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Introduction: Phonon assisted quasiparticles and ab-initio methods
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Density functional theory: Hohenberg and Kohn, Phys. Rev. (1964)

Kohn and Sham, Phys. Rev. (1965)

3. Electron-boson interaction in hafnium disulfide

3.5. Electronic and vibrational properties
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Figure 3.4.: (a) first-principles electronic band structure of HfS2. (b) Comparison with angle-
resolved photoemission spectroscopy ARPES measurements. The red dashed line in the plot
(a) marks the Fermi energy of the doped compound.

The band structure of HfS2 evaluated along the MK�MLHAL-high-symmetry-path is
shown in Fig. 3.4 (a). The in-plane path was chosen to match the measurements and allow
a comparison of the MK�M- and the LHAL-planes of the 3D BZ. In good agreement
with literature values from theory and experiment, the direct fundamental gap at � is
around 1.9 eV and the indirect bandgap between � and the CBM at L is around 1.1 eV.
[77–79] In Fig. 3.4 (b) the ARPES measurements along the MK�M-high-symmetry-path
are shown as an intensity plot ranging from dark brown (maximum intensity) to white
(minimum intensity). The first-principles calculations colored in blue agree quite well
with them. A small deviation occurs at the K-point: In the measurements the highest
valance band appears to dip towards the lower bands, in contrast to the calculated one.
This deviation might be attributed to surface effects in the measurements.

Dimensionality and bandgap

The following calculations have been performed to study the effect of dimensionality
on the layered van der Waals material HfS2 and the dependence of the electronic band
structure on the interlayer distance is examined, since the interlayer distance between the
monolayer is overestimated by 0.11 Å as compared to the experimental measurements
[69]. Furthermore, the dimensionality influences the position at which the n-dopants
contribute their electrons to the conduction band of the doped HfS2. The CBM of the
2D HfS2 is located in the L-M plane because its BZ is a projection of the three-dimensional
(3D) BZ. In that case, the high-symmetry points L and M coincide, while the CBM of
the 3D compound is at the L point. The interlayer distance is defined by the value of the
lattice vector c, which specifies the distance between the Hf monolayers. In Fig. 3.5(a)
the energy difference of the lowest conduction band at the high-symmetry points L and
M is visualised as a function of the interlayer distance. In the equilibrium position
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DFT band vs ARPES in HfS2  (Measurements: S. Mahatha, K. Rossnagel)
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F. Caruso, M. Hoesch, et al. Phys. Rev. Lett. 119, 017001 (2017)

obtain an unprecedented agreement between the theory and
experiment, and we resolve the discrepancy between earlier
theoretical works and measured phonon dispersions. Our
results demonstrate a breakdown of the adiabatic Born-
Oppenheimer approximation in the phonon dispersion rela-
tions of boron-doped diamond, revealing that these effects
may be sizable also in three-dimensional bulk compounds.
The B-doped diamond samples were prepared by micro-

wave plasma-enhanced chemical vapor deposition from a
hydrogen-rich gas phase with added diborane (B2H6). The
samples were grown homoepitaxially on type Ib synthetic
crystals with (001)-oriented surfaces at thicknesses of
25! 5 μm [31]. The boron concentration was determined
fromsecondary ionmass spectroscopy (SIMS)of 11B−, 12C−,
and 11B12C− ions. For a B-doping concentration of
1.4×1021 cm−3, the samples exhibit superconducting behav-
ior with critical temperature Tc ¼ 2.8 K. IXS spectra were
measured at beam line ID28 at the European Synchrotron
Radiation Facility (ESRF) with an energy resolution of
3.2 meV. The samples were aligned with the beam directed
parallel to the surface and passing through the substrate or the
B-doped diamond film, for measurements of pristine dia-
mond and B-doped diamond, respectively. The scattering
vector Q was varied from ð2.06; 0; 0Þ2π=a (close to Γ)
to ð3;−0.12; 0Þ2π=a (close to X), with a ¼ 3.67 Å. The

small deviations in the ð0; k; 0Þ direction are given in
Supplemental Table I [32]. The measured IXS spectra are
shown in Figs. 1(c)–1(e) as heat maps and in Supplemental
Fig. 1 as individual scans [32]. For the undoped case, our
measurements are in excellent agreement with previous
experimental data [33].
Nonadiabatic phonon dispersions were computed from

first principles within the many-body theory of electron-
phonon coupling. Nonadiabatic effects were accounted for
via the phonon self-energy ΠNA

qν [17]:
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where ϵnk and fnk denote single-particle energies
and Fermi-Dirac occupation factors, respectively, η
is a positive infinitesimal, and ΩBZ is the Brillouin
zone volume. The screened electron-phonon matrix
elements gmn;νðk;qÞ were obtained as gmn;νðk;qÞ ¼
ðℏ=2MωqνÞ1=2hψmkþqj∂qνVjψnki, where ψnk denote
Kohn-Sham single-particle eigenstates, M the C mass,

FIG. 1. (a) Density-functional theory band structure of diamond for a B concentration of 1.4 × 1021 cm−3. (b) Adiabatic phonon
dispersions of pristine (blue lines) and B-doped diamond (dashed black lines) for momenta along L-Γ-X, as obtained from density-
functional perturbation theory. (c)–(e) Measured IXS spectra of pristine and B-doped diamond. The critical momentum for the onset of
the KA, qc ¼ 2kF, is indicated by vertical dashed lines; see also (a). (f)–(h) Nonadiabatic spectral function, obtained from Eqs. (1) and
(2), for the LO phonon of (c) pristine and (d),(e) B-doped diamond along Γ-X. The phonon branch considered here is marked by the red
line in panel (b). (i)–(k) Phonon energies obtained from Eq. (3) in the adiabatic approximation (ΠNA

qν ¼ 0) and from the fully
nonadiabatic theory (present theory). Nonadiabatic phonon dispersions of undoped diamond are reported for comparison. All doping
concentrations are in units of cm−3.
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Doping-induced phonon softening in diamond  (Measurements: M. Hoesch)
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Sio, Verdi, Ponce, Giustino, Phys. 
Rev. Lett. 122, 246403  (2019)

E lucidating the nature of charge carriers in doped transition
metal oxides (TMOs) is key to understanding the mechan-
ism of electrical conduction in these multifunctional

materials. In conducting oxides the infrared-active vibrations
can couple strongly to electrons, leading to the formation of
polarons1. Polarons are electrons dressed by a phonon cloud2,
and represent a paradigmatic example of emergent state in
condensed matter. Depending on their mass and size, polarons
exhibit widely different conduction mechanisms, from band-like
transport to thermally activated hopping transport3,4. Despite
being central to the science and technology of oxides, little is
known about the properties of polaronic states.

The interest in electron–phonon coupling and polaronic
quasiparticles in TMOs has been reinvigorated by recent angle-
resolved photoelectron spectroscopy (ARPES) experiments5–9.
The signature of polaronic behaviour in ARPES spectra is the
appearance of satellites below the conduction band, at integer
multiples of the optical phonon energy. This is reported in
Fig. 1a,b for the paradigmatic case of doped anatase TiO2 (ref. 5).
These pioneering measurements showed that by increasing
the carrier concentration, polaronic satellites gradually evolve
into the photoemission kinks observed in metals and
superconductors10 (see Fig. 1c). It was proposed that this
crossover reflects the evolution of charge carriers from polarons
to a Fermi liquid5,8. In order to clarify the origin of this transition
without making any a priori assumption about the underlying
mechanism, first principles calculations are urgently called for.
However, the investigation of polaronic features in ARPES
spectra from first principles and their evolution with doping is
exceptionally challenging and has never been reported before.

In the following we focus on the prototypical example of
anatase TiO2. On top of its well-known applications in solar
energy harvesting11,12 and superhydrophilic technology13,14, this
material is also being investigated in the quest for transparent
conducting oxides based on non-toxic and Earth-abundant
elements15,16. Despite its pivotal role in a broad range of
technologies, the nature of the charge carriers in anatase is still
controversial17. Here we address these issues by calculating
ARPES spectra and polaron wavefunctions entirely from
first principles. We develop a theoretical and computational
framework that allows us to investigate polarons and Fermi liquid
quasiparticles on the same footing, and without resorting to any
empirical parameters. Using this approach, we show how the
interplay between the dynamical screening of the electron plasma
and the Fröhlich electron–phonon coupling is responsible for the
transition between polaronic and Fermi liquid states. We propose
that the mechanism identified in this work may be universal, and
also applies to other oxides such as SrTiO3 and ZnO.

Results
Angle-resolved photoemission spectra. Our calculated ARPES
spectra are shown in Fig. 1d–f, for the same doping levels as in the
measurements of ref. 5, reproduced in Fig. 1a–c. These maps
show the bottom of the conduction band of n-doped anatase
TiO2, for three doping levels in the range 1018–1020 cm! 3. All
the spectra exhibit a bright parabolic band, whose size increases
with doping. This reflects the rise of the Fermi energy inside the
conduction band as the electron density increases. Besides this
bright feature, panels a–b (experiments) and d–e (calculations)
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Figure 1 | Ab initio ARPES spectra of n-doped anatase TiO2. (a–c) ARPES spectra of anatase TiO2 measured by Moser et al.5. The measurements were
taken at 20 K on samples with 5" 1018 cm! 3 (a), 3" 1019 cm! 3 (b) and 3.5" 1020 cm! 3 (c). The zero of the energy is set to the Fermi level. The electron
momentum kx is along the GS line of the anatase Brillouin zone (see j). Reproduced with permission from ref. 5. Copyright 2013 by the American Physical
Society. (d–f) Calculated spectral function of anatase TiO2, for the same electron momenta and nominal doping levels as in a–c. Gaussian masks of widths
25 meV and 0.015 Å! 1 were applied to account for the experimental resolution5. (g–i) Band structures extracted from the calculated spectral functions in
d–f. The bare bands are in red, the bands including electron–phonon interactions are in blue. The calculated mass enhancement parameter l is 0.73 (g),
0.70 (h) and 0.20 (i). (j) Brillouin zone and high-symmetry lines of anatase TiO2. (k) Calculated ARPES spectrum for a doping concentration of
3" 1019 cm! 3, showing the anisotropy of the electron dispersions along GX (basal plane of the tetragonal lattice, see Supplementary Fig. 1) and
GZ (c-axis).
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Electron-phonon interactions out of equilibrium: fingerprints in spectroscopy
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To investigate the PIPT, the sample was cooled to 25 K and photo-excited by a pump pulse with 
incident fluence F = 1.35 mJ cm-2, which corresponds to an excitation density in the surface In 
layer of around one electron per unit cell, implying homogeneous excitation. Selected snapshots 
following excitation are shown in Fig. 2, A to D. At 't = -450 fs (Fig. 2A) the XUV pulse arrives 
before the pump pulse, hence the band structure reflects the unperturbed (8x2) phase with only 
states below EF occupied. Shortly after excitation at 't = 50 fs (Fig. 2B) previously unoccupied 
states above EF are now clearly visible. An evolution of electronic states occurs, most clearly 
observed for the states around Γ8x2 (kx = 0.75 Å-1) which shift down in energy between 't = 50 
and 't = 250 fs (Fig. 2C).  At 't = 900 fs (Fig. 2D) the system has fully transformed into the 
(4x1) phase. The overlaid GW band structure for the two phases highlights the occurrence of the 
PIPT.  

Fig. 2. Electronic and atomic structure during photo-induced phase transition. (A) to (D) 
trARPES data (F = 1.35 mJ cm-2) on a logarithmic color scale at selected delays at a base 
temperature of T = 25 K. Arrows highlight the positions of the features of interest which are 
followed in (E). (E) Dynamics of the spectral regions marked by arrows in (A) and (D). Red data 
points track the size of the band gap at the zone boundary over time while the orange data mark the 
position of the band edge at the zone center with respect to the Fermi level. The blue data reveals 
the change of splitting between the two innermost bands marked in (D). Solid curves are the 
dynamics of the relevant spectral features from AIMD simulations, rescaled with respect to the GW 
band structure. For further details see the supporting online material (23). (F) Evolution of the 
atomic structure (AIMD trajectories) through the PIPT, showing the mean squared displacement of 
the atomic positions from the (4x1) phase following excitation: Σ𝑖 |Ri�Ri,4x1|2. Trajectories for two 
initial excitation conditions are shown: only for the distribution including 

1. Light-induced structural phase transitions (In nanowires)

Nicholson, Lücke, Gero Schmidt, Puppin, Rettig, Ernstorfer, Wolf,  
Science 362, 821 (2018)

A challenge for ab-initio approaches: 

• Highly-anharmonic lattices

• Phase transitions

• Highly-nonlinear effects (strong fields)

• Several competing mechanisms 

(electron, spin, phonon)

2. Direct imaging of phonons out of equilibrium
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Non-equilibrium dynamics of electrons and 
phonons from first (or second?) principles



Thermalization of electrons and lattice from the two-temperature model

F. Caruso, D. Novko, Adv. Phys. X 7, 2095925 (2022) Figure 2. (a) Schematic illustration of the TTM and (b) NLM. At variance with the TTM, the NLM ac-
counts for coupling with di↵erent subsets of phonon modes, as well as phonon-phonon interactions. (c) Time-
dependence of the electronic (blue) and vibrational temperatures of the longitudinal (LA) and transverse
acoustic phonons (TA1 and TA2) of aluminum. Reproduced from Ref. [40].

modeled via a Fermi-Dirac function. Additionally, the approximation (ii) makes the
TTM unsuitable to describe the non-equilibrium dynamics of the lattice. The TTM
is sometimes extended to model the population inversion and other forms of nascent
non-equilibrium distributions by defining separately electron and hole thermal baths
[160], i.e., electron and hole temperatures [161], or by dividing the electronic bath into
a majority of thermal and a small portion of non-thermal carriers [51,90,117,118].
However, in these extensions, the issue of thermalized lattice bath (ii) is still present.
In the following, we discuss how this limitation can be overcome by extending the
TTM to account for anisotropic coupling to di↵erent phonon modes.

2.1. The non-thermal lattice model

Ultrafast di↵use-scattering experiments and first-principles calculations provide strong
evidence that non-thermal regimes of the lattice – i.e., vibrational states characterized
by bosonic occupations which deviate significantly from the Bose-Einstein statistics –
can be established upon photo-excitation in both semiconducting and metallic layered
compounds, such as, black phosphorus [147], MoS2 [146], graphite [85], graphene [145],
and TiS2 [154]. Even for simple metals such as Al, the anisotropic coupling between
electrons and acoustic phonons can trigger the emergence of a non-equilibrium vibra-
tional states persisting for several picoseconds [40]. Generally, whenever the electron-
phonon interaction is dominated by one or several strongly-coupled modes, these lattice
vibrations may provide a preferential decay channel for the relaxation of photo-excited
electrons and holes [81]. As mentioned in the introduction, such a scenario can lead to
the formation of hot phonons, i.e., a non-thermal state of the lattice [76,78,82,126,127].
Because of the assumption that the lattice can be described by a Bose-Einstein dis-
tribution at temperature Tph, the TTM is unsuitable to describe these phenomena
[40,85,147]

To enable the description of hot phonons and non-thermal states of the lattice,
a generalization of the TTM to account for anisotropies in the coupling with di↵er-
ent subsets of lattice vibrations – referred to as non-thermal lattice model (NLM)
[40,62,122,123] or three-temperature model [81,82], depending on the level of approx-
imation – has recently been proposed. In short, while in the TTM the electrons are
coupled to the lattice via a single coupling constant g [Fig. 2 (a)], in the NLM the
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1. Two-temperature model (TTM)

solutions in the form of decaying exponentials (see Appendix). A detailed discussion
of the analytical solution of the TTM can be found in Ref. [59]. The resulting time
dependence of the temperatures T1 and T2 is illustrated in Fig. 1 (d). In short, the
presence of a coupling constant g tends to restore a regime of thermal equilibrium
where T2 = T1. More generally, owing to the non-trivial temperature dependence of
the specific heat, the TTM must be solved numerically via time-stepping algorithms
(e.g., the Euler or Runge-Kutta algorithms).

The TTM is often modified to introduce a time-dependent source (driving) term
coupled to S1 or S2 [52,157]. This scenario is clearly reminiscent of pump-probe ex-
periments [Fig. 1 (e)] whereby either electrons or lattice are driven out of equilibrium

through the coupling to ultrashort pulses. If a coupling in the form S(t) = ↵e
� |t|

⌧ ✓(t)
is added to Eq. (4), i.e., a laser pulse with the amplitude of ↵ that lasts for time
period of ⌧ and starts at t = 0, the model still admits analytic solution (Appendix),
leading to the trend illustrated in Fig. 1 (f). For a more detailed discussion on the
time-dependent source term and its di↵erent functional forms we refer the reader to
the Refs. [51,62,120]. The initial increase of T2 reflects the raise of temperature of S2

induced by the interaction with a source, whereas at a later stage, the thermalization
follows a similar trend to that of Fig. 1 (d).

The TTM can be straightforwardly employed to model the coupled electron-phonon
phonon dynamics in condensed matter via the following steps [46,52]: one of the sub-
systems (S1) is identified with lattice, whereas the other (S2) with the electrons. The
temperatures T1 and T2 are identified with the e↵ective temperatures of the lattice
(Tph) and electrons (Tel) and the source term S(t) is employed to model the coupling
to an external light source. c1 and c2 are replaced by the phonon (Cph) and electron
(Cel) heat capacities, which can be expressed as [52]:

Cel(T ) =

Z 1

1
d"Del(")"

@f(µ, ", Tel)

@Tel
, (5)

Cph(T ) =

Z 1

0
d!Dph(!)!

@n(!, Tph)

@Tph
, (6)

where Del and Dph are the electron and phonon density of states. Similarly, the cou-
pling constant g can be expressed as [1,52]:

g =
⇡kB

~Del("F )
�

⌦
!
2
↵ Z 1

�1
d"D

2
el(")

✓
�@f(µ, ", Tel)

@"

◆
, (7)

where the thermalization rate of electron-lattice system is governed by the electron-
phonon coupling strength and second moment of the phonon spectrum, which are
related to the Eliashberg function ↵

2
F (⌦) as �

⌦
!
2
↵

= 2
R

d⌦⌦↵
2
F (⌦). The equations

of the TTM, i.e., Eqs. (3) and (4), can thus be expressed as:

@Tph

@t
=

g

Cph
(Tel � Tph) , (8)

@Tel

@t
=

g

Cel
(Tph � Tel) + S(t) . (9)

The theoretical foundation of the TTM, and its relation to the TDBE is discussed
in Sec. 3.2. While the electron and phonon heat capacities Cel and Cph can be im-
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Free parameters: g, Cph, Cel 
(can be obtained ab initio)

Figure 1. Schematic representation of two thermal reservoirs at temperatures T1 and T2 > T1 and energies
E1 = C1T1 and E2 = C2T2 – where C1 and C2 denote the heat capacities – in absence of interactions (a), in
presence of mutual interactions characterized by a coupling constant g (c), and in presence of an external field
(e). (b), (d), and (f): Time dependence of the temperature for the systems in (a), (c), and (e), respectively, as
obtained from the solution of the TTM.

mediately obtained from calculations based on density-functional theory and density-
functional perturbation theory [156], respectively, the parameters g can be estimated
from first-principles calculations of the Eliashberg function via well-established simula-
tion packages [157]. This procedure enables the solution of the TTM entirely ab-initio,
without resorting to free parameters [50,55,62,68,79]. Alternatively, the g can be de-
duced by experimental data, e.g., by fitting Eq. (9) to pump-probe photoemission
measurements (see, e.g., Sec. 4) [76].

As discussed in Sec. 3.2, the application of the TTM to the non-equilibrium dynam-
ics of electrons and phonons in solids can be justified through its formal derivation
from the time-dependent Boltzmann equation [44]. The description of ultrafast pro-
cesses via Eqs. (3) and (4), however, entails two main approximations: (i) at each time
steps throughout the dynamics, electrons are assumed to populate electronic bands
according to a Fermi-Dirac function at the e↵ective temperature Tel; (ii) the lattice
is assumed to be at thermal equilibrium throughout the dynamics, i.e., all bosonic
occupations are described by the Bose-Einstein statistics at the e↵ective temperature
Tph. These approximations limit the domain of applicability of the TTM. Because
of the approximation (i), the TTM is unsuitable to describe the early stages of the
electron dynamics (t < 100 fs), which can be characterized by population inversion,
the anisotropic excitation of electron-hole pairs in the Brillouin zone, and electron-
electron scatterings. The domain of application of the TTM is thus restricted to met-
als, semimetals, and doped semiconductors with short electron thermalizaton times,
since, on the other hand, electronic excitations in gapped systems (e.g., semiconduc-
tors) are inherently linked to a regime of population inversion that cannot be properly
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Figure 1. Schematic representation of two thermal reservoirs at temperatures T1 and T2 > T1 and energies
E1 = C1T1 and E2 = C2T2 – where C1 and C2 denote the heat capacities – in absence of interactions (a), in
presence of mutual interactions characterized by a coupling constant g (c), and in presence of an external field
(e). (b), (d), and (f): Time dependence of the temperature for the systems in (a), (c), and (e), respectively, as
obtained from the solution of the TTM.

mediately obtained from calculations based on density-functional theory and density-
functional perturbation theory [156], respectively, the parameters g can be estimated
from first-principles calculations of the Eliashberg function via well-established simula-
tion packages [157]. This procedure enables the solution of the TTM entirely ab-initio,
without resorting to free parameters [50,55,62,68,79]. Alternatively, the g can be de-
duced by experimental data, e.g., by fitting Eq. (9) to pump-probe photoemission
measurements (see, e.g., Sec. 4) [76].

As discussed in Sec. 3.2, the application of the TTM to the non-equilibrium dynam-
ics of electrons and phonons in solids can be justified through its formal derivation
from the time-dependent Boltzmann equation [44]. The description of ultrafast pro-
cesses via Eqs. (3) and (4), however, entails two main approximations: (i) at each time
steps throughout the dynamics, electrons are assumed to populate electronic bands
according to a Fermi-Dirac function at the e↵ective temperature Tel; (ii) the lattice
is assumed to be at thermal equilibrium throughout the dynamics, i.e., all bosonic
occupations are described by the Bose-Einstein statistics at the e↵ective temperature
Tph. These approximations limit the domain of applicability of the TTM. Because
of the approximation (i), the TTM is unsuitable to describe the early stages of the
electron dynamics (t < 100 fs), which can be characterized by population inversion,
the anisotropic excitation of electron-hole pairs in the Brillouin zone, and electron-
electron scatterings. The domain of application of the TTM is thus restricted to met-
als, semimetals, and doped semiconductors with short electron thermalizaton times,
since, on the other hand, electronic excitations in gapped systems (e.g., semiconduc-
tors) are inherently linked to a regime of population inversion that cannot be properly
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Non-thermal lattice models and ultrafast dynamics in graphene

F. Caruso, D. Novko, C. Draxl, Phys. Rev. B 101, 035128 (2020)

2

Figure 2. a-d Calculated spectral function of graphene at equilibrium (t < 0) and at several time delays. t = 0 corresponds
to the e Electron band structure of graphene obtained from DFT calculations. The inset illustrates the Brillouin zone and
high-symmetry points. f-g Change in spectral intensity relative to equilibrium for t = 0 and 0.5 ps. h-i Simulated pump-probe
signal reproduced from Ref. [].

Fig. 2 (e), along the K-� high-symmetry in the Brillouin
zone (inset in Fig. 2 (e)). Photoemission experiments
conducted with linearly polarized (probe) light direction
yield vanishing photoemission intensity close to the Dirac
point along the �-K for the ⇡ (⇡⇤) band if s-polarized (p-
polarized) light is used as probe. Correspondingly, only
quasiparticle states above or below the Dirac point are
probed. The polarization-dependent intensity has been
attributed to the symmetry character of the ⇡ and ⇡⇤

bands (B2 and A2, respectively) which leads to vanish-
ing optical dipole matrix elements, corresponding to zero
photoemission intensity [13, 14]. As our calculations not
account for dipole selection rules, the spectral functions
of Figs. 2 (a-d) are representative of a scenario in which
both ⇡ and ⇡⇤ bands exhibit similar optical dipole matrix
elements, such as in the case circularly polarized probe.

Before the switching on of the pump (t < 0), the
spectral function coincides with the results of ordinary
electron-phonon coupling calculations at room temper-
ature [], and it is in good agreement with previous
studies. In short, the quasiparticle peaks exhibit a fi-
nite broadening which results from the finite lifetimes
of photoexcited holes. When the pump is switched o↵
(t = 0), the increase of lattice and electronic temper-

ature resulting from the photoexcitation of the system
manifests themselves in the angle-resolved spectral func-
tion primarily through the thermal excitation of carriers
across the Fermi surface. While 0.5 ps after photoexcita-
tion (Fig. 2 (c)) the weakening of these features reflects
the partial thermalization of the photoexcited carriers,
whereas after 2.5 ps (Fig. 2 (d)) the system has returned
to equilibrium.

The relative change in photoemission intensity as a
function of time delay – obtained as the di↵erence to the
spectral function before pump and reported in Figs. 2 (f-
g) – provide further insight into the spectral fingerprints
of quasiparticle dynamics in time-resolved ARPES. The
most prominent change in the spectral function results
from the enhanced concentration of electrons (holes)
above (below) the Fermi surface, resulting from the high
transient temperature of photoexcited graphene. At zero
pump-probe delay, this feature is manifested by a pro-
nounced spectral intensity gain (blue), extending up to
1 eV above the Fermi energy, and a corresponding in-
tensity loss (red) for binding energies up to 1 eV. The
energy range of this gain-loss pattern is closely related
to the thermal energy Eth = kbTel corresponding to the
transient electronic temperature. At 0.5 ps after pump,

before pump excitation equilibriumthermalization
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],

dTe

dt
=

I(t)

�ce
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ce
(Te � Top)�
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(Te � Tl), (1)

dTop

dt
=
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dTl
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=

gl
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(Te � Tl) +
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cl

Top � Tl

⌧
. (3)

The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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Figure 2. a-d Calculated spectral function of graphene at equilibrium (t < 0) and at several time delays. t = 0 corresponds
to the e Electron band structure of graphene obtained from DFT calculations. The inset illustrates the Brillouin zone and
high-symmetry points. f-g Change in spectral intensity relative to equilibrium for t = 0 and 0.5 ps. h-i Simulated pump-probe
signal reproduced from Ref. [].

Fig. 2 (e), along the K-� high-symmetry in the Brillouin
zone (inset in Fig. 2 (e)). Photoemission experiments
conducted with linearly polarized (probe) light direction
yield vanishing photoemission intensity close to the Dirac
point along the �-K for the ⇡ (⇡⇤) band if s-polarized (p-
polarized) light is used as probe. Correspondingly, only
quasiparticle states above or below the Dirac point are
probed. The polarization-dependent intensity has been
attributed to the symmetry character of the ⇡ and ⇡⇤

bands (B2 and A2, respectively) which leads to vanish-
ing optical dipole matrix elements, corresponding to zero
photoemission intensity [13, 14]. As our calculations not
account for dipole selection rules, the spectral functions
of Figs. 2 (a-d) are representative of a scenario in which
both ⇡ and ⇡⇤ bands exhibit similar optical dipole matrix
elements, such as in the case circularly polarized probe.

Before the switching on of the pump (t < 0), the
spectral function coincides with the results of ordinary
electron-phonon coupling calculations at room temper-
ature [], and it is in good agreement with previous
studies. In short, the quasiparticle peaks exhibit a fi-
nite broadening which results from the finite lifetimes
of photoexcited holes. When the pump is switched o↵
(t = 0), the increase of lattice and electronic temper-

ature resulting from the photoexcitation of the system
manifests themselves in the angle-resolved spectral func-
tion primarily through the thermal excitation of carriers
across the Fermi surface. While 0.5 ps after photoexcita-
tion (Fig. 2 (c)) the weakening of these features reflects
the partial thermalization of the photoexcited carriers,
whereas after 2.5 ps (Fig. 2 (d)) the system has returned
to equilibrium.

The relative change in photoemission intensity as a
function of time delay – obtained as the di↵erence to the
spectral function before pump and reported in Figs. 2 (f-
g) – provide further insight into the spectral fingerprints
of quasiparticle dynamics in time-resolved ARPES. The
most prominent change in the spectral function results
from the enhanced concentration of electrons (holes)
above (below) the Fermi surface, resulting from the high
transient temperature of photoexcited graphene. At zero
pump-probe delay, this feature is manifested by a pro-
nounced spectral intensity gain (blue), extending up to
1 eV above the Fermi energy, and a corresponding in-
tensity loss (red) for binding energies up to 1 eV. The
energy range of this gain-loss pattern is closely related
to the thermal energy Eth = kbTel corresponding to the
transient electronic temperature. At 0.5 ps after pump,

simulated

tr-ARPES

Exp: Gierz, et al. 
Nature Materials, 
12, 1119 (2013)  



Transient phonon softening (Kohn anomaly) in MgB2

it is quite general, and it can be applied to different materials
in order to elucidate the time-resolved infrared spectroscopy
of the zone-center phononmodes in general.Ourwork paves
the way for a direct experimental check of hot phonons in
MgB2 and in other similar materials characterized by a
strongly anisotropic e-ph coupling.
Density-functional theory calculations were performed

by using the QUANTUM ESPRESSO package [43]. Norm-
conserving pseudopotentials were employed with the
Perdew-Burke-Ernzerhof exchange-correlation functional
[44]. A 24 × 24 × 24 Monkhorst-Pack grid in momentum
space and a planewave cutoff energy of 60 Ry were used for
ground-state calculations. The phonon dispersion was cal-
culated on a 12 × 12 × 12 grid using density-functional
perturbation theory (DFPT) [45] and the e-ph coupling
was computed by using an in-house modified version of
the EPW code [46]. Electron and phonon energies, and e-ph
couplingmatrix elements were interpolated usingmaximally
localized Wannier functions [47]. The phonon self-energy
for theq ¼ 0E2g modewas computed on a 300 × 300 × 300
electron momentum grid, while the Eliashberg function was
obtained on a 40 × 40 × 40 grid of electron and phonon
momenta.
The phonon dispersion and the e-ph coupling strengths

λqν are depicted in Fig. 1(a), and the corresponding
phonon density of states and Eliashberg function α2FðωÞ
in Fig. 1(b). Our computed phonon dispersions are in good
agreement with previous results [1–5,22,48,49], while the
total e-ph coupling strength λ ¼ 0.6 is smaller than the
earlier ab initio values (λ≳ 0.7) [1,4,49–51], but in rather
good agreement with experimental estimates [52,53].
Consistent with earlier works [4,11,12], large values of
the e-ph coupling are mainly concentrated in the E2g branch
in the Brillouin zone center along the Γ̄ − Ā line. This is
reflected in a dominant peak in the Eliashberg function at
the corresponding E2g energies ω ≈ 60–70 meV. As shown
below, such remarkable anisotropy is responsible for the
hot-phonon scenario, where the zone-center E2g phonon
modes can acquire, under suitable conditions (i.e., by using
pump-probe techniques), a population much larger than
other underlying lattice DOF.
In order to capture the anisotropy of the e-ph interaction,

we model the total Eliashberg function as the sum of two
terms, α2FðωÞ ¼ α2FE2g

ðωÞ þ α2FphðωÞ, where α2FE2g
ðωÞ

contains the contribution of the hot E2g modes along and
around the Γ̄ − Ā path in the relevant energy range ω ∈
½60∶75& meV (green shaded areas in Fig. 1), while
α2FphðωÞ accounts for the weakly coupled cold modes
in the remnant parts of the Brillouin zone. The resulting e-
ph coupling strengths for the hot and cold modes are λE2g

¼
0.26 and λph ¼ 0.34, respectively.
With the fundamental input of the anisotropic e-ph

coupling, we investigate the rates of the energy transfer
between the electron and lattice DOF in a typical

time-resolved pump-probe experiment. As we detail below,
energy transfer processes and the hot-phonon physics are
driven by the strong anisotropy of the thermodynamical
properties of hot and cold modes, i.e., by the remarkable
difference in specific heats. This physics thus does not rely
on the assumption of effective temperatures for the elec-
tronic and lattice DOF. On the other hand, the use of
standard three-temperature model appears as a reliable and
convenient way to describe these processes in terms of few
intuitive quantities [54–58]. The validation of this model-
ing, compared with the results of a numerical computation
using nonthermal distributions, is presented in Ref. [59]
(for detailed comparison between thermal and nonthermal
models see Sec. S2 and Figs. S2 and S3). Characteristic
parameters of our description will be thus the effective
electronic temperature Te, the effective temperature TE2g

of
the hot E2g phonon strongly coupled to the electronic σ
bands, and the lattice temperature Tph that describes the
effective temperature of the remaining cold phonon modes:

Ce
∂Te

∂t ¼ Sðz; tÞ þ∇zðκ∇zTeÞ − GE2g
ðTe − TE2g

Þ

−GphðTe − TphÞ; ð1Þ

CE2g

∂TE2g

∂t ¼ GE2g
ðTe − TE2g

Þ − CE2g

TE2g
− Tph

τ0
; ð2Þ

Cph
∂Tph

∂t ¼ GphðTe − TphÞ þ CE2g

TE2g
− Tph

τ0
: ð3Þ

HereCe,CE2g
, andCph are the specific heat capacities for the

electron, hot-phonon, and cold-phonon states, respectively.

(a) (b)

FIG. 1. (a) Plot of the phonon dispersions (solid lines) and e-ph
coupling strengths λqν, represented by the size of the black
circles. Also shown are the experimental phonon energies of the
E2g mode close to the M̄ point and along the Γ̄ − Ā path (red
circles) [22], as well as along the M̄ − Γ̄ cuts (purple empty
squares) [48]. (b) Corresponding phonon density of states FðωÞ
(dashed line) and the total Eliashberg function α2FðωÞ (blue solid
line). Green color shows the contribution to the Eliashberg
function associated with the hot E2g modes around and along
the Γ̄ − Ā path, α2FE2g

ðωÞ.

PHYSICAL REVIEW LETTERS 124, 077001 (2020)

077001-2

Facts about MgB2 
• Metal with hexagonal crystal structure 
• BCS superconductor (Tc = 39 K) 
• Highest known Tc for BCS superconductivity 
• Strongly coupled E2g modes

D. Novko, F. Caruso, C. Draxl, E. Cappelluti, Phys. Rev. Lett. 124, 077001 (2020)

GE2g
(Gph) is the electron-phonon relaxation rate between

electronic states and hot (cold) phononmodes, calculated by
means of α2FE2g

(α2Fph). Furthermore κ is the thermal
conductivity of electrons and τ0 is a parameter ruling the
anharmonic phonon-phonon scattering between the hot and
cold phonon components (for further details see Sec. S1 and
Fig. S1 in Ref. [59]). Modeling a typical pump-probe
experimentwith the photon energy being>1 eV,we assume
the pump energy to be transferred uniquely to the electronic
DOF by the term Sðz; tÞ ¼ IðtÞe−z=δ=δ, where IðtÞ is the
intensity of the absorbed fraction of the laser pulse (with a
Gaussian profile) and δ is the penetration depth. The
anisotropic coupling of the e-ph interaction is thus reflected
in a different evolution of the three characteristic temper-
atures. Starting from an initial thermalized system at
T0 ¼ 300 K, the energy pumped to the electronic DOF is
transferred faster to the E2g phonons than to the other lattice
vibrations, leading to an effective temperature TE2g

signifi-
cantly higher than that of the other modes, Tph. Final
thermalization between all the lattice DOF occurs on time
scales of several picoseconds, as a result of the weak direct
phonon-phonon scattering and of the weak coupling
between the electronic states and phonon modes other
than the E2g ones. In our calculations, the parameters in
Eqs. (1)–(3) (with the exception of κ, δ and τ0) are evaluated
numerically from the first-principles calculations [59].
Our calculations predict a very fast increase of TE2g

[see
Fig. 2(a)], reaching the maximum temperature Tmax

E2g
≈

1200 K with a short delay of 40 fs from the maximum
energy transfer to the electronic DOF, consistent with a
computed relaxation time τE2g

≈ 46 fs (see Sec. S1 in
Ref. [59]). Subsequent thermalization between electrons,
hot E2g phonons, and the remaining lattice DOF occurs on a
quite longer time scale, ∼1 ps [59], where all the DOF
thermalize to an average temperature ∼400 K [75]. Note
that the strong enhancement of TE2g

with respect to Tph is
not so much due to the difference between λE2g

and λph,
but rather due to the smaller heat capacity CE2g

≪ Cph,
reflecting the fact that very few E2g modes in α2FE2g

are
responsible for a similar coupling as many cold lattice
modes in α2Fph.
The preferential energy transfer to a single phonon mode

can be revealed via several experimental techniques. One of
the most direct ways is measuring the intensities of the
Stokes (S) and anti-Stokes (AS) E2g peaks in Raman
spectroscopy, which are related to the Bose-Einstein
occupation factor bðω;TÞ ¼ ½expðω=TÞ − 1%−1 via the
relations ISðTE2g

Þ ∝ 1þ bðωE2g
;TE2g

Þ and IASðTE2g
Þ ∝

bðωE2g
;TE2g

Þ, respectively. Assuming to work at zero
fluence and room temperature, we predict in Fig. 2(b) an
increase of the intensity of the Stokes peak up to a factor 2
[ISðTE2g

Þ=ISð300 KÞ ≈ 2], and of the anti-Stokes peak as
high as a factor 15 [IASðTE2g

Þ=IASð300 KÞ ≈ 15]. At the

maximum temperature of the hot phonon, the intensity of
the anti-Stokes resonance can be as high as 50% of the
intensity of the Stokes peak. The experimental investigation
of Stokes and anti-Stokes peak intensities in time-resolved
Raman spectroscopy may provide also a direct way to
probe the validity of the hot-phonon scenario by simulta-
neous measurement of the Stokes and anti-Stokes inten-
sities of the Raman active out-of-plane B1g mode with
frequency ωB1g

≈ 86 meV. Since this mode is weakly
coupled to the electronic states, we expect it to be governed
by the cold-phonon temperature Tph, with a drastically
different behavior in the time evolution of the Stokes and
anti-Stokes peak intensities than the E2g mode (see Sec. S3
and Fig. S4 in Ref. [59]). These spectral signatures
constitute a clear fingerprint of hot-phonon physics, sug-
gesting that time-resolved Raman measurements may
provide a tool to unambiguously unravel the thermalization
mechanisms for systems out of equilibrium.
As shown in Refs. [34,42], the peculiar characteristics of

hot-phonon dynamics can be traced also through the ω-
resolved phonon spectral properties. On the theoretical
side, these properties can be properly investigated in the
Raman spectra of the E2g mode upon computation of the
many-body phonon self-energy Πðω; fTgÞ of the E2g mode
at q ≈ 0 [76]. Note that, in the real-time dynamics, the
phonon self-energy will depend on the full set of electron
and phonon temperatures fTg ¼ ðTe; TE2g

; TphÞ. The full
spectral properties can be thus evaluated in terms of the
phonon spectral function as [77]

Bðω; fTgÞ ¼ −
1

π
Im

!
2ωE2g

ω2 − ω2
E2g

− 2ωE2g
Π̄ðω; fTgÞ

"
; ð4Þ

(a)

(b)

FIG. 2. (a) Time dependence of the electron and phonon
effective temperatures Te, TE2g

, Tph in MgB2 as obtained from
the three-temperature model. The dashed line shows the pulse
profile. The absorbed fluence of the pump pulse is 12 J=m2, the
pulse duration is 45 fs (as in Ref. [33]). (b) Ratios between
the intensities of the Stokes (IS) and anti-Stokes (IAS) E2g

Raman peaks.
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GE2g
(Gph) is the electron-phonon relaxation rate between

electronic states and hot (cold) phononmodes, calculated by
means of α2FE2g

(α2Fph). Furthermore κ is the thermal
conductivity of electrons and τ0 is a parameter ruling the
anharmonic phonon-phonon scattering between the hot and
cold phonon components (for further details see Sec. S1 and
Fig. S1 in Ref. [59]). Modeling a typical pump-probe
experimentwith the photon energy being>1 eV,we assume
the pump energy to be transferred uniquely to the electronic
DOF by the term Sðz; tÞ ¼ IðtÞe−z=δ=δ, where IðtÞ is the
intensity of the absorbed fraction of the laser pulse (with a
Gaussian profile) and δ is the penetration depth. The
anisotropic coupling of the e-ph interaction is thus reflected
in a different evolution of the three characteristic temper-
atures. Starting from an initial thermalized system at
T0 ¼ 300 K, the energy pumped to the electronic DOF is
transferred faster to the E2g phonons than to the other lattice
vibrations, leading to an effective temperature TE2g

signifi-
cantly higher than that of the other modes, Tph. Final
thermalization between all the lattice DOF occurs on time
scales of several picoseconds, as a result of the weak direct
phonon-phonon scattering and of the weak coupling
between the electronic states and phonon modes other
than the E2g ones. In our calculations, the parameters in
Eqs. (1)–(3) (with the exception of κ, δ and τ0) are evaluated
numerically from the first-principles calculations [59].
Our calculations predict a very fast increase of TE2g

[see
Fig. 2(a)], reaching the maximum temperature Tmax

E2g
≈

1200 K with a short delay of 40 fs from the maximum
energy transfer to the electronic DOF, consistent with a
computed relaxation time τE2g

≈ 46 fs (see Sec. S1 in
Ref. [59]). Subsequent thermalization between electrons,
hot E2g phonons, and the remaining lattice DOF occurs on a
quite longer time scale, ∼1 ps [59], where all the DOF
thermalize to an average temperature ∼400 K [75]. Note
that the strong enhancement of TE2g

with respect to Tph is
not so much due to the difference between λE2g

and λph,
but rather due to the smaller heat capacity CE2g

≪ Cph,
reflecting the fact that very few E2g modes in α2FE2g

are
responsible for a similar coupling as many cold lattice
modes in α2Fph.
The preferential energy transfer to a single phonon mode

can be revealed via several experimental techniques. One of
the most direct ways is measuring the intensities of the
Stokes (S) and anti-Stokes (AS) E2g peaks in Raman
spectroscopy, which are related to the Bose-Einstein
occupation factor bðω;TÞ ¼ ½expðω=TÞ − 1%−1 via the
relations ISðTE2g

Þ ∝ 1þ bðωE2g
;TE2g

Þ and IASðTE2g
Þ ∝

bðωE2g
;TE2g

Þ, respectively. Assuming to work at zero
fluence and room temperature, we predict in Fig. 2(b) an
increase of the intensity of the Stokes peak up to a factor 2
[ISðTE2g

Þ=ISð300 KÞ ≈ 2], and of the anti-Stokes peak as
high as a factor 15 [IASðTE2g

Þ=IASð300 KÞ ≈ 15]. At the

maximum temperature of the hot phonon, the intensity of
the anti-Stokes resonance can be as high as 50% of the
intensity of the Stokes peak. The experimental investigation
of Stokes and anti-Stokes peak intensities in time-resolved
Raman spectroscopy may provide also a direct way to
probe the validity of the hot-phonon scenario by simulta-
neous measurement of the Stokes and anti-Stokes inten-
sities of the Raman active out-of-plane B1g mode with
frequency ωB1g

≈ 86 meV. Since this mode is weakly
coupled to the electronic states, we expect it to be governed
by the cold-phonon temperature Tph, with a drastically
different behavior in the time evolution of the Stokes and
anti-Stokes peak intensities than the E2g mode (see Sec. S3
and Fig. S4 in Ref. [59]). These spectral signatures
constitute a clear fingerprint of hot-phonon physics, sug-
gesting that time-resolved Raman measurements may
provide a tool to unambiguously unravel the thermalization
mechanisms for systems out of equilibrium.
As shown in Refs. [34,42], the peculiar characteristics of

hot-phonon dynamics can be traced also through the ω-
resolved phonon spectral properties. On the theoretical
side, these properties can be properly investigated in the
Raman spectra of the E2g mode upon computation of the
many-body phonon self-energy Πðω; fTgÞ of the E2g mode
at q ≈ 0 [76]. Note that, in the real-time dynamics, the
phonon self-energy will depend on the full set of electron
and phonon temperatures fTg ¼ ðTe; TE2g

; TphÞ. The full
spectral properties can be thus evaluated in terms of the
phonon spectral function as [77]

Bðω; fTgÞ ¼ −
1
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FIG. 2. (a) Time dependence of the electron and phonon
effective temperatures Te, TE2g

, Tph in MgB2 as obtained from
the three-temperature model. The dashed line shows the pulse
profile. The absorbed fluence of the pump pulse is 12 J=m2, the
pulse duration is 45 fs (as in Ref. [33]). (b) Ratios between
the intensities of the Stokes (IS) and anti-Stokes (IAS) E2g

Raman peaks.
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where ωE2g
¼ 67 meV is the harmonic adiabatic phonon

frequency as obtained from DFPT and Π̄ðω; fTgÞ is the
phonon self-energy for the E2g modes, where, to avoid
double counting, the noninteracting adiabatic contribution
at T ¼ 0 K is subtracted (for more details on the non-
adiabatic phonon self-energy see Ref. [59]). The inclusion
of many-body effects on the crystal-lattice dynamics via
Eq. (4) is reflected by renormalization of the phonon energy
ΩE2g

and by the finite phonon linewidth ΓE2g
, which may be

computed through solution of the following self-consistent
equations: Ω2

E2g
¼ ω2

E2g
þ 2ωE2g

Π̄ðΩE2g
; fTgÞ, and ΓE2g

¼
−2ImΠ̄ðΩE2g

; fTgÞ.
Using such theoretical tools, we evaluate, within the three-

temperature model, the time-resolved dynamics of the
Raman peak position and of the phonon linewidth, as well
as of the full phonon spectral function of the E2g mode in
MgB2 as a function of the pump-probe time delay. A similar
approach (however, without time dependence) was used in
Ref. [42] for graphene, where the effects of the electronic
damping due to the electron-electron interaction were
explicitly included in the evaluation of the phonon self-
energy. This description is however insufficient in the case of
MgB2 where the electronic damping is crucially governed by
the e-ph coupling itself [28,30]. In order to provide a reliable
description we evaluate thus the E2g phonon self-energy in a
nonadiabatic framework [30] explicitly retaining the e-ph
renormalization effects in the Green’s functions of the
relevant intraband contribution (see Sec. S4 in Ref. [59]).
The E2g phonon spectral function is shown in Figs. 3(a) and
3(b) as a function of the time delay, for two different fluences.
The corresponding phonon energiesΩE2g

and linewidthsΓE2g

are summarized in panels (c) and (d). The combined effect of
the time evolution of Te and TE2g

, Tph results in a nontrivial
time dependence of the spectral properties. Our calculations
reveal a counterintuitive reduction of the phonon linewidth
ΓE2g

right after photoexcitation, followed by a subsequent
increase during the overall thermalization with the cold
phononDOF. The time dependence of the phonon frequency
shows an even more complex behavior, with an initial
redshift, followed by a partial blueshift, and furthermore
by a redshift.
In order to rationalize these puzzling results, we analyze

in detail the temperature dependence of the phonon spectral
properties, decomposing the phonon self-energy into its
basic components: interband or intraband terms, and in
adiabatic (A) and nonadiabatic (NA) processes. For details
see Ref. [59], whereas here we summarize the main results.
A crucial role is played by the NA intraband term, which is
solely responsible for the phonon damping. Following a
robust scheme usually employed for the optical conduc-
tivity (see Sec. S4 in Ref. [59]), we can model the effects
of the e-ph coupling on the intraband processes in terms
of the renormalization function λðω; fTgÞ and the e-ph
particle-hole scattering rate γðω; fTgÞ:
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Phonon optical probes at equilibrium are commonly at
room (or lower) temperature in the regime γðω;TÞ ≪
ω½1þ λðω;TÞ&, where the phonon damping ΓE2g

∝
γðΩE2g

;TÞ. Our calculations predict on the other hand
γðΩE2g

;T300 KÞ ≈ 75 meV, which is close to ΩE2g
½1þ

λðΩE2g
;T300 KÞ& ≈ 85 meV, resulting in ΓE2g

≈ 26 meV,
in good agreement with the experiments [14,15,19]
and with the previous calculations [28,30]. The further
pump-induced increase of γðΩE2g

; fTgÞ ≫ ΩE2g
½1þ

λðΩE2g
; fTgÞ& drives the system into an opposite regime

where ΓE2g
∝ 1=γðΩE2g

;TÞ. In this regime the pump-
induced increase of γðΩE2g

; fTgÞ results thus in a reduction
of ΓE2g

, as observed in Fig. 3(d). A similar change of regime
is responsible for the crossover from an Elliott-Yafet to the
Dyakonov-Perel spin-relaxation, or for the NMR motional
narrowing [78,79]. We also note here that the same effects
and the change of regime are partially responsible for the
overall time dependence of the phonon frequency [see
Fig. 3(c)], where the full result (full blue circles) is
compared with the one retaining only the nonadiabatic
intraband self-energy (open orange squares). The redshift
predicted for the latter case is a direct effect of the same
change of regime responsible for the reduction of the
phonon damping. However, in the real part of the self-
energy, adiabatic processes (both intra- and interband) play
also a relevant role [59], giving rise to an additional
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FIG. 3. (a),(b) Intensity of the phonon spectral function
BE2g

ðω; fTgÞ for F ¼ 12 J=m2 [panel (a)] and for F ¼ 30 J=m2

(panel b). Time evolution of the (c) Raman peak positions and
(d) phonon linewidths using the full self-energy for F ¼ 12 J=m2

(full circles) and for F ¼ 30 J=m2 (open circles). Also shown are
the results obtained with only the NA intraband term and for
F2 ¼ 30 J=m2 (open squares). The dashed horizontal line in panel
(c) shows the adiabatic energy of the E2g mode.
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where ωE2g
¼ 67 meV is the harmonic adiabatic phonon

frequency as obtained from DFPT and Π̄ðω; fTgÞ is the
phonon self-energy for the E2g modes, where, to avoid
double counting, the noninteracting adiabatic contribution
at T ¼ 0 K is subtracted (for more details on the non-
adiabatic phonon self-energy see Ref. [59]). The inclusion
of many-body effects on the crystal-lattice dynamics via
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, which may be
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MgB2 as a function of the pump-probe time delay. A similar
approach (however, without time dependence) was used in
Ref. [42] for graphene, where the effects of the electronic
damping due to the electron-electron interaction were
explicitly included in the evaluation of the phonon self-
energy. This description is however insufficient in the case of
MgB2 where the electronic damping is crucially governed by
the e-ph coupling itself [28,30]. In order to provide a reliable
description we evaluate thus the E2g phonon self-energy in a
nonadiabatic framework [30] explicitly retaining the e-ph
renormalization effects in the Green’s functions of the
relevant intraband contribution (see Sec. S4 in Ref. [59]).
The E2g phonon spectral function is shown in Figs. 3(a) and
3(b) as a function of the time delay, for two different fluences.
The corresponding phonon energiesΩE2g

and linewidthsΓE2g

are summarized in panels (c) and (d). The combined effect of
the time evolution of Te and TE2g

, Tph results in a nontrivial
time dependence of the spectral properties. Our calculations
reveal a counterintuitive reduction of the phonon linewidth
ΓE2g

right after photoexcitation, followed by a subsequent
increase during the overall thermalization with the cold
phononDOF. The time dependence of the phonon frequency
shows an even more complex behavior, with an initial
redshift, followed by a partial blueshift, and furthermore
by a redshift.
In order to rationalize these puzzling results, we analyze

in detail the temperature dependence of the phonon spectral
properties, decomposing the phonon self-energy into its
basic components: interband or intraband terms, and in
adiabatic (A) and nonadiabatic (NA) processes. For details
see Ref. [59], whereas here we summarize the main results.
A crucial role is played by the NA intraband term, which is
solely responsible for the phonon damping. Following a
robust scheme usually employed for the optical conduc-
tivity (see Sec. S4 in Ref. [59]), we can model the effects
of the e-ph coupling on the intraband processes in terms
of the renormalization function λðω; fTgÞ and the e-ph
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, as observed in Fig. 3(d). A similar change of regime
is responsible for the crossover from an Elliott-Yafet to the
Dyakonov-Perel spin-relaxation, or for the NMR motional
narrowing [78,79]. We also note here that the same effects
and the change of regime are partially responsible for the
overall time dependence of the phonon frequency [see
Fig. 3(c)], where the full result (full blue circles) is
compared with the one retaining only the nonadiabatic
intraband self-energy (open orange squares). The redshift
predicted for the latter case is a direct effect of the same
change of regime responsible for the reduction of the
phonon damping. However, in the real part of the self-
energy, adiabatic processes (both intra- and interband) play
also a relevant role [59], giving rise to an additional
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FIG. 3. (a),(b) Intensity of the phonon spectral function
BE2g

ðω; fTgÞ for F ¼ 12 J=m2 [panel (a)] and for F ¼ 30 J=m2

(panel b). Time evolution of the (c) Raman peak positions and
(d) phonon linewidths using the full self-energy for F ¼ 12 J=m2

(full circles) and for F ¼ 30 J=m2 (open circles). Also shown are
the results obtained with only the NA intraband term and for
F2 ¼ 30 J=m2 (open squares). The dashed horizontal line in panel
(c) shows the adiabatic energy of the E2g mode.
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In order to rationalize these puzzling results, we analyze
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basic components: interband or intraband terms, and in
adiabatic (A) and nonadiabatic (NA) processes. For details
see Ref. [59], whereas here we summarize the main results.
A crucial role is played by the NA intraband term, which is
solely responsible for the phonon damping. Following a
robust scheme usually employed for the optical conduc-
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in good agreement with the experiments [14,15,19]
and with the previous calculations [28,30]. The further
pump-induced increase of γðΩE2g
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½1þ

λðΩE2g
; fTgÞ& drives the system into an opposite regime
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;TÞ. In this regime the pump-
induced increase of γðΩE2g

; fTgÞ results thus in a reduction
of ΓE2g

, as observed in Fig. 3(d). A similar change of regime
is responsible for the crossover from an Elliott-Yafet to the
Dyakonov-Perel spin-relaxation, or for the NMR motional
narrowing [78,79]. We also note here that the same effects
and the change of regime are partially responsible for the
overall time dependence of the phonon frequency [see
Fig. 3(c)], where the full result (full blue circles) is
compared with the one retaining only the nonadiabatic
intraband self-energy (open orange squares). The redshift
predicted for the latter case is a direct effect of the same
change of regime responsible for the reduction of the
phonon damping. However, in the real part of the self-
energy, adiabatic processes (both intra- and interband) play
also a relevant role [59], giving rise to an additional
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FIG. 3. (a),(b) Intensity of the phonon spectral function
BE2g
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the results obtained with only the NA intraband term and for
F2 ¼ 30 J=m2 (open squares). The dashed horizontal line in panel
(c) shows the adiabatic energy of the E2g mode.
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and ∂qνV the derivative of the self-consistent potential
associatedwith the νth phononmodewithwave vectorq and
energy ℏωqν. gmn;νðk;qÞ is obtained from the bare matrix
element gbmn;νðk;qÞ by screening the variation of the ionic
potential using the electronic dielectric function. Here we
calculate gbmn;νðk;qÞ by unscreening gmn;νðk;qÞ and neglect
local-field effects for simplicity. Equation (1) accounts for
both the screened and the bare electron-phonon vertices
(g and gb), and it thus avoids the approximation employed
in previous first-principles calculations, whereby the
matrix elements gbmn;νðk;qÞg#mn;νðk;qÞ were replaced by
jgmn;νðk;qÞj2 [17]. The nonadiabatic phonon dispersions,
that is, the dispersions modified by the phonon self-energy
of Eq. (1), were extracted directly from the phonon spectral
function [34]:

AqνðωÞ ¼ π−1Im
!

2ωqν

ω2 − ω2
qν − 2ωqνΠNA

qν ðωÞ

"
: ð2Þ

Equation (2), which constitutes the phonon counterpart of
the electronic spectral function [2], exhibits peaks at the
nonadiabatic phonon frequencies Ωqν given by

Ω2
qν ≃ ω2

qν þ 2ωqνReΠNA
qν ðΩqνÞ; ð3Þ

with a full width at half maximum Γqν ¼ 2ℏImΠNA
qν ðΩqνÞ.

Nonadiabatic phonon spectral functions obtained
from Eq. (2) are reported in Figs. 1(f)–1(h), whereas the
phonon dispersions derived from Eq. (3) are shown in
Figs. 1(i)–1(k).
An inspection of Eq. (1) reveals that nonadiabatic effects

may become important whenever the transition energies
between occupied and empty electronic states (ϵmkþq−ϵnk)
approach the characteristic phonon energy ℏωqν. As in
solids ℏωqν is typically ≲100 meV, this condition is
satisfied only in metals, doped semiconductors, and nar-
row-gap semiconductors, wherein low-energy intraband
transitions may be excited. Therefore, in these systems
one may expect to observe (i) phonon damping effects, with
a characteristic time scale set by the phonon lifetime τqν ¼
ℏ=Γqν, and (ii) a renormalization of the adiabatic phonon
frequencies, arising from the finite value of ReΠNA

qν ðΩqνÞ in
Eq. (3). On the other hand, the standard Born-Oppenheimer
approximation is recovered in the limit ΠNA

qν ¼ 0.
Calculations were performed using density-

functional theory (ground state and band structures) and
density-functional perturbation theory (phonon dispersion
relations and electron-phonon matrix elements), using
Quantum Espresso [38], EPW [44], and WANNIER90 [42]. The
doping was modeled in the rigid-band approximation, and
the spectral functions were computed at 300 K. Complete
calculation details are given in Ref. [34]. The phonon
dispersions of pristine diamond in the adiabatic approxi-
mation are presented in Fig. 1(b) for momenta along the

L-Γ-X path. The acoustic and optical phonon branches,
which correspond to the in- and out-of-phase oscillation of
the diamond sublattices, are denoted as AP and OP,
respectively, in Fig. 1(b). Pristine diamond is an insulator
with a fundamental band gap Eg ¼ 5.4 eV [45,46], and the
large optical phonon energy of ℏωph ¼ 164 meV reflects
the stiffness of its covalent bonds. Since Eg ≫ ℏωph,
nonadiabatic effects are relatively unimportant, and the
nonadiabatic corrections are smaller than 0.4 meV;
see Fig. 1(i). The resulting phonon dispersions are in
excellent agreement with our measured IXS spectrum in
Fig. 1(c), in line with the notion that phonons in wide-
band-gap insulators are well described in the adiabatic
approximation.
To quantify the importance of nonadiabaticity for

undoped semiconductors and insulators, we derive a simple
estimate of the energy renormalization. In the limit of
nondispersive electronic bands, one may replace ϵmkþq −
ϵnk ¼ Eg in Eq. (1). If we further assume an Einstein model
for the optical phonons ℏωqν ¼ ℏωE and we restrict
ourselves to the limit ℏωE ≪ Eg, the term in large
parentheses in Eq. (1) reduces to ℏωE=E2

g to first order.
An explicit approximation for Eq. (1) then is promptly
obtained: ℏΠ ¼ 2ϵ∞g2ℏωE=E2

g, with ϵ∞ being the dielec-
tric constant and g the average electron-phonon matrix
element. For diamond, using ϵ∞ ¼ 5.44, Eg ¼ 5.4 eV,
ℏωE ¼ 0.16 eV, and g ¼ 0.1 eV, we obtain ℏΠ ¼
0.5 meV, which is consistent with the first-principles
calculations shown in Fig. 1(i).
As compared to the undoped case, the IXS spectra of

B-doped diamond in Figs. 1(d) and 1(e) exhibit a redshift of
the LO phonon energy and an increase of the phonon
linewidth close to Γ, which indicate the emergence of a
doping-induced KA. To quantify the effect of doping on the
phonon energy, we define the phonon-softening parameter
ΔΩqνðnÞ ¼ Ωqνð0Þ −ΩqνðnÞ, where ΩqνðnÞ denotes the
phonon frequency at a carrier density n. The softening and
linewidth become more pronounced with the increase of
doping concentration. The KA is observed only for wave
vectors smaller than a critical cutoff value qc ¼ 2kF, with
kF being the Fermi momentum, which corresponds to the
maximum momentum transfer for electron-phonon scatter-
ing on the Fermi surface; see Fig. 1(a) [1]. Using the Fermi
momentum of the homogeneous electron gas model,
kF ¼ ð3π2n=NmÞ1=3, where Nm ¼ 3 is the degeneracy of
the valence-band top of diamond, we obtain qc ¼ 0.3 and
0.5 Å−1 for doping levels of 3 × 1020 and 1.4 × 1021 cm−3,
respectively. These values are marked by vertical dashed
lines in Figs. 1(d), 1(e), 1(j), and 1(k).
For momenta q < qc, we find adiabatic phonon

dispersions consistent with previous works [25,28,29].
As reported in Refs. [9,29], however, the adiabatic approxi-
mation leads to a systematic underestimation of the phonon
energy as compared to the experiment, which becomes
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Figure 3. Electron distribution function fnk superimposed to the band structure of monolayer MoS2. Energies
are relative to the Fermi level. At equilibrium (left), bands are occupied according to the Fermi-Dirac statistics
(Eq. (12)). Adapted from Ref. [144].

electron-phonon systems. In the TDBE, the dynamics of electronic and vibrational
excitations are described by changes of the electron and phonon distribution func-
tions fnk(t) and nq⌫(t), respectively, whereas electron and phonon energies are left
unchanged throughout the dynamics. At thermal equilibrium, fnk and nq⌫ are time
independent and they coincide with the Fermi-Dirac and the Bose-Einstein occupa-
tions f

0
nk and n

0
q⌫ :

f
0
nk(T ) =

h
e
("nk�"F)/kBT + 1

i�1
, (12)

n
0
q⌫(T ) =

h
e
~!q⌫/kBT � 1

i�1
. (13)

Here, "F is the Fermi energy, "nk is the single-particle energy of a Bloch electron, and
~!q⌫ the phonon energy. This case is exemplified by the left panel of Fig. 3, where
the Fermi-Dirac occupations are superimposed to the band structure of monolayer
MoS2, with yellow (blue) denoting fully occupied (empty) states with fnk = 1 (fnk =
0). In this framework, a regime of non-equilibrium requires either fnk or nq⌫ (or
both) to di↵er from the equilibrium Fermi-Dirac and the Bose-Einstein occupations,
as illustrated in the right panel of Fig. 3. The non-equilibrium distributions change
over time, and their dynamics is determined by the TDBE:

@tfnk(t) = �nk(t) (14)

@tnq⌫(t) = �q⌫(t) , (15)

where @t = @/@t and �nk and �q⌫ denote the collision integrals for electrons and
phonons. The numerical solution of Eqs. (14) and (15) requires the development of
suitable approximations for the evaluation of the collision integrals. In short, �nk and
�q⌫ account for the several scattering mechanisms which may lead to changes of the dis-
tributions functions as, e.g., electron-electron, electron-phonon, phonon-phonon, and
impurity scattering as well as the coupling to external fields. The recent development
of electronic structure codes for the study of electron-phonon and phonon-phonon cou-
pling has enabled to estimate the contribution of these scattering processes to collision
integrals, enabling the investigation of the coupled electron-phonon dynamics entirely
from first principles [33,59,134,143,144].
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Figure 2. a-d Calculated spectral function of graphene at equilibrium (t < 0) and at several time delays. t = 0 corresponds
to the e Electron band structure of graphene obtained from DFT calculations. The inset illustrates the Brillouin zone and
high-symmetry points. f-g Change in spectral intensity relative to equilibrium for t = 0 and 0.5 ps. h-i Simulated pump-probe
signal reproduced from Ref. [].

Fig. 2 (e), along the K-� high-symmetry in the Brillouin
zone (inset in Fig. 2 (e)). Photoemission experiments
conducted with linearly polarized (probe) light direction
yield vanishing photoemission intensity close to the Dirac
point along the �-K for the ⇡ (⇡⇤) band if s-polarized (p-
polarized) light is used as probe. Correspondingly, only
quasiparticle states above or below the Dirac point are
probed. The polarization-dependent intensity has been
attributed to the symmetry character of the ⇡ and ⇡⇤

bands (B2 and A2, respectively) which leads to vanish-
ing optical dipole matrix elements, corresponding to zero
photoemission intensity [13, 14]. As our calculations not
account for dipole selection rules, the spectral functions
of Figs. 2 (a-d) are representative of a scenario in which
both ⇡ and ⇡⇤ bands exhibit similar optical dipole matrix
elements, such as in the case circularly polarized probe.

Before the switching on of the pump (t < 0), the
spectral function coincides with the results of ordinary
electron-phonon coupling calculations at room temper-
ature [], and it is in good agreement with previous
studies. In short, the quasiparticle peaks exhibit a fi-
nite broadening which results from the finite lifetimes
of photoexcited holes. When the pump is switched o↵
(t = 0), the increase of lattice and electronic temper-

ature resulting from the photoexcitation of the system
manifests themselves in the angle-resolved spectral func-
tion primarily through the thermal excitation of carriers
across the Fermi surface. While 0.5 ps after photoexcita-
tion (Fig. 2 (c)) the weakening of these features reflects
the partial thermalization of the photoexcited carriers,
whereas after 2.5 ps (Fig. 2 (d)) the system has returned
to equilibrium.

The relative change in photoemission intensity as a
function of time delay – obtained as the di↵erence to the
spectral function before pump and reported in Figs. 2 (f-
g) – provide further insight into the spectral fingerprints
of quasiparticle dynamics in time-resolved ARPES. The
most prominent change in the spectral function results
from the enhanced concentration of electrons (holes)
above (below) the Fermi surface, resulting from the high
transient temperature of photoexcited graphene. At zero
pump-probe delay, this feature is manifested by a pro-
nounced spectral intensity gain (blue), extending up to
1 eV above the Fermi energy, and a corresponding in-
tensity loss (red) for binding energies up to 1 eV. The
energy range of this gain-loss pattern is closely related
to the thermal energy Eth = kbTel corresponding to the
transient electronic temperature. At 0.5 ps after pump,

tr-ARPES
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We are interested in the time dependence of the elec-
tron and phonon distribution functions fnk(t) and nq⌫(t)
under the influence of the electron-phonon interaction.
For sake of simplicity, we restrict to the case of non-polar
materials in absence of external fields, and we leave the
time depdence implicite to simplify the notation.
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the integrals run over ⌦BZ, the volume of the Brilloin
zone. The electron-phonon matrix elements g are related
to linear change of the e↵ective Kohn-Sham potential
V KS(r) via gmn⌫(k,q) = h mk+q|vKS(r)| nki. We note
that in non-polar materials, the matrix elements g exhibit
a weak dependendence on the crystal momenta q and
q. As a first approximation, we consider fully isotropic
electron-phonon matrix elements and replace them by
their average value:

gmn = N�1
p

X
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Z
dq
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gmn⌫(k,q) (2)

It should be pointed out that this approximation is ex-
pected to break down in the case of polar semiconductors
and insulator, whereby the long-range part of electron-
phonon coupling matrix elements depends on 1/q for
small q. If we further consider coupling to a single
phonon mode ~!, which is the frequency at which the
Eliashberg spectral function, and isotropic Bose-Einstein
distributions n = N�1

p

P
⌫

R dq
⌦BZ

n⌫q, These approxima-
tions allow us to rewrite the multi-dimensional integral
over momentum as a 1D integral over energy. The first
term in Eq, for example:
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Isotropic phonons and e-ph interactions.
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Γ(co)
nk =

∫
dω
2π

[
f<nk(ω)Γ

>
nk(ω)− f>nk(ω)Γ

<
nk(ω)

]

≈ 2π
!

∑

m,ν

∫
d3q
ΩBZ

|gmnν(k, q)|2

×
[
fnk(1 − fmk+q)δ(∆ε

nm
k,q + !ωqν)nqν

+fnk(1 − fmk+q)δ(∆ε
nm
k,q − !ωqν)(nqν + 1)

−(1 − fnk) fmk+qδ(−∆εnm
k,q + !ωqν)nqν

−(1 − fnk) fmk+qδ(−∆εnm
k,q − !ωqν)(nqν + 1)

]
,

 

(36)

where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via

JM(E) = 1
V

∫
d3r J(r; E) (37)

=
−e
Vuc

∑

n

∫
d3k
ΩBZ

vnkfnk(E), (38)

where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:

σαβ =
∂JM,α

∂Eβ

∣∣∣∣
E=0

=
−e
Vuc

∑

n

∫
d3k
ΩBZ

vαnk∂Eβ fnk. (39)

Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:

−evβ
nk
∂f 0

nk
∂εnk

=
∑

m

∫
d3q
ΩBZ

[
τ−1

mk+q→nk ∂Eβ fmk+q

−τ−1
nk→mk+q ∂Eβ fnk

]
,

 
(40)

where we introduced the partial decay rate

τ−1
nk→mk+q =

∑

ν

2π
! |gmnν(k, q)|2

×
[
(nqν + 1 − f 0

mk+q)δ(∆ε
nm
k,q − !ωqν)

+(nqν + f 0
mk+q)δ(∆ε

nm
k,q + !ωqν)

]
,

 

(41)

and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ
enc

∣∣∣∣ . (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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Overall, the current work demonstrates a new
approach to probe EPC and nanoscale heat
transport within a monolayer/substrate het-
erostructure that is broadly applicable to mono-
layer heterstructures and moiré superlattices.
Here, angle-dependent phonon frequency renor-
malization was very recently observed due to
apparent ultra-strong coupling between di↵er-
ent phonon modes and atomic reconstructions
of the moiré pattern.25

Ultrafast electron scattering from
1L-MoS2 /Si:N heterostructure

The optoelectronic properties, exciton physics26

and ultrafast carrier dynamics in monolayer
TMDs have been extensively studied by both
conventional and ultrafast spectroscopies.27–31

To date, experimental investigations of e-ph
coupling e↵ects and nonequilibrium phonon
dynamics in few layer TMD monolayers have
been limited to what can be learned about
zone center optical phonons via conventional
and time-resolved Raman spectroscopy25,32,33

or mean-square average atomic displacements
via ultrafast electron di↵raction.34,35 The mo-
mentum selectivity of phonon emission and
the time-dependent, anisotropic phonon pop-
ulations expected throughout the Brillouin
zone (BZ) of TMDs19,23 is hidden from view
with these techniques. By contrast, ultrafast
electron di↵use scattering (UEDS) provides
momentum-resolved information on EPC and
its modificaiton due to the dielectric environ-
ment, nonequilibrium phonon relaxation in 1L-
MoS2 , including anharmonic decay within the
monolayer and thermal transport to the under-
lying substrate as we show here.
In these pump-probe experiments (Fig 1a),

photoexcitation at 3.1eV (400 nm) drives ver-
tical excitation near zone center, photodopoing
electrons (holes) into the conduction (valence)
bands as shown in Fig 1b (left panel). These
nonequilibrium charge carriers rapidly relax to-
wards the band edges (K and Q points) in mo-
mentum and energy via electron-electron scat-
tering23 as indicated in Fig 1b (right panel).
Carrier cooling proceeds primarily through in-
elastic electron-phonon scattering, which is ex-

Figure 2: The structure of the valence and con-
duction bands of 1L-MoS2 indicating available
intra-valley and inter-valley inelastic phonon
scattering pathways for phonon-mediated car-
rier cooling. � (black), K (dark blue), M (light
blue), and Q (purple) phonons scattering pro-
cesses are shown for electron (hole) relaxation.
Umklapp processes are not shown. Inset in red
is the �-centered rhomboidal primitive unit cell
in reciprocal space.

pected to be strongly anisotropic in momentum
space due to the structure of the valence and
conduction band valleys (Fig. 2). It is this e-
ph coupling (from the perspective of the phonon
system) that is followed with time, momentum
and branch resolution with UEDS through the
scattered electron intensity measured as a func-
tion of scattering vector, I(Q, ⌧) [Å2] (see Fig
1). See Methods for details.
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tronic temperature – becomes more localized. This trend
reflects the lowering of the (e↵ective) electronic temper-
ature as energy is transferred to the lattice and carriers
scatter back to the Fermi energy.

As electrons and lattice approach thermal equilibrium,
the EDF converges towards a Fermi-Dirac function with
final temperature T el

fin = 180 K (dark blue in Fig. 2 (b-c)).
Strikingly di↵erent time scales characterize the relaxation
of excited electrons and holes. While it takes about 800 fs
for excited holes in the valence band to reach thermal-
ization, the electronic relaxation in the conduction band
is slower and is completed within 2 ps. The faster hole
relaxation can be ascribed to the larger phase space for
electron-phonon scattering, which in turn arises from the
co-existence of two quasi-degenerate maxima at � and K
in the valence band. These time scales are in excellent
agreement with recent femtosecond electron di↵raction
measurements on monolayer MoS2? , which estimated
to 2 ps the timescale for electronic thermalization via
electron-phonon scattering.

Overall, Figs. 2 (d-i) provide evidence that, throughout
each step of the dynamics, the excited electrons and holes
remain localized in momentum space in the vicinity of
K and � high-symmetry points in the valence band, and
around K and Q in the conduction band. This anisotropic
population of electronic states in the BZ is responsible for
a stringent momentum selectivity in the phonon emis-
sion, which as discussed below, underpins the emergence
of non-thermal vibrational state of the lattice with a life-
time of several picoseconds.

To inspect the non-equilibrium dynamics of the lattice,
we focus on the (e↵ective) vibrational temperature:

Tq⌫ = ~!q⌫ [kB ln(1 + nq⌫)]
�1 (5)

obtained by inverting the Bose-Einstein distribution
function. The advantage of this choice is that Tq⌫ be-
comes a constant at thermal equilibrium, whereas nq⌫

does not. Interpretation of Tq⌫ as a thermodynamic tem-
perature, however, is rigorously justified only at thermal
equilibrium. In Figs. 3 (a-e), we report the average vibra-
tional temperature T̃q = N�1

ph

P
⌫ Tq⌫ – with Nph being

the number of phonons – for crystal momenta within the
first BZ and for several time steps throughout the dy-
namics. The same color bar (shown beside panel (i)) is
used for panels (a-i).

At t = 0 (a), the system is at thermal equilibrium as re-
flected by the constant vibrational temperature in the BZ
(Tq⌫ = T ph

0 = 100 K). As the coupled electron-phonon
dynamics begins, the excited carriers in the valence and
conduction bands tend to relax back to Fermi level by
transferring energy to the lattice by emitting phonons.
The change in the population of the ⌫-th phonon at mo-
mentum q is reflected, at each time step of the dynam-
ics, by the change of its Bose-Einstein occupation nq⌫

and, via Eq. (5), of the vibrational temperature Tq⌫ . At
t = 100 fs the lattice abandons the initial thermalized
state, as illustrated in Fig. 3 (b) by the emergence of in-
homogeneities in the average vibrational temperature T̃q.

In particular, we observe an increase of the vibrational
temperature for momenta close to � and K, which in
turn, reflects an enhancement of the phonon population.

To understand the origin of these features, we note that
the phonon emission – and, thus, the change of Tq⌫ – is
triggered by electronic transitions within the valence and
conduction bands, which are heavily constrained by en-
ergy and momentum conservation laws. For the excited
electronic distribution of Fig. 2 (a), for instance, phonon-
assisted transitions within the valence band would pri-
marily involve two types of processes: (i) intra-valley
transitions, connecting initial and final states both lo-
cated close to the same high-symmetry point (� or K); (ii)
inter-valley transitions, with the initial and final states
located at � and K, respectively (or vice versa). Due to
momentum conservation, processes of type (i) result in
the emission of long-wavelength phonons (q ' 0) with
momenta close to �, whereas processes of type (ii) can
only involve the emission phonons with momenta around
K. A similar picture applies to transitions in the con-
duction band. Here, however, the presence of the Q
valley also enables the emission of phonons around M
and Q. A schematic illustration of the allowed inter- and
intra-valley phonon-assisted transitions is provided in the
SM. Umklapp processes are also included in this pictures,
since transitions connecting di↵erent BZs can be folded
back to the first BZ via translation by a reciprocal lattice
vector. The anisotropic increase of vibrational tempera-
ture, thus, indicates the preferential emission of phonons
at � and K, which is dictated by momentum selectivity
in the electronic transitions.

As shown in Fig. 2 (c), this mechanism leads to a
further enhancement of the anisotropic population of
phonons in the BZ for t = 500 fs. Additionally, we ob-
serve an increase in vibrational temperature at the M
point and, less pronouncedly, at Q, which arise from tran-
sitions involving the Q pocket in the conduction band (see
SM). As time evolves, phonon-phonon scattering tends to
counterbalance a non-thermal vibrational state, by driv-
ing the lattice towards a thermalized regime (namely,
Tq⌫ = constant). This behaviour is manifested for t = 1.5
and 3 ps – illustrated in Figs. 2 (d-e), respectively – by
a progressive reduction of the temperature anisotropy in
the BZ.

In addition to the momentum anisotropy illustrated
in panels (a-e), the vibrational temperature may change
significantly for di↵erent phonon branches, since the con-
tribution of each phonon to the relaxation process is
dictated by its own electron-phonon coupling strength.
Figures 3 (g-i) illustrates the mode- and momentum-
resolved vibrational temperature Tq⌫ , superimposed to
the phonon dispersion of monolayer MoS2 (obtained from
density-functional perturbation theory at zero temper-
ature) for t = 0.1, 0.5, and 3 ps. Optical phonons,
which are characterized by out-of-phase oscillations of the
atoms in the unit cell, lead to stronger coupling with the
electrons as compared to the acoustic (in-phase) modes,
and they thus provide a more likely decay channel for
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Direct imaging non-equilibrium phonon populations 
via ultrafast electron diffuse scattering (UEDS)
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A crash course in the theory diffraction
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In order to make contact with the literature we define the quantity exp(�2WT )
as the Debye-Waller factor where:

2WT =
1

MNp

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T (9)

and therefore we can write for the temperature dependent scattering intensity:

hI(S)iT = |f0|2exp(�2WT )
X

pp0

exp

⇢
S · [Rp �Rp0 ]

�
(10)

⇥ exp

⇢
1

MNp

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T cos[q · (Rp �Rp0)]

�
.

The Debye-Waller exponential factor describes the attenuation of the scattered
intensity as a result of the vibrational motion of the atoms. Now we take
the Taylor expansion of the second exponential appearing after the summation
over p, p0 to obtain for the zero-phonon hI0(S)iT and one-phonon contribution
hI1(S)iT to the scattered intensity [2]:

hI0(S)iT = |f0|2exp(�2WT )
X

pp0

exp

⇢
iS · [Rp �Rp0 ]

�
(11)

hI1(S)iT = |f0|2exp(�2WT )
1

MNp

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T

⇥
X

pp0

cos[q · (Rp �Rp0)]exp

⇢
iS · [Rp �Rp0 ]

�
. (12)

Using the standard textbook relation
P

p exp(iq ·Rp) = Np�q,G twice we can
rewrite the zero-phonon contribution to the scattered intensity as:

hI0(S)iT = N2
p |f0|2exp(�2WT )�S,G. (13)

The above expression shows that the zero-phonon contribution, related also to
the Laue’s interference function, has very sharp maxima whenever the scattering
vector S is equal to a reciprocal lattice vector G and is zero for all other values.
It also shows that the ratio between the elastic scattering intensity from a system
with the atoms vibrating at temperature T (oscillating target), and a system
with the atoms static at their equilibrium positions (static target) is reduced by
the Debye-Waller factor exp(�2WT ).

For the one-phonon contribution we can express the cosine function in terms
of exponentials and use again the standard textbook relation

P
p exp(iq ·Rp) =

3

Zero-phonon term: 

Np�q,G twice to obtain:

hI1(S)iT = |f0|2exp(�2WT )
Np

2M

X
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⇥
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⇤
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= |f0|2exp(�2WT )
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M

X
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↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T

The derivation of the dynamical structure factor proceeds along the same lines
with the above derivation for the static scattering intensity, but now considering
a time dependent phonon field, i.e. write zq⌫ = lq⌫(a

†
�q⌫e

i!q⌫t + aq⌫e�i!q⌫t),

and taking also the time average as
R1
1

dt
2⇡ exp(�iEt/h̄). The result for the

zero-phonon contribution and the one-phonon contribution to the dynamical
structure factor is:

hI0(S, E)iT = N2
p |f0|2exp(�2WT )�S,G�E , (15)

hI1(S, E)iT = |f0|2exp(�2WT )
h̄2Np

2M

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
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h̄!q⌫
(16)

⇥
⇥
�(S+ q)nq⌫,T �(E + h̄!q⌫) + �(S� q)(nq⌫,T + 1)�(E � h̄!q⌫)

⇤
.

and therefore:

hI0(G, E)iT = N2
p |f0|2exp

⇥
� 2WT (G)

⇤
�E , (17)

hI1(q, E)iT = |f0|2exp
⇥
� 2WT (q)

⇤ h̄2Np

2M

X

⌫

X
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↵0(q)

�
1
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⇥
⇥
nq⌫,T �(E + h̄!q⌫) + (nq⌫,T + 1)�(E � h̄!q⌫)

⇤
. (18)

The above result can be obtained alternatively by following the derivation in
Ref. [2] at pp. 470-473. We note that Eq. (16) is the same with Eq. (10.62)
of Ref. [2], but now including the phonon polarization vectors e⌫↵(q) and the
atomic structure factor f0.
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One-phonon term: 

thermal transport in this far from equiulibrium
regime.

Conclusion

UED and UEDS have provided time- and
momentum-resolved details of electron-phonon
coupling, anharmonic phonon decay and ther-
mal transport on the sub-nanoscale in an 1L-
MoS2 /Si:N heterostructure. These data show
that the dielectric environment provided by
Si:N leads to a strong renormalization of the
EPI in the monolayer. ab inition DFT sim-
ulations using a recently developed framework
are in excellent agreement with these measure-
ments. Combined, these approaches provide a
momentum-resolved protocol which can yield
details of coupling dynamics in 2D material sys-
tems and their heterostructures.

Methods

UEDS

The total scattered intensity can be decom-
posed into

I(Q, ⌧) = I0(Q, ⌧) + I1(Q, ⌧) + · · ·

The zeroth-order term I0(Q, ⌧) is the elastic
Bragg scattering and the first-order contribu-
tion I1(Q, ⌧) is the inelastic single-phonon ’dif-
fuse’ scattering that is the primary focus of this
work. Adopting phonon normal mode coordi-
nates gives:

I1(Q, t) /
X

⌫

n⌫(q, t) + 1/2

!⌫(q, t)| {z }
|a⌫q|2

��F1⌫(Q, t)
��2

(3a)
where the label ⌫ indicates the specific phonon
branch, Q is the electron scattering vector, q
is the reduced phonon wavevector (i.e. q = Q
- H, where H is the closest Bragg peak), a⌫q
is the vibrational amplitude of mode �, n⌫ is
the mode-resolved occupancy with energy ~!⌫ ,
and F1⌫ are known as the one-phonon structure

factors. I1 provides momentum-resolved infor-
mation on the nonequilibrium distribution of
phonons across the entire Brillouin zone, since
I1(q, ⌧) depends only on phonon modes with
wavevector q = Q - H (Fig 1a). The F1⌫ are
geometrical weights that describe the relative
strength of scattering from di↵erent phonon
modes and depend sensitively on the atomic
polarization vectors {e⌫k}.43 Most importantly,
F1⌫ (Q) are relatively large when the phonon
mode ⌫ is polarized parallel to the reduced scat-
tering vector q. These phonon-scattering selec-
tion rules mean that F1⌫ for the out of plane (Z-
polarized) acoustic and optical bands and the
optical modes of E” symmetry are very weak
in the geometry of these experiments (SI, Fig.
S8). These experiments primarily probe the q-
dependent population dynamics of the E’ op-
tical and LA/TA branches. Terms of higher-
order than I1 represent multi-phonon scatter-
ing. These terms have lower cross-sections and
do not contribute significantly to the interpreta-
tion of the 1L-MoS2 signals reported on here.24

The 1L-MoS2 /Si:N specimens used in these ex-
periments provide two distinct contributions to
I0 that are both evident in Fig1: (i) elastic
scattering from the amorphous Si:N substrate
layer which is distributed as di↵use rings, and
(ii) the Bragg and phonon di↵use scattering
from the 1L-MoS2 . The qualitatively di↵er-
ent character of these signals makes the amor-
phous Si:N contribution to the scattering sig-
nals, Isub(Q, ⌧) = Isub(|Q|), easily subtracted
from the dataset as a background. See Supple-
mentary Information Section 1 for details of the
pump-probe instrument.

Sample Preparation

The techniques of Liu et al were used to gen-
erate the 1L-MoS2 sample onto the supporting
Si3N4 (Si:N) substrate.44 A 150 nm-thick Au
film was deposited onto a Si wafer (from Nova
Electronic Materials) with e-beam evaporation
(0.05 nm/s). Polyvinylpyrrolidone (PVP) solu-
tion (from Sigma Aldrich, mw 40000, 10% wt
in ethanol/acetonitrile wt 1/1) was spin-coated
on the top of the Au film (1500 rpm, acceler-
ation 500 rpm/s, 2 min) and then heated at
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momentum-dependent electron−phonon interaction strength
and the available inelastic electron−phonon scattering path-
ways that are open to the hot carriers. These pathways are
constrained by the electronic band structure and carrier
distribution (Figure 2) and explain the observed and computed
momentum-dependent phonon heating dynamics. Within 5−
10 ps, the carrier and phonon systems in 1L-MoS2 have
equilibrated with respect to the partition of excitation energy,
but the phonon system remains profoundly out of equilibrium
internally.
Previous work has demonstrated the possibility of defining a

time-dependent effective phonon temperature, Teff(τ), that
corresponds to the observed MSD using the model49

u
M k T

F( ) 3
2

coth
2 ( )

( ) d2

0 B eff
∫τ ω

τ
ω

ω ω⟨ ⟩ = ℏ ℏ∞ ikjjjjj y{zzzzz (2)

where F(ω) is the phonon density of states. However, such a
Teff(τ) provides a misleading view of the nonequilibrium state
of the phonon system during carrier−phonon equilibration.
This is illustrated in Figure 4a, where the nonequilibrium
phonon-diffuse differential scattering intensity at 5 ps is
compared with a thermalized phonon-diffuse differential
intensity distribution at Teff(5 ps) = 380 K (inset), the
effective temperature determined by eq 2 and the measured
MSD at 5 ps (Figure 3). The phonon population distribution
in 1L-MoS2 is still profoundly nonthermal and is not well
described by an effective temperature.
Further relaxation of these anisotropic nonequilibrium

phonons in 1L-MoS2 involves coupling processes internal to
the monolayer and heat transfer between the monolayer and
Si:N substrate in the heterostructure. These distinct processes
are both resolved by these measurements. In Figure 5, the
diffuse intensity dynamics at K out to 150 ps are compared

against the MSD dynamics extracted from the Bragg peaks,
whose ∼50 ps decay time (single-exponential fit) indicates the
cooling rate of the monolayer to the underlying substrate. The
observed decay of diffuse intensity at K is in poor agreement
with these MSD dynamics, indicating that a different process is
involved. The single-exponential decay time constant deter-
mined for dynamics at K is 25 ps, twice as rapid as the MSD
dynamics but in good agreement with the ab initio anharmonic
decay rate of E′ optical phonons at K (22 ps), to which UEDS
is most sensitive (Figure S8 in the Supporting Information).
The observed decay of the MSD is, however, in reasonable
agreement with the decay in phonon-diffuse scattering
measured for both the mid-BZ LA and TA modes, whose
heating dynamics are shown in Figure 4d,e (Table S1 in the
Supporting Information). For times <30 ps, this subnanoscale
phonon transport across the 1L-MoS2/Si:N heterostructure

Figure 4.Momentum-resolved phonon re-equilibration dynamics. (a) All-phonon differential diffuse scattering pattern of 1L-MoS2 calculated from
first-principles as ΔI = I(Q, τ = 5 ps) − I(Q, T = 300 K). The inset (upper left) is the thermal differential diffuse scattering pattern calculated as ΔI
= I(Q, T = 380 K) − I(Q, T = 300 K). The temperature of 380 K corresponds to an effective lattice temperature as extracted from the observed
MSD at τ = 5 ps (see text), shown on the same color scale. Black hexagons indicate BZ boundaries. Regions for which data are shown in (b−d) are
indicated with the matching color. (b−d) Relative change in diffuse intensity at the reduced scattering vectors (b) K, (c) M, (d) LA phonons at Q
and for (e) TA phonons at Q. Signals are obtained by integration over the colored regions in (a), as well as over every visible BZ (see the
Supporting Information). Acoustic signals are extracted by integrating over the segmented annuli given in (a), with LA and TA distinction possible
due to phonon scattering selection rules (Figure S5 in the Supporting Information). Red and orange curves are shown as in Figure 3.

Figure 5. Optical phonon anharmonic decay vs monolayer cooling. K
valley optical phonon-diffuse scattering (blue) compared to MSD
decay (green). The single-exponential decay of the diffuse intensity at
K (25 ps) is in good agreement with the anharmonic decay rate of E′
optical phonons computed via first-principles calculations (see section
3.3 in the Supporting Information).

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.2c00850
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Simulated UEDS for monolayer MoS2
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Recipe for ab-initio simulation of UEDS intensities
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Step 1: Obtain the non-equilibrium phonon population from the TDBE

Step 3: Subtract the initial structure factor

Intensity difference: ΔI(Q, t) = I(Q, t) − I(Q, t = 0) Debye-Waller effect
thermal heating

phonons out 
of equilibrium

Step 2: Evaluate the structure factor for the instantaneous phonon population

thermal transport in this far from equiulibrium
regime.

Conclusion

UED and UEDS have provided time- and
momentum-resolved details of electron-phonon
coupling, anharmonic phonon decay and ther-
mal transport on the sub-nanoscale in an 1L-
MoS2 /Si:N heterostructure. These data show
that the dielectric environment provided by
Si:N leads to a strong renormalization of the
EPI in the monolayer. ab inition DFT sim-
ulations using a recently developed framework
are in excellent agreement with these measure-
ments. Combined, these approaches provide a
momentum-resolved protocol which can yield
details of coupling dynamics in 2D material sys-
tems and their heterostructures.

Methods

UEDS

The total scattered intensity can be decom-
posed into

I(Q, ⌧) = I0(Q, ⌧) + I1(Q, ⌧) + · · ·

The zeroth-order term I0(Q, ⌧) is the elastic
Bragg scattering and the first-order contribu-
tion I1(Q, ⌧) is the inelastic single-phonon ’dif-
fuse’ scattering that is the primary focus of this
work. Adopting phonon normal mode coordi-
nates gives:

I1(Q, t) /
X

⌫

n⌫(q, t) + 1/2

!⌫(q, t)| {z }
|a⌫q|2

��F1⌫(Q, t)
��2

(3a)
where the label ⌫ indicates the specific phonon
branch, Q is the electron scattering vector, q
is the reduced phonon wavevector (i.e. q = Q
- H, where H is the closest Bragg peak), a⌫q
is the vibrational amplitude of mode �, n⌫ is
the mode-resolved occupancy with energy ~!⌫ ,
and F1⌫ are known as the one-phonon structure

factors. I1 provides momentum-resolved infor-
mation on the nonequilibrium distribution of
phonons across the entire Brillouin zone, since
I1(q, ⌧) depends only on phonon modes with
wavevector q = Q - H (Fig 1a). The F1⌫ are
geometrical weights that describe the relative
strength of scattering from di↵erent phonon
modes and depend sensitively on the atomic
polarization vectors {e⌫k}.43 Most importantly,
F1⌫ (Q) are relatively large when the phonon
mode ⌫ is polarized parallel to the reduced scat-
tering vector q. These phonon-scattering selec-
tion rules mean that F1⌫ for the out of plane (Z-
polarized) acoustic and optical bands and the
optical modes of E” symmetry are very weak
in the geometry of these experiments (SI, Fig.
S8). These experiments primarily probe the q-
dependent population dynamics of the E’ op-
tical and LA/TA branches. Terms of higher-
order than I1 represent multi-phonon scatter-
ing. These terms have lower cross-sections and
do not contribute significantly to the interpreta-
tion of the 1L-MoS2 signals reported on here.24

The 1L-MoS2 /Si:N specimens used in these ex-
periments provide two distinct contributions to
I0 that are both evident in Fig1: (i) elastic
scattering from the amorphous Si:N substrate
layer which is distributed as di↵use rings, and
(ii) the Bragg and phonon di↵use scattering
from the 1L-MoS2 . The qualitatively di↵er-
ent character of these signals makes the amor-
phous Si:N contribution to the scattering sig-
nals, Isub(Q, ⌧) = Isub(|Q|), easily subtracted
from the dataset as a background. See Supple-
mentary Information Section 1 for details of the
pump-probe instrument.

Sample Preparation

The techniques of Liu et al were used to gen-
erate the 1L-MoS2 sample onto the supporting
Si3N4 (Si:N) substrate.44 A 150 nm-thick Au
film was deposited onto a Si wafer (from Nova
Electronic Materials) with e-beam evaporation
(0.05 nm/s). Polyvinylpyrrolidone (PVP) solu-
tion (from Sigma Aldrich, mw 40000, 10% wt
in ethanol/acetonitrile wt 1/1) was spin-coated
on the top of the Au film (1500 rpm, acceler-
ation 500 rpm/s, 2 min) and then heated at

7

Zero-phonon One-phonon

M. Zacharias, H. Seiler, F. Caruso et al., 

Phys. Rev. Lett. 127, 207401 (2021) 
Phys. Rev. B 104, 205109 (2021)



Direct view of phonon dynamics in MoS2 monolayer

Measured energy transfer to the 
lattice: ~7 times slower than theory. 

Si:N substrate

gEPI
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gEPI/ϵsub
∞

unscreened screened 

Figure 3: Photocarrier-phonon equilibration in 1L-MoS2 as measured via Bragg peak Debye-Waller
dynamics. (a) Relative change in (300) Bragg peak intensity following photoexcition (blue circles).
DFT simulation for free-standing 1L-MoS2 (red curve). DFT simulation including the dielectric
environment provided by the Si:N substrate (orange curve). Prediction of 1D heat equation for
cooling of the 1L-MoS2 via heat di↵usion into the Si:N substrate (black dotted line). The inset
highlights the long-time behaviour of each signal and the blue band represents the 1� uncertainty
bound on the data points. (b) Increase in MSD extracted from Bragg intensity by Eqn 1. Red and
orange curves as in panel a) (c) Average phonon-branch temperature (momentum integrated) from
DFT simulations including Si:N dielectric environment.

Dielectric Screening of the EPI in
1L-MoS2 Heterostructure

Following photoexcitation, all measured 1L-
MoS2Bragg peaks are suppressed due to the
Debye-Waller e↵ect (Fig 3a).36,37 The relative
peak intensity is directly related to the in-
crease in-plane atomic mean-squared displace-
ments (MSD) hu2i(⌧) given by:

hu2i(⌧)� hu2
0i =

� 3

4⇡2

ln{eI0(Hmn, ⌧)/eI0(Hmn, ⌧ < ⌧0)}
|Hmn|2

(1)

where hu2
0i is the average of the equilibrium

in-plane displacement tensor, and Hmn is the
scattering vector of the 1L-MoS2Bragg reflec-
tion with (m,n) Miller index . The measured
changes in MSD following photoexcitation is
shown in Fig 3b.
The transient rise in MSD provides an av-

erage measure of the rate at which photocar-
rier excitation energy is transferred to phonons
in the monolayer, informing on carrier-phonon
equilibration through e-ph coupling. We com-
pare these measurements directly with the re-
sults of an ab initio DFT simulation framework
(see SI) of the same processes23,24 in Figs. 3a-

b. DFT results for a free-standing monolayer
film are shown in red, predicting a much higher
rate of MSD increase than that observed in the
experimental data. When the dielectric envi-
ronment provided by Si:N is included using a
semi-infinite slab model with no free parame-
ters, there is quantitative agreement between
the rise is MSD measured and that predicted
within experimental uncertainties.
The dielectric screening provided by Si:N in

the heterostructure appears to renormalize the
e-ph coupling matrix element, g̃mn⌫(k,q) =
gmn⌫(k,q)/"sub1 , where gmn⌫(k,q) is the un-
screened matrix element. Here, "sub1 = (1 +
"1)/2 is the high-frequency dielectric constant
of the semi-infinite slab, and "1 = 7.8 is di-
electric constant of bulk Si:N.38,39 The aver-
age value of these matrix elements for the LA
and LO (E

0
) phonon branches in free standing

1L-MoS2 are 19 meV and 23 meV respectively.
These are each reduced by a factor of "sub1 = 4.4
due to the presence of the Si:N dielectric en-
vironment, providing a quantitive explanation
for the approximately order-of-magnitude re-
duction in the rate of photocarrier-phonon en-
ergy transfer compared to predictions for a free-
standing film (SI, Table S1).
The excitation energy has equilibrated be-
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pre-processing step is applied to all the UEDS patterns. The reported di↵raction intensity

Ĩ(Q, ⌧) is given by Eqn S1b.

Figure S3: (a) Raw di↵raction pattern of amorphous Si:N supported 1L-MoS
2
/ sample. The

beam block obstructs the undi↵racted beam to provide contrast between elastic (Bragg) and
inelastic (di↵use) events. (b) Di↵raction from the amorphous Si:N substrate, determined by
the modified azimuthal approach described in Eqn S1b, is subtracted from the raw data to
obtain (c) UEDS pattern from the 1L-MoS

2
/
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Î(Q, ⌧) = I(Q, ⌧)�
2⇡Z

0

d�

2⇡
I(|Q|,�, ⌧)

Y

mn

(1� �Q
Hmn

) (S1b)

eI(Q, ⌧) =
Î(Q, ⌧)� Î(Q, ⌧ < ⌧0)

Î(Q, ⌧ < ⌧0)
(S1c)

Here, Hmn is the location of the Bragg peak given by mb1 + nb2, � is the peak line-

shape function, and eI is the background subtracted di↵raction intensity normalised to pre-

photoexcitation conditions. It represents the relative change in intensity for a given Q, and

is the value reported in figures in the main text. Explicitly removing the intensity of the

Bragg peaks from the azimuthal average ensures the removal of only the di↵use rings from

the amorphous substrate.
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Figure 4: Momentum-resolved phonon re-equilibration dynamics (a) Di↵use scattering pattern of
1L-MoS2 at ⌧ = 5 ps computed via DFT. Inset (upper left) is the thermal di↵use scattering pattern
expected for an e↵ective lattice temperature corresponding to the observed MSD (380K, see text).
Black hexagons indicate BZ boundaries. Regions for which data is shown in (b-d) are indicated
with the matching colour. (b-d) The relative change in di↵use intensity at scattering vectors (b)
K, (c) M and for (d) TA phonons at Q (d) LA phonons at Q. Acoustic signals are extracted
by integrating over the segmented annuli given in (a) with LA and TA distinction possible due to
phonon scattering selection rules (SI, Fig. S5)

tween carriers and phonons in 1L-MoS2 by ⌧ ⇠
10 ps, as shown by the peak value of MSD in
Fig 3b. The roll-over and decay of MSD for
⌧ > 10 ps indicates the reduction in vibra-
tional energy in the monolayer due to thermal
transport into the Si:N substrate. Since pho-
toexcitation was e↵ectively uniform over the
probed 250µm region (< 10% variation), we ap-
proximate the heat transfer as one dimensional
and extract an e↵ective thermal conductivity
 for the combined TMD-substrate system by
fitting the rate of 1L-MoS2 cooling by the 1D
heat equation. This model provides an excel-
lent fit of the data visualized in Fig 3a, far supe-
rior than a single exponential decays (3a, inset).
This yields  = 313± 4 Wm�1K�1, which is in
reasonable agreement with simulated and ex-
perimental values of  in the c-axis of Si:N,40,41

indicating that the thermal boundary resistance
between 1L-MoS2 and Si:N in the heterostruc-
ture is small.

Mode-Resolved Nonequilibrium
Phonon Dynamics in 1L-MoS2

The increase in MSD determined from the De-
bye Waller suppression of Bragg peak intensi-
ties does not uniquely define the microscopic
state of the phonon system. By contrast, UEDS
measurements provide branch- and momentum-
resolved details of the nonequilibrium phonon
population distributions in the monolayer that
underlie the changes in MSD observed via the
Bragg peak dynamics. The transient UEDS
signals from 1L-MoS2 following photoexcitation
show the strongest increases at K, M and
Q points of the BZ (Fig 4). The time- and
momentum-resolved phonon excitation dynam-
ics at each of these points in the BZ are in good
agreement with the DFT predictions provided
the e↵ects of Si:N substrate dielectric screening
are included (Fig 4b-e).
These combined UEDS and DFT results show

that the nonequilibrium state of the phonon
system several picoseconds after photoexcita-
tion is profoundly anisotropic in momentum.
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FIG. 1. (a) In-plane atomic structure of BP. (b) Schematic illustration of femtosecond electron scattering. (c) Exemplary
transmission di↵raction pattern of BP. First Brillouin zones can be drawn around each Bragg reflection, as illustrated by a
rectangle over the (200) reflection. An arbitrary position in reciprocal space, S, can always be expressed as G+ q, where G is
a reciprocal lattice vector defined by the Miller indices and q the phonon wavevector. (d) Electronic band structure calculated
from density-functional theory in the PBE approximation [25]. The conduction bands were shifted by 0.2 eV in energy to match
the experimentally observed bandgap of Eg ' 0.3 eV. (e) Brillouin zone with labeling of high-symmetry points. Our FEIS
experiments probe the blue plane. Below, the momentum distribution of photoexcited carriers approximated by a Fermi-Dirac
function fnk is shown (dark regions: more excited carriers). The colored rectangles indicate phonons groups, see text.

sively generating a non-equilibrium electron population
in the conduction band. Considering our pump photon
energy, one can expect intravalley scattering processes
within the Z pocket to play an important role in the
relaxation dynamics towards the conduction band min-
imum through emission of low-wavevector phonons. In-
tervalley scattering pathways can also transfer electrons
to the neighboring Y, A and A’ valleys along the zigzag
direction. First insight into the non-equilibrium dynam-
ics of the crystal lattice is obtained from the dynamics of
the Bragg reflections. The anisotropic lattice dynamics
of BP is reflected in the time evolution of the elastic scat-
tering signals, shown in Fig. 2(a) and described in detail
in Ref. [19]. Briefly, the dynamics of both armchair and
zigzag reflections are well-captured by bi-exponential de-
cays, with fast time constants of around 500 fs and slower
time constants of approximately 20 ps.

Here, we go beyond the analysis of the elastic scatter-
ing signals and phonon-averaged structural dynamics to-
wards a more detailed picture of lattice relaxation. This
can be obtained by investigating the inelastic scatter-
ing signals around specific Bragg reflections, shown for
selected high-symmetry points in Fig. 2 (b). The di↵rac-
tion pattern can be divided into BZs around each Bragg
reflection, as illustrated in Fig. 1 (c) for the (200) re-
flection. As inelastic scattering occurs primarily through
scattering o↵ of phonons, the signal measured at a given
point in the BZ reflects phonon populations with the
same momentum [20, 21, 33–36]. The red curve in
Fig. 2 (b) represents the relative intensity of the FEIS
signal as a function of time at the A point. Similar dy-
namics are observed at all the investigated A points. A
bi-exponential fit to the data yields a rising time constant
of 1.7 ± 0.1 ps, followed by a slower relaxation of 30 ±

FIG. 2. (a) Exemplary anisotropic elastic scattering signals
for zigzag (squares) and armchair reflections (triangles). (b)
Inelastic scattering signal at A (circles) and X (pentagons)
around the 400 reflection. The data in both panels is the
average over the Friedel pair (e.g. (400) and (4̄00)). The error
estimates represent the standard error of the mean signal over
multiple delay scans.

2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a

Black 
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2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a

H. Seiler, D. Zahn, M. Zacharias, (...) R. Ernstorfer, F. Caruso, Nano Lett. 21, 6171 (2021)

Figure 3: (a-c) Momentum-resolved electron di↵raction signals, I(S, t) � I(S, t < t0), at
pump-probe delays of 2 ps, 10 ps, and 50 ps. Two-fold symmetrized data,36 raw data
shown in Supplemental Material.37 The Bragg reflections (blue dots) are negative due to
the Debye-Waller e↵ect. The di↵use background (red) qualitatively evolves as a function of
pump-probe delay. Selected Brillouin zones are shown in inset for the (004) and the (400)
reflections on the 50 ps map. All data are normalized to a common number. (d-f) Simulated
non-equilibrium scattering signals at pump-probe delays of 2 ps, 10 ps, and 50 ps. The
phonon temperatures are based on the non-thermal model described in the text and shown
in Figure 4 (a). All data are normalized to a common number.

�-A high-symmetry line. This anisotropy becomes more pronounced at later times, as shown

in Figure 4(c) and (d) for t = 0.5 and 2.5 ps, respectively. As anticipated above, the origin

of this behaviour is closely related to the anisotropy of the valence and conduction bands.

Owing to the absence of local minima in conduction band along the armchair direction

(i.e., �-X and Z-Q), the photo-excited electrons are constrained to occupy states with crystal

momenta along the zigzag direction, i.e., where the available local minima are located (arrows

in Figure 1 (d)). This scenario is illustrated by highly-anisotropic electronic occupations f 0
nk

in the conduction band, reported in Figure 1 (f) for the initial electronic excited state defined

above, arising from the partial filling of the available low-energy states. Due to momentum

9

Experiment



5

0.1 ps 0.5 ps

T = 100 K
t < 0

2.5 ps 10 ps

T = 300 K

40 ps

100

400

200

300

T [K]
�X

A

qy

qx

(a) (b) (c) (d) (e) (f)

A

�

X

(g) (h)

2.5 ps0.1 ps 40 ps

100

400

200

300

T [K]
(i) (j) (k)

T̃q

FIG. 4. (a) E↵ective vibrational temperature T̃q for crystal momenta in the X-�-A plane of the Brillouin zone before excitation
(t < 0), and at several time delays throughout the non-equilibrium dynamics of the lattice (b-f). (g) Time-dependence of T̃q

for momenta around the high-symmetry points � (red), A (yellow), and X (blue). Each curve has been obtained by averaging
T̃q for momenta within the regions highlighted in (a) at each time step. (h) Time-dependence of the mode-resolved vibrational
temperature T⌫ (averaged over momentum). ⌫ = 1 � 3 denote the acoustic modes, ⌫ = 10 � 12 the highest-energy optical
phonons, etc. (i-j) Mode and momentum resolved the e↵ective vibrational temperature, superimposed to the phonon dispersion
as a color coding, for t = 0.1 (i), 2.5 (j), and 40 ps (k).

dependence of the one-phonon structure factor is encoded
in hu2

S⌫iT , which is directly related to phonon popula-
tions nS⌫(T ). To account for the influence of the non-
equilibrium lattice dynamics on the FEDS intensity, we
evaluated Eq. (3) at each time snapshot by populating
phonons according to the vibrational temperatures ob-
tained from the solution of the time-dependent Boltz-
mann equation (Fig. 4).

The calculated (non-equilibrium) one-phonon struc-
ture factor is shown in Fig. 3 (d) for t = 2 ps. The
intensity is relative to equilibrium at 100 K. The calcu-
lation agrees well with the experimental FEDS intensity
reported in Fig. 3 (a) and it reproduces the main finger-
prints of non-equilibrium lattice dynamics. In particu-
lar, the faint vertical high-intensity features which con-
nect the Bragg peaks across di↵erent BZ – and constitute
a striking manifestation of the non-equilibrium state of
the lattice – are well captured by the simulations. The
time dependence of the vibrational temperature in the
BZ, illustrated Fig. 4, enable us to attribute these fea-
tures to the higher population of phonons along the �-A
direction which, in turn, arises from the primary role
played by these phonons in the relaxation of the excited
electronic distribution. The calculated FEDS intensities
at 10 ps and 50 ps, shown in Fig. 3 (b) and (c), re-
spectively, further captures the emergence of a diamond-
shaped di↵raction pattern that characterises the return
to thermal equilibrium. By decomposing the one-phonon

structure factor into self ( = 0) and distinct ( 6= 0)
scattering contributions [36], we find that this pattern
arises from the interference of scattered electrons on dif-
ferent atoms in the unit cell (SI), which are accounted
for by the distinct scattering contribution.

These findings enable us to establish the following pic-
ture (sketched in Fig. 5(b)) for the non-equilibrium dy-
namics and thermalization of vibrational degrees of free-
dom in BP: After the creation of an excited electronic
distribution by a laser pulse, electrons (holes) in the con-
duction (valence) band undergo electron-electron scatter-
ing and occupy the band edges according to Fermi-Dirac
statistics. This results into a highly anisotropic distribu-
tion of photo-excited carriers in the BZ, predominantly
populating the Z, Y, A, and A0 pockets. Within 2 ps
after photo-excitation, electrons and holes lose their ex-
cess energy upon emitting phonons. Momentum selectiv-
ity in the phonon emission leads to the primary excita-
tion of phonons with momenta along the zigzag direction
of the crystal, driving the lattice into a non-equilibrium
regime characterized by a highly-anisotropic phonon pop-
ulation in the BZ (Fig. 4(b-d)). Distinctive fingerprints
of this regime are visible in the the FEDS intensity at
t = 2 ps (Fig. 3(b)). The ensuing hot-phonon popula-
tion subsequently thermalizes with other lattice vibra-
tions via phonon-phonon scattering, thereby driving the
lattice towards thermal equilibrium (i.e., Tq⌫ = const.)
within 50 ps, and leading to the thermalized FEDS in-

Non-equilibrium lattice dynamics in bP from first-principles@fnk
@t

= Ie�ph
nk [f, n] + I lightnk [f ] + IAuger

nk [f ](1)

@nq⌫

@t
= Ie�ph

q⌫ [f, n] + Iph�ph
q⌫ [n](2)

1

Effective vibrational temperature
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FIG. 5. Sketch of the non-equilibrium dynamics and thermal-
ization of the BP lattice following photo-excitation.

tensity reported in Fig. 3(c).
In conclusion, time- and momentum-resolved di↵use

scattering experiments indicate that highly-anisotropic
transient phonon populations are established in BP upon
photo-excitation. By accounting explicitly for electron-
phonon and phonon-phonon scattering within an ab-
initio theoretical description of the coupled electron-
phonon dynamics, we demonstrate that this behaviour

can be attributed to the preferential emission of phonons
along the zigzag direction of the BP lattice throughout
the relaxation of the photo-excited electronic distribu-
tion. This picture is corroborated by the good agreement
between the calculated one-phonon structure factors and
the measured FEDS intensity throughout the di↵erent
stages of the non-equilibrium dynamics of the lattice.
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FIG. 1. (a) In-plane atomic structure of BP. (b) Schematic illustration of femtosecond electron scattering. (c) Exemplary
transmission di↵raction pattern of BP. First Brillouin zones can be drawn around each Bragg reflection, as illustrated by a
rectangle over the (200) reflection. An arbitrary position in reciprocal space, S, can always be expressed as G+ q, where G is
a reciprocal lattice vector defined by the Miller indices and q the phonon wavevector. (d) Electronic band structure calculated
from density-functional theory in the PBE approximation [25]. The conduction bands were shifted by 0.2 eV in energy to match
the experimentally observed bandgap of Eg ' 0.3 eV. (e) Brillouin zone with labeling of high-symmetry points. Our FEIS
experiments probe the blue plane. Below, the momentum distribution of photoexcited carriers approximated by a Fermi-Dirac
function fnk is shown (dark regions: more excited carriers). The colored rectangles indicate phonons groups, see text.

sively generating a non-equilibrium electron population
in the conduction band. Considering our pump photon
energy, one can expect intravalley scattering processes
within the Z pocket to play an important role in the
relaxation dynamics towards the conduction band min-
imum through emission of low-wavevector phonons. In-
tervalley scattering pathways can also transfer electrons
to the neighboring Y, A and A’ valleys along the zigzag
direction. First insight into the non-equilibrium dynam-
ics of the crystal lattice is obtained from the dynamics of
the Bragg reflections. The anisotropic lattice dynamics
of BP is reflected in the time evolution of the elastic scat-
tering signals, shown in Fig. 2(a) and described in detail
in Ref. [19]. Briefly, the dynamics of both armchair and
zigzag reflections are well-captured by bi-exponential de-
cays, with fast time constants of around 500 fs and slower
time constants of approximately 20 ps.

Here, we go beyond the analysis of the elastic scatter-
ing signals and phonon-averaged structural dynamics to-
wards a more detailed picture of lattice relaxation. This
can be obtained by investigating the inelastic scatter-
ing signals around specific Bragg reflections, shown for
selected high-symmetry points in Fig. 2 (b). The di↵rac-
tion pattern can be divided into BZs around each Bragg
reflection, as illustrated in Fig. 1 (c) for the (200) re-
flection. As inelastic scattering occurs primarily through
scattering o↵ of phonons, the signal measured at a given
point in the BZ reflects phonon populations with the
same momentum [20, 21, 33–36]. The red curve in
Fig. 2 (b) represents the relative intensity of the FEIS
signal as a function of time at the A point. Similar dy-
namics are observed at all the investigated A points. A
bi-exponential fit to the data yields a rising time constant
of 1.7 ± 0.1 ps, followed by a slower relaxation of 30 ±

FIG. 2. (a) Exemplary anisotropic elastic scattering signals
for zigzag (squares) and armchair reflections (triangles). (b)
Inelastic scattering signal at A (circles) and X (pentagons)
around the 400 reflection. The data in both panels is the
average over the Friedel pair (e.g. (400) and (4̄00)). The error
estimates represent the standard error of the mean signal over
multiple delay scans.

2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a

Black 
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FIG. 2. (a) Exemplary anisotropic elastic scattering signals
for zigzag (squares) and armchair reflections (triangles). (b)
Inelastic scattering signal at A (circles) and X (pentagons)
around the 400 reflection. The data in both panels is the
average over the Friedel pair (e.g. (400) and (4̄00)). The error
estimates represent the standard error of the mean signal over
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2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a

Figure 3: (a-c) Momentum-resolved electron di↵raction signals, I(S, t) � I(S, t < t0), at
pump-probe delays of 2 ps, 10 ps, and 50 ps. Two-fold symmetrized data,36 raw data
shown in Supplemental Material.37 The Bragg reflections (blue dots) are negative due to
the Debye-Waller e↵ect. The di↵use background (red) qualitatively evolves as a function of
pump-probe delay. Selected Brillouin zones are shown in inset for the (004) and the (400)
reflections on the 50 ps map. All data are normalized to a common number. (d-f) Simulated
non-equilibrium scattering signals at pump-probe delays of 2 ps, 10 ps, and 50 ps. The
phonon temperatures are based on the non-thermal model described in the text and shown
in Figure 4 (a). All data are normalized to a common number.

�-A high-symmetry line. This anisotropy becomes more pronounced at later times, as shown

in Figure 4(c) and (d) for t = 0.5 and 2.5 ps, respectively. As anticipated above, the origin

of this behaviour is closely related to the anisotropy of the valence and conduction bands.

Owing to the absence of local minima in conduction band along the armchair direction

(i.e., �-X and Z-Q), the photo-excited electrons are constrained to occupy states with crystal

momenta along the zigzag direction, i.e., where the available local minima are located (arrows

in Figure 1 (d)). This scenario is illustrated by highly-anisotropic electronic occupations f 0
nk

in the conduction band, reported in Figure 1 (f) for the initial electronic excited state defined

above, arising from the partial filling of the available low-energy states. Due to momentum
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Part 3 

Valley-selective circular dichroism in WS2  
and chiral phonon dynamics  

 
(Outlook)



2D honeycomb lattices

• Degenerate high-symmetry points K and K in 2D honeycomb lattices

• K-points are inequivalent if center of inversion is absent

=) Graphene on substrate,monolayer TMDs (in this talk: WS2)

2

Valley dichroism in transition metal dichalchogenide monolayers

•Twofold degeneracy at the high-
symmetry points K and -K


•K and -K are inequivalent in 
absence of an inversion center

Non-centrosymmetric honeycomb lattices

Yao, Xiao, Niu, PRB 77, 235406 (2008)

Zeng et al., Nature Nanotec. 7, 490 (2012)

Souza, Vanderbilt, PRB 77, 054438 (2008)

2. Valley-selective circular dichroism

eled with nearest-neighbor hopping energy t and a site en-
ergy difference between sublattices !,8,9

Ĥ!k" = # !/2 V!k"
V!!k" − !/2 $ . !7"

V!k"=−t!eik·d1 +eik·d2 +eik·d3", where d1,2= a
2%3 x̂" a

2 ŷ ,d3

=− a
%3 x̂ with a being the lattice constant. The two component

wave function represents the amplitude on sublattice A and
B, respectively. Without losing generality, we assume !#0,
i.e., sublattice A has a larger on-site energy. Equation !7" has
the solutions of a positive energy band !conduction" with
dispersion $c!k" and a negative energy band !valance" with
dispersion $v!k"=−$c!k", separated by an energy gap of !.
$c!k" has two valleys centered at the Dirac points K1,2
= % 4&

3a x̂ for which we introduce the valley index 'z=". Near
the Dirac points,

&P"!k"&2 = me
2v0

2!1 % 'z cos ("2, !8"

where v0=
%3at
2) is the Fermi–Dirac velocity in graphene and

cos (=! / '$c!k"−$v!k"(. At the bottom of valleys where
$c!k"−$v!k")!, optical transition is strongest: &P&2 /me
*20 eV, comparable to that for the transition between *6
conduction and *8 valance bands in GaAs. Most signifi-
cantly, there is nearly perfect optical selection rule: ++
!+−" circularly polarized light couples only to band-edge
transitions in valley K2 !K1" !Fig. 1". The rule is exact at the
Dirac points where the conduction !valance" band state is
constructed entirely from the orbits on sublattice A !B" and
we have lc='z !lv=−'z" under the threefold discrete rotation
!see Fig. 1".28 Far away from the Dirac points $c!k"−$v!k"
,!, circular dichroism disappears as in the isolated
graphene sheet and we reproduce the constant high fre-
quency optical conductivity found in Refs. 29 and 30.

In graphene bilayer with Bernal stacking, the A sublattice
of the upper layer sits on top of the B sublattice of the lower
layer. The band properties are well described by the tight-

binding approximation with an intralayer nearest-neighbor
hopping t, an interlayer nearest-neighbor hopping t", and an
interlayer bias !,11–13

H!k" = +
!

2
V!k" 0 0

V!!k"
!

2
t" 0

0 t" −
!

2
V!k"

0 0 V!!k" −
!

2

, . !9"

The obtained band structures 'see Fig. 2!a"( agree well with
the measurement using angular resolved photoemission
spectroscopy.10 The bilayer graphene has two positive energy
bands !conduction" and two negative energy bands !valance".
k-resolved oscillator strength and the degree of circular po-
larization are shown for interband transitions between the
two conduction and the two valance bands. For the transi-
tions between the lower conduction band and the higher val-
ance band, a nearly perfect selection rule is obtained near the
Dirac points where valley K1 !K2" favors +− !++" polarized
light, similar to that in the graphene single layer with
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FIG. 1. !Color online" !a" Left !right": phase winding of the
conduction !valance" band Bloch function at K1=− 4&

3a x̂, showing
the intercellular current circulations. !b" Valley optical selection
rules: ++ !+−" circularly polarized light couples only to bandedge
transitions in valley K2 !K1".
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FIG. 2. !Color online" Optical properties of interband transitions
in biased graphene bilayer. Energy dispersions are given in !a".
k-resolved interband oscillator strength averaged over polarization
is shown in !b". The degrees of circular polarization for the inter-
band transitions are shown in !c". Note the range of horizontal axis
corresponds to valley K2. The values in valley K1 can be obtained
by noting that the oscillator strength is even function while the
degrees of circular polarization is odd function of k. Different line
style and color are used for transitions between different pairs of
bands as indicated by arrowed lines in !a". The parameters used are
t=2.82 eV, !=0.3 eV, and t"=0.4 eV.
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Figure 2: (a) Orbital angular momentum l
z
nk� evaluated from Eq. (6) and superimposed

to the band structure of monolayer WS2 for momenta along the �-K-M-K-� line. Energies
are relative to the valence-band top. (b) Momentum-resolved OAM of the top valence band
for crystal momenta spanning a 30⇥30⇥1 homogeneous grid in the BZ. (c) Momentum-
resolved contribution to the OAM of the A valley exciton. The total OAM of the A exciton
(Lz

A = ±1.16 h̄) is recovered via Eq. (5). (d-e) Schematic illustration of valley-selective
circular dichroism and chiral valley excitons in the TMDs.

where we introduced the dichroic tensor: ⇠K↵�(!) =
4⇡2e2

m2
e⌦Nk

P
�

⇣
t
�,↵
K

⌘⇤
t
�,�
K �(E� � h̄!) . The

corresponding expression for K is obtained by replacing K! K. A detailed discussion of

these expression is included in the supplemental material (SM)41.

The emergence of valley-selective circular dichroism can be quantified by introducing the

di↵erential dichroic absorption:

DK(!) = "
(+)
2,K(!) � "

(�)
2,K(!) = �2Im [⇠Kxy(!)]. (4)

In monolayer WS2, the total o↵-diagonal components of the dichroic tensor vanish at all

frequencies (⇠xy(!) = ⇠
K
xy(!)+⇠

K
xy(!) = 0), leading in turn to a vanishing di↵erential dichroic

absorption (D(!) = DK + DK = 0). The total absorption spectrum is thus ultimately

independent of the helicity of light polarization. Conversely, the valley-resolved components

of the dichroic tensor are finite and opposite in sign at K and K(Im [⇠Kxy] = �Im [⇠Kxy] 6= 0)

indicating that, despite the total vanishing dichroism, the individual valleys are characterized

by a non-trivial chiral character, leading to a non-vanishing di↵erential dichroic absorption.
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Ab-initio theory of valley-selective circular dichroism & valley excitonsAb initio description of VSCD

• Optical properties through solving the Bethe-Salpeter equation

Hvck,v0c0k0A
�
v0c0k0 = E

�
A

�
vck (1)

A
�
vck = h h

vk 
e
ck| �i (2)

• Polarization-dependent dielectric function in terms of BSE solutions

"2(!) /
X

�

���✏̂ · t�
���
2
�(E� � ~!) (3)

with transition coe�icients

t� =
X

vc

BZX
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(4)
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Bethe-Salpeter equation:
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Imaginary part of the dielectric function 
(optical absorption):

Recipe for ab-initio calculation 
of valley excitons: 

1. Explicit treatment of valley degrees of freedom 

2. Account for the circular-polarization vector of light

Ab initio description of VSCD

• Description of VSCD through valley-resolved quantities

"2,K(!) /
X

�

���✏̂ · t�K
���
2
�(E� � ~!) (5)

t�K =
X

vc

PKX

k

A
�
vck

h vk|p| cki
"ck � "vk

(6)

• Linear polarization: ✏̂ = x̂

• Circular polarization (l/r): ✏̂ = 1/
p
2(x̂± ŷ)

5

BSE 2-particle 
Hamiltonian eigenvalueseigenvectors

SUPPLEMENTARY NOTE 1. EXCITON ANGULAR MOMENTUM

In this Supplementary Note, we derive an explicit expression for the orbital angular

momentum (OAM) of an exciton. The OAM operator for an electron-hole pair can be

expressed as:

L̂ = l̂e + l̂h , (S1)

where l̂e/h = r̂⇥ p̂ denotes the single-particle OAM operator for electrons and holes, respec-

tively. In general, the exciton wave function for a long-wavelength exciton (q = 0) can be

expressed as a superposition of electron-hole states:

|�i =
X

vck

A�
vck|vkcki, (S2)

where we introduced the abbreviation |vkcki ⌘ | vk cki, and  vk ( ck) denotes a single-

particle state corresponding to a photo-excited hole (electron) in the valence (conduction)

manifold. Here and below, the subscript v (c) is reserved for holes (electrons). The ex-

pectation value of the exciton OAM can be evaluated straightforwardly by combining the

definitions in Eqs. (S1) and (S2):

Lz
� = h�|L̂z|�i =

X

vck

X

v0c0k0

�
A�

v0c0k0
�⇤

A�
vck

h
hv0k0c0k0 |l̂zh|vkcki + hv0k0c0k0 |l̂ze |vkcki

i

=
X

vck

"
X

v0

�
A�

v0ck

�⇤
A�

vckhv0k|l̂zh|vki +
X

c0

�
A�

vc0k

�⇤
A�

vckhc0k|l̂ze |cki
#

.

Since excitons typically involves electrons and holes localized at the conduction and va-

lence band edges, respectively, it is a good approximation to replace in the expressions
�
A�

v0ck

�⇤
A�

vck = |A�
vck|2�vv0 and

�
A�

vc0k

�⇤
A�

vck = |A�
vck|2�cc0 . By retaining only diagonal ma-

trix elements of the single-particle OAM, we arrive at

Lz
� =

X

vck

��A�
vck

��2 [hvk|l̂zh|vki + hck|l̂ze |cki] =
X

vck

��A�
vck

��2 (lzck + lzv�k) . (S3)

The last equality has been obtained by introducing the band- and momentum-resolved

OAM1:

lznk = hnk|(r̂xp̂y � r̂yp̂x)|nki = 2~
me

X

m 6=n

Im [Mx
nmM

y
mn]

"nk � "mk
, (S4)

2

exciton eigenstates

F. Caruso,  M. Schebek, Y. Pan, C. Vona, C. Draxl, J. Phys. Chem Lett. 13, 5894 (2022)



Ab-initio description of valley excitons in WS2

F. Caruso,  M. Schebek, Y. Pan, C. Vona, C. Draxl, J. Phys. Chem Lett. 13, 5894 (2022)
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Exciton orbital angular momentum: 
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mn]

"nk � "mk
, (S4)

2

Excitons inherit the OAM from 
the underlying band structure

The derivation of Eq. (5) neglects non-diagonal matrix elements of the single-particle OAM

as discussed in detail in the SM41. l
z
nk denotes the single-particle OAM for a Bloch state

 nk, and it is given by29:

l
z
nk =

2h̄

me

X

m 6=n

Im [Mx
nmM

y
mn]

"mk � "nk
, (6)

with the abbreviation M
↵
nm = h nk|p̂↵| mki. The single-particle OAM, evaluated from

Eq. (6), is shown in Fig. 2(a) as a color code superimposed to the band structure of WS2.

The lower and upper valence bands exhibit the largest OAM, with opposite sign at the K and

K points. The single-particle OAM of the top valence band is further illustrated in Fig. 2(b).

The total OAM of each valley, obtained from l
z
K = ⌦�1

PK

R
PK

lvk dk, yields lz = ±0.7 h̄, where

⌦PK is the volume of the PK region of the BZ.

These considerations indicate that excitons inherit the OAM from the underlying band

structure. Upon absorption of linearly polarized light, however, the exciton OAM vanishes

identically owing to the compensating contribution from K and K. To illustrate this point,

we report in Fig. 2(c) the momentum-resolved contribution to the OAM of the A exciton,

obtained from the expression |A�
vck|2[lzck + l

z
v�k] (see also Eq. (5)). Conversely, in presence of

circularly-polarized light, excitons are localized at either K or K, no compensation occurs,

and chiral excitons characterized by a finite OAM can emerge. More precisely, the prerequi-

site for the emergence of chiral excitons is the OAM of the valence and conduction manifold

to di↵er for band indices c, v and momenta k contributing to the exciton formation (that is,

lck 6= lvk for A
�
vck 6= 0). This condition is satisfied by valley excitons localized exclusively

at K or K. Evaluation of Eq. (5) yields L
z
A = ±1.16 h̄ for A valley excitons at K and K,

whereas for the B exciton we obtain L
z
B = ±1.01 h̄. Because valley excitons are formed

by electron-hole pairs in the vicinity of K (K), the exciton OAM can be approximately

described in the independent-particle approximation (IPA) by considering a single electron

(hole) photoexcited to the conduction-band bottom (valence-band top). The IPA neglects
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Experimental data (dots) are reproduced from Ref.45.

values are systematically overestimated. These findings suggest that the exciton Zeeman

shifts are a direct manifestation of the OAM of excitons, and they provide further evidence

in support of the inherent orbital degree of freedom of valley excitons in transition-metal

dichalcogenides. From these data we can further deduce an e↵ective exciton g-factor via

the relation g
�
exc = 2µ�1

B M
z
� , which yelds g

A
exc = 4.64 and g

B
exc = 4.04, in good agreement

with recent experimental and theoretical estimates48–51. These results further suggests that

photo-luminescence magneto-reflectance spectroscopy constitutes a suitable tool to directly

probe the OAM and orbital magnetic moment of excitons.

Conclusions

In conclusion, we presented a first-principles theory of valley-selective circular dichroism and

valley excitons in monolayer WS2 based on many-body perturbation theory and the BSE.

We showed that valley excitons formed upon absorption of circularly-polarized light and

localized at either the K or K valley in the BZ, are chiral quasiparticles characterized by

finite orbital angular momentum and orbital magnetic moment. This picture is validated
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I. THEORY

The hexagonal Brillouin zone and main high-symmetry
points of monolayer WS2 are illustrated in Fig. 1 (a). The
energy of the upper valence band for crystal momenta in
the BZ is shown in Fig. 1 (b), whereas the band disper-
sion on the �-K-M-K-� path (dotted line in Fig. 1 (a))
is reported in Fig. ??. WS2 is a direct band-gap semi-
conductor and its band structure is characterized by two
degenerate maxima at K and K and by a lower-energy
maximum at �. The absorption onset is thus dominated
by optical transitions at K and K.

Within first-order time-dependent perturbation the-
ory, the absorption of light in solids is described by the
imaginary part "2 of the transverse dielectric function
" = "1 + i"2:

"2(!) = �
occX

n

unoccX

m

BZX

k

|✏̂ · Mnmk|2

�"mnk
�(�"mnk � ~!) (1)

where �"mnk = "mk � "nk and "nk denotes the single-
particle eigenvalue of a Bloch electron in band n with
crystal momentum k. The prefactor is defined as � =
4⇡e2/m2

e⌦Np, where ⌦ is the volume of the unit cell
and Np the number of cells in the Born-von-Karman
supercell. ✏̂ is the light-polarization vector. The sum
over n (m) runs over the occupied (unoccupied) man-
ifold, whereas the sum over k extends over the whole
BZ. The matrix elements of the momentum operator
p = �i~r among the Bloch states  nk are denoted by
Mnmk = h nk|p| mki. Equation (1) is valid in the opti-
cal limit, namely, if the photon wavevector q is negligible
with respect to the size of the Brillouin zone. It neglects
electron-hole and electron-phonon interactions. Because
we are exclusively interested in absorption processes, we
relabel "2 as " in the following.

The dielectric function of WS2 evaluated from Eq. (1)
is illustrated in Fig. ?? in black. The absorption of light
in the lower spectrum of the visible range is dominated by
transition between the higher and lower spin-orbit split
valence bands. In particular, the stepwise increase of ab-
sorption spectrum in the region 1 (2) reflects the energy
thresholds for the activation of transitions from the up-
per (lower) valence band. The flat absorption feature at
1 and 2 is easily understood bearing in mind that the
density of state g(") of a parabolic band in 2D is en-
ergy independent (g(") = m⇤/⇡~2, where m⇤ is the band
e↵ective mass). To investigate the role played by the
inequivalent K and Kvalleys in the absorption of polar-
ized light, we partition the BZ into two regions PK and
PK, shaded in Fig. ?? (a), which enclose the K and K,

respectively.
the we consider the valley-resolved dielectric functions

"K and "K, which are defined by restricting the sum
over momenta to the K and Kregions the BZ (shaded
in Fig. ?? (a)), respectively.

"(!) = "K(!) + "K(!) (2)

For the cases of left- (+) and right-handed (�) circu-
larly polarized light, the light-polarization vector ✏̂ can
be expressed as1:

✏̂± =
x̂ ± iŷp

2
(3)

where x̂ and ŷ are Cartesian unit vectors. The transition
matrix elements that govern light absorption can thus be
expressed as:

|✏̂± · Mnm|2 =
|Mx

nm|2 + |My
nm|2

2
± Im [Mx

nmMy
mn] (4)

where the k subscript has been omitted, and Mx/y
nm de-

note the Cartesian components of Mnm. Combining
Eq. (4) with Eq. (1), one promptly obtains an explicit
expression for the transverse dielectric function for the
case of circularly-polarized light:

"±(!) =
1

2
["xx(!) + "yy(!)] ± Im ["xy(!)] (5)

where the following definition for the components of the
dielectric tensor has been introduced:

"↵�(!) = �
occX

n

unoccX

m

BZX

k

M↵
nmM�

mn

�"mnk
�(�"mnk � ~!) (6)

Circular dichroism, i.e., the di↵erent absorption of
light with left- and right-handed circular polarization,
is closely related to the non-diagonal components of the
dielectric tensor, and it can be quantified through the
definition of the di↵erential dichroic absorption:

D(!) = "+(!) � "�(!) = 2Im ["xy(!)]. (7)

In monolayer WS2 and other semiconducting TMDs,
one finds Im["xy(!)] = 0 for all photon frequencies, which
leads in turn to vanishing dichroism (D(!) = 0).

Correspondingly, the absorption spectrum is ulti-
mately independent of the chirality of light, i.e., "+(!) =
"�(!). It is a well-established experimental fact, how-
ever, that with circular polarization can induce a finite
valley polarization. To investigate these phenomena on
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in the lower spectrum of the visible range is dominated by
transition between the higher and lower spin-orbit split
valence bands. In particular, the stepwise increase of ab-
sorption spectrum in the region 1 (2) reflects the energy
thresholds for the activation of transitions from the up-
per (lower) valence band. The flat absorption feature at
1 and 2 is easily understood bearing in mind that the
density of state g(") of a parabolic band in 2D is en-
ergy independent (g(") = m⇤/⇡~2, where m⇤ is the band
e↵ective mass). To investigate the role played by the
inequivalent K and Kvalleys in the absorption of polar-
ized light, we partition the BZ into two regions PK and
PK, shaded in Fig. ?? (a), which enclose the K and K,

respectively.
the we consider the valley-resolved dielectric functions

"K and "K, which are defined by restricting the sum
over momenta to the K and Kregions the BZ (shaded
in Fig. ?? (a)), respectively.

"(!) = "K(!) + "K(!) (2)

For the cases of left- (+) and right-handed (�) circu-
larly polarized light, the light-polarization vector ✏̂ can
be expressed as1:

✏̂± =
x̂ ± iŷp

2
(3)

where x̂ and ŷ are Cartesian unit vectors. The transition
matrix elements that govern light absorption can thus be
expressed as:

|✏̂± · Mnm|2 =
|Mx

nm|2 + |My
nm|2

2
± Im [Mx

nmMy
mn] (4)

where the k subscript has been omitted, and Mx/y
nm de-

note the Cartesian components of Mnm. Combining
Eq. (4) with Eq. (1), one promptly obtains an explicit
expression for the transverse dielectric function for the
case of circularly-polarized light:

"±(!) =
1

2
["xx(!) + "yy(!)] ± Im ["xy(!)] (5)

where the following definition for the components of the
dielectric tensor has been introduced:
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mn

�"mnk
�(�"mnk � ~!) (6)

Circular dichroism, i.e., the di↵erent absorption of
light with left- and right-handed circular polarization,
is closely related to the non-diagonal components of the
dielectric tensor, and it can be quantified through the
definition of the di↵erential dichroic absorption:

D(!) = "+(!) � "�(!) = 2Im ["xy(!)]. (7)

In monolayer WS2 and other semiconducting TMDs,
one finds Im["xy(!)] = 0 for all photon frequencies, which
leads in turn to vanishing dichroism (D(!) = 0).

Correspondingly, the absorption spectrum is ulti-
mately independent of the chirality of light, i.e., "+(!) =
"�(!). It is a well-established experimental fact, how-
ever, that with circular polarization can induce a finite
valley polarization. To investigate these phenomena on
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I. THEORY

The hexagonal Brillouin zone and main high-symmetry
points of monolayer WS2 are illustrated in Fig. 1 (a). The
energy of the upper valence band for crystal momenta in
the BZ is shown in Fig. 1 (b), whereas the band disper-
sion on the �-K-M-K-� path (dotted line in Fig. 1 (a))
is reported in Fig. ??. WS2 is a direct band-gap semi-
conductor and its band structure is characterized by two
degenerate maxima at K and K and by a lower-energy
maximum at �. The absorption onset is thus dominated
by optical transitions at K and K.
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e⌦Np, where ⌦ is the volume of the unit cell
and Np the number of cells in the Born-von-Karman
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dielectric tensor, and it can be quantified through the
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one finds Im["xy(!)] = 0 for all photon frequencies, which
leads in turn to vanishing dichroism (D(!) = 0).
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Figure 1. (a) Brillouin zone and high-symmetry points of monolayer WS2. The blue and orange shadings mark the PK and PK

regions in the BZ, respectively. The �-K-M-K-� is shown as a dotted red line. (b) Energy (relative to the valence-band top)
of the upper valence band for momenta in the rhomboidal BZ. The red continuous line delimits the two inequivalent regions
of the BZ, containing the K and K valleys. (c-d) Total absorption spectrum of monolayer WS2 in the independent-particle
approximation (black), and contribution of the inequivalent K (blue) and K (orange) valleys to the absorption for the cases of
linear (c) and circular light polarization (d), with left-handed chirality.

unit cell, Nk the number of k points, and ✏̂ is the light-
polarization vector. The sum over k extends over the
whole BZ. In the following, we denote the matrix ele-
ments of the momentum operator p = �i~r between
the Bloch spin orbitals  �

nk via the shortened notation
Mnm = h �

nk|p| �
mki. Equation (1) neglects local-field

e↵ects, electron-hole and electron-phonon interactions,
and it is valid in the optical limit, namely, if the pho-
ton wavevector q is negligible with respect to the size of
the BZ [40]. Since the following discussion focuses ex-
clusively on absorption processes, the su�x that is cus-
tomarily introduced to distinguish the imaginary part of
" (e.g., "2 or "00) is omitted.

The dielectric function of WS2 evaluated from Eq. (1)
is illustrated in Fig. 1 (c-d) in black. As long as the total
absorption is considered – i.e., electronic transition in the
whole BZ (as opposed to the valley-dependent absorption
within a specific valley) – the dielectric function of WS2

is entirely independent of the light-polarization vector
✏̂. The absorption of light in the lower spectrum of the
visible range (1.5�2 eV) is dominated by transitions be-
tween the higher and lower spin-orbit split valence bands.
The stepwise increase of absorption spectrum (marked as
1 and 2 in Fig. 1 (c)) reflects the energy thresholds for
the activation of transitions from the upper (lower) va-
lence band. The flat absorption feature at 1 and 2 is
easily understood bearing in mind that the density of
state g(") of a parabolic band in 2D is energy indepen-
dent (g(") = m⇤/⇡~2, where m⇤ is the band e↵ective
mass).

To investigate the role played by the inequivalent K
and K valleys in the absorption of polarized light, we
partition the BZ into two regions PK and PK, shaded in
Fig. 1 (a), which enclose K and K, respectively. Next, we

consider the valley-resolved dielectric function "K ("K),
defined by restricting the sum over momenta in Eq. (1)
to the PK (PK) region in reciprocal space, (i.e., replacingPBZ

k with
PPK

k in Eq. (1)). Additivity follows straight-
forwardly from these definitions:

"(!) = "K(!) + "K(!) . (2)

In short, "K ("K) accounts for absorption processes re-
sulting exclusively from the excitation of electrons out of
the K (K) valley.

We proceed next to discuss the absorption of circularly
polarized light in the K and K valleys. For the cases of
left- (+) and right-handed (�) circular polarization, the
light-polarization vector ✏̂ can be expressed as [41]:

✏̂± =
x̂ ± iŷp

2
, (3)

where x̂ and ŷ are Cartesian unit vectors. The transition
matrix elements in Eq. (1) that govern light absorption
can thus be expressed as [29]:

|✏̂± · Mnm|2 =
|Mx

nm|2 + |My
nm|2

2
± Im [Mx

nmMy
mn].

(4)

Mx/y
nm denotes the Cartesian components of Mnm. Com-

bining Eq. (4) with Eq. (1), one promptly obtains an ex-
plicit expression for the imaginary part of the transverse
dielectric function at K for the case of circularly-polarized
light:

"(±)
K (!) =

1

2
[⇠xx

K (!) + ⇠yy
K (!)] ± Im [⇠xy

K (!)] , (5)

Absorption spectra

• Excitations inPK suppressed for
le�-handed polarized light

• Vice-versa for right-handed pol.

• Total absorption is independent
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Formation of valley excitons  
upon absorption of light with  
circular polarization



Chiral phonon excitation upon valley depolarization

K
K

Q1: Phonon population established upon valley depolarization? 

Q2: Selection rules? 

Q3: Phonon angular momentum (PAM) and chiral phonons? 

Q4: Time-scales of PAM transfer and decay? 

Open questions: 

Yiming Pan 

valence

electrons holes

conduction

valence

conduction

initial electronic state  
(valley polarized)

final electronic state  
(depolarized)



Chiral phonon excitation upon valley depolarization
 T [K]initial vibrational state  

(thermal)
final vibrational state  
(valley polarized) Phonon angular momentum 

Thermal Valley polarized



Part 4 

Computational screening of  
novel 2D materials valleytronics 

 
(Outlook)



Computational screening of novel 2D materials for valleytronics

How many non-centrosymmetric 2D honeycomb 
lattices are thermodynamically stable? 

Ingredients for (accessible) multi-valley semiconductors 

• three-fold rotation symmetry

• lack of an inversion center

• non-metallic

have less than 7 
atoms per unit cell258

obey the symmetry 
requirements10[1] Mounet et al., Nature Nanotec. 13, 246 (2018)

1.825 2D materials which can 
be easily exfoliated

[1]

Entries in the

ICSD database:  ~200.000High-throughput 

search:



Computational screening of novel 2D materials for valleytronics

The list of 10: 

• hBN

• MoS2 

• MoSe2

• WS2

• WSe2


• ZrCl2

• ZrClN

• ZrBrN

• GeI2

• OTl2

Already known!

New!

MX2 (M=Mo,W and X=S,Se) hBN monolayer

ZrCl2 ZrNCl  & ZrNBr

OTl2 GeI2



Optical properties of ZrCl2

Philipp Lauwen

Ab initio description of VSCD

• Optical properties through solving the Bethe-Salpeter equation

Hvck,v0c0k0A
�
v0c0k0 = E

�
A

�
vck (1)

A
�
vck = h h

vk 
e
ck| �i (2)

• Polarization-dependent dielectric function in terms of BSE solutions

"2(!) /
X

�

���✏̂ · t�
���
2
�(E� � ~!) (3)

with transition coe�icients

t� =
X

vc

BZX

k

A
�
vck

h vk|p| cki
"ck � "vk

(4)
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Bethe-Salpeter equation:

Ab initio description of VSCD

• Optical properties through solving the Bethe-Salpeter equation
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Imaginary part of the dielectric function 
(optical absorption):

K
K



Summary

Μ
Γ

K

Μ

Μ

Q

T̃q

• Coupled electron-phonon dynamics in (2D) systems out of equilibrium

• Fingerprints of non-equilibrium lattice dynamics in Ultrafast Diffuse Scattering 

Figure 3: (a-c) Momentum-resolved electron di↵raction signals, I(S, t) � I(S, t < t0), at
pump-probe delays of 2 ps, 10 ps, and 50 ps. Two-fold symmetrized data,36 raw data
shown in Supplemental Material.37 The Bragg reflections (blue dots) are negative due to
the Debye-Waller e↵ect. The di↵use background (red) qualitatively evolves as a function of
pump-probe delay. Selected Brillouin zones are shown in inset for the (004) and the (400)
reflections on the 50 ps map. All data are normalized to a common number. (d-f) Simulated
non-equilibrium scattering signals at pump-probe delays of 2 ps, 10 ps, and 50 ps. The
phonon temperatures are based on the non-thermal model described in the text and shown
in Figure 4 (a). All data are normalized to a common number.

�-A high-symmetry line. This anisotropy becomes more pronounced at later times, as shown

in Figure 4(c) and (d) for t = 0.5 and 2.5 ps, respectively. As anticipated above, the origin

of this behaviour is closely related to the anisotropy of the valence and conduction bands.

Owing to the absence of local minima in conduction band along the armchair direction

(i.e., �-X and Z-Q), the photo-excited electrons are constrained to occupy states with crystal

momenta along the zigzag direction, i.e., where the available local minima are located (arrows

in Figure 1 (d)). This scenario is illustrated by highly-anisotropic electronic occupations f 0
nk

in the conduction band, reported in Figure 1 (f) for the initial electronic excited state defined

above, arising from the partial filling of the available low-energy states. Due to momentum
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Ultrafast dynamics pump-probe
spectroscopy
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scattering
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