

EPt
∑∞

T=t (αβ)T−t C̄ σ̃−1

T C−σ̃
−1

T (1− τT )YT

(
PT
Pt

)η−1


1

1+ωη

. (E.6)
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Log-linearizing equation (E.6) delivers58

p̂∗t − P̂t =
1− αβ
1 + ωη

{̂̃wt(j) + φ
(
ŷt − Ât

)
− τ̂t − ŷt + αβEPt

[
1 + ωη

1− αβ

(
p̂∗t+1 − P̂t+1 + πt+1

)]}
.

(E.7)
As the expectation in (E.7) is only about variables about which the private agents hold

rational expectations, we can replace EPt [·] with Et[·].59 Therefore, (C.5) can be used in
period t and t+ 1, which in its linearized form is given by

p̂∗t − P̂t =
α

1− α
πt.

Substituting ̂̃wt(j) by the linearized version of the equilibrium condition (C.4) delivers the
linearized New Keynesian Phillips Curve:

πt = κyy
gap
t + κq (q̂ut − q̂u∗t ) + βEtπt+1 + ut, (E.8)

where the coefficients κ are given by

κy =
1− α
α

1− αβ
1 + ωη

(ky − fy) > 0

κq = −1− α
α

1− αβ
1 + ωη

fq < 0,

with ky = ∂ log k/∂ log y, fy = ∂ log f/∂ log y, fq = ∂ log f/∂ log qu, such that

ky − fy = ω + σ̃−1

(
1− g

)
Y

C + σ̃−1

1−α̃k
= ω + σ̃−1CY > 0

fq = σ̃−1

k
1−α̃

C + σ̃−1

1−α̃k
= −σ̃−1Cq > 0,

where Cq ≡ qu

C
∂C
∂qu

and CY ≡ Y
C
∂C
∂Y

, and where the functions

f (Y, qu; ξ) ≡ (1− τ) C̄ σ̃−1
Y C (Y, qu; ξ)−σ̃

−1

and k (y; ξ) ≡ η
η−1

λφ H̄−ν

A1+ωY
1+ω are the same as

in Adam and Woodford (2021), for the current period in which markets clear and the
internally rational agents observe this.

58This follows from the the fact that in steady state, we have p∗ = P , so that

η

η − 1
φC̄ σ̃

−1

C−σ̃−1

w̃(j)

(
Y

A

)φ
= C̄ σ̃

−1

C−σ̃−1

(1− τ)Y.

The steady state value of the numerator in (E.6) is thus given by 1
1−αβ

η
η−1φC̄

σ̃−1

C−σ̃−1

w̃(j)
(
Y
A

)φ
and the

steady state value of the denominator by 1
1−αβ C̄

σ̃−1

C−σ̃−1

(1− τ)Y .

59The subjective consumption plans showing up in the stochastic discount factor drop out at this order
of approximation.
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The cost-push shock ut is given by

ut =
(1− α) (1− αβ)

α (1 + ωη)
(Θ + τ̂t − ĝt) ,

where

τ̂t = − log

(
1− τt
1− τ̄t

)
ĝt = − log

(
1− gt
1− ḡt

)
define deviations of τt and gt from their second-best steady state values.

As in the standard New Keynesian model, a linearization of (C.6) implies that the state
variable ∆t is zero to first order under the maintained assumption that initial price dispersion
satisfies ∆−1 ∼ O(2). This constraint, together with the assumption that the Lagrange
multipliers are of order O(1), thus drops out of the quadratic formulation of the optimal
policy problem. The second-order approximation of (C.6) is, however, important to express
the quadratic approximation of utility in terms of inflation.

E.4 Linearized IS Equation with Potentially Non-Rational
Housing Price Beliefs

We here linearize the constraint (C.7). One difficulty with this constraint is that it features
the limiting expectations of the subjectively optimal consumption plan on the right hand
side. Generally, this would require solving for the subjectively optimal consumption paths,
which is generally difficult.

Under our beliefs specifications, housing prices beliefs are rational in the limit. This
insures that we do not have to solve for the subjectively optimal consumption plan, instead
can derive the IS equation directly in terms of the output gap.

We can now define the natural rate of interest:

Definition 2 The natural rate r∗,REt is the one implied by the consumption Euler equation
(23) or (C.7), rational expectations, and the welfare-maximizing consumption levels under
flexible prices {C∗t }. It satisfies

ũC(C∗t ; ξt) = βEt

[
uC(C∗t+1; ξt)(1 + r∗,REt+k )

]
. (E.9)

Using the previous definition, we obtain the linearized Euler equation under potentially
subjective housing prices beliefs:

Lemma 2 For the considered belief specifications, the log-linearized household optimality
condition (C.7) implies for all t

ygapt = lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − r∗,REt+k

))
− Cq
CY

(q̂ut − q̂u∗t ) , (E.10)
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where limT Ety
gap
T is the (rational) long-run expectation of the output gap, and

ϕ ≡ − ũc
ũccC

1
CY

> 0. The coefficients Cq < 0 and CY > 0 are the ones defined in the
derivation of the linearized Phillips Curve.

The proof can be found in Appendix G.2

E.5 Lagrangian Formulation of the Approximated Ramsey
Problem

Collecting results from the previous sections, we obtain the following Lagrangian formulation
of the Ramsey problem

max
{πt,ygapt ,it≥i}

min
{ϕt,λt}

(E.11)

E0

∞∑
t=0

βt

{
− 1

2

(
Λππ

2
t + Λy (ygapt )2

)
+ ϕt [πt − κyygapt − κq (q̂ut − q̂u∗t )− ut − βEtπt+1] (E.12)

+ λt

[
ygapt − lim

T
Ety

gap
T + ϕEt

∞∑
k=0

(
it+k − πt+1+k − r∗,REt+k

)
+
Cq
CY

(q̂ut − q̂u∗t )

]
(E.13)

− ϕ−1π0 − λ−1

(
ϕπ0 − ygap0 − Cq

CY
(q̂u0 − q̂u∗0 )

)}
,

where the process for (q̂ut − q̂u∗t ) can be treated as exogenous for the purpose of monetary
policy and where the initial Lagrange multipliers (ϕ−1, λ−1) capture initial pre-commitments.
In order to numerically solve the optimal policy problem in (E.11), we recursify the problem
as proposed in Marcet and Marimon (2019) and solve for the associated value functions and
optimal policies. Details of the recursive formulation can be found in Appendix G.6.
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Online Appendix
Not intended for publication

F The Volatility of PR-Ratio and of the Natural Rate

Figure F.1 shows the evolution of natural rates of interest and price-to-rent ratios the U.S.,
Canada, France, Germany, and the United Kingdom, which we use in Section 2. The natural
rates are estimated by Holston, Laubach, and Williams (2017) and Fujiwara, Iwasaki, Muto,
Nishizaki, and Sudo (2016). The price-to-rent ratios are taken from the OECD. We convert
the quarterly series of natural rates to annual series by taking arithmetic averages and the
quarterly series or PR-ratios to annual series by taking harmonic averages.

Figure F.1: Natural rates and price-to-rent ratios

(a) Natural Rates of Interest (b) Price-to-rent ratios
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Notes: This figure shows the evolution of the natural rate of interest (left panel) and price-to-rent ratios
(right panel) for different advanced economies over the period 1961-2020 and 1970-2019, respectively.

Figures 4(b) and 5 in the Section 2 document that the fall in the level of the natural
rates of interest across several advanced economies was accompanied by an increase in the
volatility of the price-to-rent ratio and in the volatility of natural rates. These trends are
consistent with the subjective belief model, outlined in Sections 3 and 4.

Figure F.2 plots the volatility of the price-to-rent ratio (left panel) and the standard
deviation of the natural rate (right panel), respectively before 1990 (blue bars) and after
1990 (red bars), along with 90% confidence bands. The reported volatilities of the price-to-
rent ratios are the standard deviations relative to the period-specific mean values, in line
with the model. The reported volatilities of the natural rates of interest are the standard
deviations of the fluctuations around a linear time trend, in order to isolate high-frequency
volatility that can be related to natural rate fluctuations in the model around a fixed steady
state value of the natural rate. Figure F.4 shows the volatility price-to-rent ratio using the
same linear detrending approach. The p-values below the respective bars are for the null
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hypothesis of no change in the volatility. The increase in the volatility of the PR ratio and the
natural rate were statistically significant in most of the advanced economies. The evidence
is not always statistically significant due to the high serial correlation of the price-to-rent
ratio and the natural rate, which makes it difficult to estimate standard deviations precisely.
Figure F.3 shows that the reported volatility increases are not driven by the exact point
where we split the data, instead looks often similar for other split points.

Figure F.2: Volatility of the PR ratio and natural rates pre and post 1990.

(a) Standard Deviation of the (b) Standard Deviation of Natural Rate
Price-to-Rent Ratio Pre and Post 1990 Pre and Post 1990
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Notes: The black lines denote the 90%-confidence bands. The p-value corresponds to the test whether or
not the values changed from pre to post 1990. The reported volatilities of the price-to-rent ratios are the
standard deviations relative to the period-specific mean values. The reported volatilities of the natural rates
of interest are the standard deviations of the fluctuations around a linear time trend.
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Figure F.3: Robustness of housing and natural rate volatility increases with different sample
splits

(a) Volatility of the Price-to-Rent ratios (b) Volatility of natural rates
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Figure F.4: Standard deviation of the detrended PR ratio pre and post 1990
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the values changed from pre to post 1990.
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G Proofs

G.1 Results in Section 5

Proof of Results in Section 5.1. Result (48) follows from iterating forward on (26).
Log linearizing (48), we have

q̂ut = ξ̂
d

t ,

and log-linearizing (12) delivers

ξ̂dt = ρξ ξ̂
d
t−1 + εdt .

Since the steady-state value of ξ
d

is

ξ
d

=
ξd

1− β(1− δ)
,

the log-linearization of ξ
d

t delivers

ξ̂
d

t = (1− β (1− δ))
[
ξ̂dt + β(1− δ)Etξ̂dt+1 + ...

]
= (1− β (1− δ))

[
ξ̂dt + β(1− δ)ρξ ξ̂dt + ...

]
= (1− β (1− δ))

∞∑
T=t

(β (1− δ) ρξ)T−t ξ̂dt

= ξ̂dt
1− β(1− δ)

1− β(1− δ)ρξ
.

The results for the price-to rent ration follow by noticing that equation (25) implies

PRt ≡
qt
Rt

=
qut
ξdt
. (G.1)

Proof of Results in Section 5.2. From equation (26), which has to hold with equality
in equilibrium, and equation (8) we get

qu,Pt =
1

1− β(1− δ)βt
ξdt

The percent deviation of housing prices from the steady state, in which βt = 1 and ξdt = ξd,
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is then given by

q̂u,Pt =

1
1−β(1−δ)βt ξ

d
t − 1

1−β(1−δ)ξ
d

1
1−β(1−δ)ξ

d

=
1− β(1− δ)

1− β(1− δ)βt
ξdt
ξd
− 1

=
1− β(1− δ)

1− β(1− δ)βt

(
1 + ξ̂dt

)
− 1

=
1− β(1− δ)

1− β(1− δ)βt
ξ̂dt +

β(1− δ)(βt − 1)

1− β(1− δ)βt
(G.2)

Note, that we can decompose the housing price under subjective beliefs into the housing
price under RE and terms that are driven by beliefs:

q̂u,Pt = q̂u,REt +
β(1− δ) (βt − 1)

1− β(1− δ)βt
+

(1− β(1− δ)) (β(1− δ) (βt − ρξ))
(1− β(1− δ)βt) (1− β(1− δ)ρξ)

ξ̂dt . (G.3)

Note, that

EPt

[
qu,Pt+1

]
= βtq

u,P
t .

Therefore, a log-linear approximation around the optimal steady state, in which β = 1, yields

EPt

[
q̂u,Pt+1

]
= q̂u,Pt + (βt − 1) .

From this, we can add and subtract on the right-hand side

Et

[
q̂u,REt+1

]
= ρξ ξ̂

d
t

1− β(1− δ)
1− β(1− δ)ρξ

,

which, after plugging in the expression from (G.2), delivers

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

]
+ (1− β(1− δ)ρξ − (1− β(1− δ)βt) ρξ)

(1− β(1− δ))
(1− β(1− δ)βt) (1− β(1− δ)ρξ)

ξ̂dt .

In the limit ρξ → 1, this boils down to

EPt

[
q̂u,Pt+1

]
= Et

[
q̂u,REt+1

]
+ (βt − 1)

[
1 +

β(1− δ)
1− β(1− δ)βt

(
1 + ξ̂dt

)]
Log-linearizing equation (G.1), which holds true independent of the belief specification, yields

P̂R
P
t = q̂u,Pt − ξ̂dt .
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Proof of Lemma 1. Under the proposed policy that sets it −Etπt+1 equal to the natural
rate defined in equation (57), we have

ygapt = lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − r∗,REt+k

))
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T − Et

(
∞∑
k=0

ϕ

(
r∗,REt+k −

1

ϕ

Cq
CY

((
q̂ut+k − q̂u∗t+k

)
− Et+k

(
q̂ut+k+1 − q̂u∗t+k+1

))
− r∗,REt+k

))

− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T + Et

(
∞∑
k=0

(
Cq
CY

((
q̂ut+k − q̂u∗t+k

)
−
(
q̂ut+k+1 − q̂u∗t+k+1

))))
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T + Et

(
Cq
CY

(
(q̂ut − q̂u∗t )− lim

k
Et
(
q̂ut+k+1 − q̂u∗t+k+1

)))
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T +

(
Cq
CY

(q̂ut − q̂u∗t )

)
− Cq
CY

(q̂ut − q̂u∗t )

= lim
T
Ety

gap
T ,

which proves that with this policy, the output gap is indeed constant, and r∗,P is the real
rate that implies a constant output gap.

G.2 Log-linearized Euler equation

Proof of Lemma 2. Log-linearizing equation (C.7) around the optimal steady state
delivers

ũCCCĉt + ũCξξξ̂t = EPt

∞∑
k=0

ũC (it+k − πt+1+k) + lim
T→∞

EPt

(
ũCCCĉT + ũCξξξ̂T

)
,

and log-linearizing (E.9) gives

ũCCCĉ
∗
t + ũCξξξ̂t = Et

∞∑
k=0

ũCr
∗,RE
t+k + lim

T→∞
Et

(
ũCCCĉ

∗
T + ũCξξξ̂T

)
.

Subtracting the previous equation from (G.4) delivers

ĉt − ĉ∗t = EPt

∞∑
k=0

ũC
ũCCC

(
it+k − πt+1+k − r∗,REt+k

)
+ lim

T→∞
EPt
(
ĉT+1 − ĉ∗T+1

)
, (G.4)

where we used EPt ξT = EtξT and EPt ĉ
∗
T+1 = Etĉ

∗
T+1, which hold because agents hold rational

expectations about fundamentals.
In all periods in which the subjectively optimal plan is consistent with market clearing

in the goods sector, the plan satisfies equation (40). Log-linearizing equation (40) delivers

ĉt = CY ŷt + Cq q̂
u
t + Cξ ξ̂t, (G.5)
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where ξ̂t is a vector of exogenous disturbances (involving Adt , C̄t, gt). Evaluating this equation
at the optimal dynamics defines the optimal consumption gap ĉ∗t :

ĉ∗t ≡ CY ŷ
∗
t + Cq q̂

u∗
t + Cξ ξ̂t.

Subtracting the previous equation from (G.5) delivers

ĉt − ĉ∗t = CY (ŷt − ŷ∗t ) + Cq (q̂ut − q̂u∗t )

= CY y
gap
t + Cq (q̂ut − q̂u∗t ) (G.6)

Since the current consumption market in period t clears, equation (G.6) holds in period t
and can be used to substitute the consumption gap on the left-hand side of equation (G.4).
Similarly, since housing price expectations are rational in the limit, the consumption market
also clears in the limit under the subjectively optimal plans, i.e., equation (40) holds for
t ≥ T ′. We can thus use equation (G.6) also to substitute the consumption gap on the r.h.s.
of equation (G.4). Using the fact that housing price expectations are rational in the limit
(limT E

P
t (q̂ut − q̂u∗t ) = 0), we obtain

ygapt = lim
T
EPt y

gap
T − Et

(
∞∑
k=0

ϕ
(
it+k − πt+1+k − r∗,REt+k

))
− Cq
CY

(q̂ut − q̂u∗t ) .

Since we assumed that agents’ beliefs about profits and taxes are given by equations (36)
and (37), respectively, evaluated using rational income expectations, the household holds
rational expectations about total income. This can be seen by substituting (36) and (37)
into the budget constraint (14). We thus have limT E

P
t y

gap
T = limT Ety

gap
T in the previous

equation, which delivers (E.10).

G.3 Transversality Condition Satisfied with Subjective Housing
Price Beliefs

This appendix shows that under the considered subjective belief specifications, the optimal

plans satisfy the transversality constraint (28). Since Dt ∈ [0, Dmax] and EPt q
u
T = Etξ

d

T for
T ≥ T ′, we have limT→∞ β

TEPt (DT q
u
T ) = 0. We thus only need to show that

limT→∞ β
TEPt

C̄σ̃
−1

T

Cσ̃
−1

T

BT = 0. Combining the budget constraint (14) with (36) and (37) we

obtain

Ct +Bt +
(
Dt − (1− δ)Dt−1 − d̃(kt; ξt)

)
qut
C σ̃−1

t

C̄ σ̃−1

t

+ kt = (1− gt)Yt +Bt−1.

For t ≥ T ′ the subjectively optimal plans satisfy market clearing in the housing market, i.e.,

Dt − (1− δ)Dt−1 − d̃(kt; ξt) = 0

so that the budget constraint implies

Ct +Bt + kt = (1− gt)Yt +Bt−1. (G.7)
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Furthermore, for t ≥ T ′ subjectively optimal plans also satisfy market clearing for
consumption goods, i.e.,

Ct + kt = (1− gt)Yt.

It thus follows that the subjectively optimal debt level Bt in the budget constraint (G.7) is
constant under the subjectively optimal plan, after period t ≥ T ′. Furthermore, the
expectations about Yt in the budget constraint (G.7) is rational under the assumed lump
sum transfer expectations, so that the household’s subjective consumption expectations are
the same as in a rational expectations equilibrium. (The subjectively optimal investment
decisions kt are driven by rational housing price expectations). Since the limit expectations
C̄ σ̃−1

T /C σ̃−1

T are bounded in the rational expectations equilibrium, it follows that

limT→∞ β
TEPt

C̄σ̃
−1

T

Cσ̃
−1

T

BT = 0.

G.4 Optimal House Price Absent Price Rigidities

The following derivation closely follows Adam and Woodford (2021). We obtain
Uqu (Yt,∆t, q

u
t , ξt) from differentiating equation (C.1) with respect to qut and set it equal to

0:

Uqu (Yt,∆t, q
u
t , ξt) = C̄ σ̃−1

t Cqu (Yt, q
u
t , ξt)C (Yt, q

u
t , ξt)

−σ̃−1

+ Adt ξ
d

t

∂Ω (qut , ξt)

∂qut
Ω (qut , ξt)

α̃−1C (Yt, q
u
t , ξt)

α̃
1−α̃ σ̃

−1

+
σ̃

1− α̃
Adt ξ

d

tΩ (qut , ξt)
α̃C (Yt, q

u
t , ξt)

α̃
1−α̃ σ̃

−1−1Cqu (Yt, q
u
t , ξt) = 0,

where
∂Ω (qut , ξt)

∂qut
=

1

qut

1

1− α̃
Ω (qut , ξt) ,

and when defining χ ≡ σ̃−1

1−α̃ − 1, we get

Cqu(Yt, q
u
t ; ξt) ≡

∂C(Yt, q
u
t ; ξt)

∂qu
=
− 1
qut

1
1−α̃Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

1 + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ
.

Taking everything together, we get

Uqu (Yt,∆t, q
u
t , ξt) =

1
qut

1
1−α̃Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

1 + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ
C̄ σ̃−1
t

(
ξ
d

t

qut
− 1

)
.

In order for Uqu to be zero, we need to have that

qu∗t = ξ
d

t ,

as stated in equation (E.1).
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G.5 Quadratically Approximated Welfare Objective

This derivation follows Adam and Woodford (2021). In the optimal steady state, we have
UY = Uqu = UY qu = 0, as well as U∆ + γ (βh1 − 1) = 0. Given the assumption ∆−1 ∼ O(2),

it follows ∆t ∼ O(2) for all t ≥ 0. Additionally, we have h2 ≡ ∂h(∆,Π)
∂Π

= 0 at the optimal
steady state. Therefore, a second-order approximation of the contribution of the variables
(Yt,∆t, q

u
t ,Πt, ξt) to the utility of the household yields

1

2
UŶ Ŷ (ŷt − ŷ∗t ) +

1

2
Uq̂uq̂u (q̂ut − q̂u∗t ) +

1

2
γ∗h22π

2
t + t.i.p.,

where t.i.p. contains all terms independent of policy. Under rational expectations, we have
that (q̂ut − q̂u∗t ) = 0 and is thus constant and independent of (monetary) policy. Under
subjective beliefs, (q̂ut − q̂u∗t ) is purely driven by beliefs βt and housing demand shocks ξdt ,
see equation (E.4), both independent of policy. Therefore, we include 1

2
Uq̂uq̂u (q̂ut − q̂u∗t ) in

t.i.p..
The term UŶ Ŷ is given by UŶ Ŷ ≡ Y ∂

∂Y

(
UŶ
)
≡ Y ∂

∂Y
(Y UY ) = Y ∗UY + (Y ∗)2 UY Y . At the

optimal steady state, we have

Λπ = −1

2
γ∗h22 > 0

Λy = −1

2
(Y ∗)2 UY Y > 0,

where

UY Y = −σ̃−1
(
1− g

)
C̄
σ̃−1

C
(
Y , qu, ξ

)−σ̃−1−1
CY

Y ∗

C
(
Y , qu, ξ

)
− λ

1 + ν
(1 + ω)ω

H̄
−ν

A1+ωY
ω−1 < 0

h22 =
αη (1 + ω) (1 + ωη)

1− α
> 0

γ∗ =
U∆

1− αβ
< 0,

with

U∆ = −
Y ∗
(
1− g

)
1 + ω

(
C̄ σ̃−1

C
(
Y ∗, qu∗, ξ

))σ̃−1

< 0.

G.6 Recursified Optimal Policy Problem with Lower Bound

We numerically solve the quadratically approximated optimal policy problem with
forward-looking constraints (E.11). While it would be preferable to solve the fully
nonlinear Ramsey problem, as spelled out in Appendix C, this is computationally not
feasible with sufficient degree of numerical accuracy because the problem features 9 state
variables and an occasionally binding constraint. The quadratically approximated problem
features 2 state variables less because price dispersion ∆t is to first order independent of
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policy and because the Phillips curve reduces from a system involving two forward-looking
infinite sums, see equation (E.6), to a system involving only a single infinite sum, see (E.7).

Eggertsson and Singh (2020) compare the exact solution of the standard New Keynesian
model with lower bound to the solution of the linear-quadratic approximation with lower
bound and show that the quantitative deviations are modest, even for extreme shocks of the
size capturing the 2008 recession in the U.S..

To obtain a recursive problem, we apply the approach of Marcet and Marimon (2019)
to the problem with forward-looking constraints (E.11). We thereby assume that the
Lagrangian defined by problem (E.11) satisfies the usual duality properties that allow
interchanging the order of maximization and minimization, which we verify ex-post using
the computed value function. We set the terminal value function for t = T ′ to its RE value
function WRE(·). For t ≤ T ′ we have a value function Wt(·) satisfying the following
recursion:

Wt(ϕt−1, µt−1, ut, r
∗,RE
t , βt, ξ

d
t , q

u
t−1)

= max
(πt,ygapt ,it≥i)

min
(ϕt,λt)

−1

2

(
Λππ

2
t + Λy (ygapt )2

)
+ (ϕt − ϕt−1) πt − ϕt (κyy

gap
t + κq (q̂ut − q̂u∗t ) + ut)

+λt

[
ygapt − lim

T
Ety

gap
T + ϕ

(
it − Et

∞∑
k=0

r∗,REt+k

)
+
Cq
CY

(q̂ut − q̂u∗t )

]
+µt−1ϕ (it − πt) + γt (it − i)

+βEt

Wt+1(ϕt, β
−1 (λt + µt−1)︸ ︷︷ ︸

=µt

, ut+1, r
∗,RE
t+1 , βt+1, ξ

d
t+1, q

u
t

 (G.8)

where the next period state variables (βt+1,qut ) are determined by equations (9) and (52) and
(q̂ut − q̂u∗t ) is determined by equation (E.4). Here we assume that r∗,REt follows a Markov
process, such that the term Et

∑∞
k=0 r

∗,RE
t+k showing up in the current-period return can be

expressed as a function of the current state r∗,REt . The future state variables (ϕt, µt, βt+1, q
u
t )

are predetermined in period t. The expectation about the continuation value is thus only
over the exogenous states (ut+1, r

∗,RE
t+1 , ξdt+1). The endogenous state variable ϕt−1 is simply

the lagged Lagrange multiplier on the New Keynesian Phillips curve with housing. The
endogenous state variable µt−1 is given for all t ≥ 0 by

µt = β−(t+1) (λ0 + µ−1) + β−tλ1 + ...+ β−1λt.

The initial values (ϕ−1, µ−1) are given at time zero and equal to zero in the case of time-
zero-optimal monetary policy.

For periods t < T ′, where T ′ is the period from which housing price expectations are
rational and the lower bound constraint ceases to bind, the value functions depend on time,
thereafter they are time-invariant. Likewise for sufficiently large T ′, the value functions Wt(·)
and Wt+1(·) will become very similar.

We can numerically solve for the value function Wt(·) by value function iteration, starting
with WT ′ which is the value function associated with the linear-quadratic problem with RE.
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G.7 Optimal Targeting Rule

Differentiating (G.8) with respect to {πt, ygapt , it} yields:

∂Wt

∂πt
= −Λππt + (ϕt − ϕt−1)− µt−1ϕ = 0

∂Wt

∂ygapt

= −Λyy
gap
t − ϕtκy + λt = 0

∂Wt

∂it
= γt + λtϕ+ µt−1ϕ = 0 and γt (it − i) = 0.

Combining these first-order conditions, we can derive the following targeting rule which
characterizes optimal monetary policy

Λππt +
Λy

κy

(
ygapt − ygapt−1

)
+
λt−1

κy
+ µt−1

(
ϕ+

1

κy

)
+

γt
ϕκy

= 0,

where γt is the Lagrange multiplier associated with the lower bound on interest rates. If
the lower bound on the nominal interest rate does not bind in the current period, we have
γt = 0. Furthermore, if the lower bound has not been binding up to period t, the IS equation
has not posed a constraint for the monetary policymaker. Thus, λt−1 = λt−k = 0 for all
k = 0, 1, ..., t. For an initial value of µ−1 = 0, it follows that µt−1 = 0. The targeting rule
then collapses to

Λππt +
Λy

κy

(
ygapt − ygapt−1

)
= 0,

which is the same as in Clarida, Gaĺı, and Gertler (1999).
The Lagrange multiplier γt ≤ 0 captures the cost of a currently binding lower bound. If

γt < 0, the optimal policy requires a compensation in the form of a positive output gap or
inflation. The multipliers λt−1 and µt−1 capture promises from past commitments when the
lower bound was binding.

Another way to express equation (G.9) is to write it as

Λππt +
Λy

κy

(
ygapt − ygapt−1

)
+

1

ϕκy

[
γt −

1 + β + ϕκy
β

γt−1 +
γt−2

β

]
= 0. (G.9)

House prices do not enter the optimal target criterion directly but larger fluctuations in
house prices make the lower bound bind more often and for a longer period of time. The
optimal policy, thus, requires larger compensations in terms of positive output gaps and
inflation. To implement this, the nominal interest rate needs to be kept longer at the lower
bound.

G.8 Calibration of Cq/CY

To calibrate Cq/CY , the ratio of the consumption elasticities to housing prices and income,
respectively, note that from appendix ”Second-Order Conditions for Optimal Allocation” in
Adam and Woodford (2021), we have

Cqu(Yt, q
u
t ; ξt) ≡

∂C(Yt, q
u
t ; ξt)

∂qu
=
− 1
qut

1
1−α̃Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

1 + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ
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where χ ≡ σ̃−1

1−α̃ − 1. In our formulation, we have defined

Cq ≡
∂C(Yt, q

u
t ; ξt)

∂ ln qut
=
∂C(Yt, q

u
t ; ξt)

∂qut

∂qut
∂ ln qut

= Cqu(Yt, q
u
t ; ξt)

qut
Ct

so that we have

Cq = −
1

1−α̃Ω(qut , ξt)C(Yt, q
u
t , ξt)

χ+1

C(Yt, qut , ξt) + (1 + χ) Ω(qut , ξt)C(Yt, qut , ξt)
χ+1

.

From the appendix in Adam and Woodford (2021) we also have

CY (Yt, q
u
t , ξt) ≡

∂CY (Yt, q
u
t , ξt)

∂Yt
=

1− gt
1 + Ω(qut , ξt) (1 + χ)C(Yt, qut , ξt)

χ

so that in our notation

CY ≡
∂CY (Yt, q

u
t , ξt)

∂ lnYt
=

(1− gt)Yt
C(Yt, qut , ξt) + Ω(qut , ξt) (1 + χ)C(Yt, qut , ξt)

χ+1
.

We then have

Cq
CY

=

− 1
1−α̃Ω(qut ,ξt)C(Yt,qut ,ξt)

χ+1

C(Yt,qut ,ξt)+(1+χ)Ω(qut ,ξt)C(Yt,qut ,ξt)
χ+1

(1−gt)Yt
C(Yt,qut ,ξt)+Ω(qut ,ξt)(1+χ)C(Yt,qut ,ξt)

χ+1

= − 1

1− α̃
Ω(qut , ξt)C(Yt, q

u
t , ξt)

χ+1

(1− gt)Yt
.

In the steady state, we have Y (1 − g) = C + ΩC
χ+1

, which says that privately consumed
output Y (1 − g) is divided up into consumption C and resources invested in the housing

sector, ΩC
1+χ

. We thus have that

ΩC
χ+1

Y (1− g)
= 1− C

Y (1− g)
= 1− C

C + ΩC
χ+1 = 1− 1

1 + ΩC
χ .

Following Adam and Woodford (2021), we set this to the share of housing investment to
total consumption, ΩC

χ
, equal to 6.3%, so that in steady state we have

Cq
CY

= − 1

1− α̃

(
1− 1

1.063
.

)
Finally, following Adam and Woodford (2021), we set the long-run elasticity of housing
supply equal to five, which implies α̃ = 0.8, so that

Cq
CY

= −5

(
1− 1

1.063

)
≈ −0.29633.

From this, it follows that

CY =
(1− g)Y

C + (1 + χ) ΩCχ+1
=

C + k

C + σ̃−1

1−α̃k
=

1 + k
C

1 + σ̃−1

1−α̃
k
C

=
1 + 0.063

1 + 5 · 0.063
= 0.80836

and
Cq = −0.29633 · 0.80836 = −0.23954.
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