
	

https://sabikek.eelruxe.com/788232700310042146379?dowokekolavatuxoduvumigarigosupuboxavutepi=kekelagudugoxuvirixukigepipirivelokupijagetutubuxibozatexedaleloferegiwonulixesuxegikikofepawuxobodevudapuzabugoxagerorebekomixufuxenemaludugekanekediruvigizinaganadumujutuwirikuzuxaxazinegazudepatevekafu&utm_kwd=java+design+patterns+tutorials+point+pdf&dupasufasuviwupapazujesaganipexibadututuneworolovoropogewikobavebiz=dopuniwirejafuwivomoxodevoxulivamurixogositovidivoderewubiziduwujaxisadolovosavalopotosukogivoxupunuvojubifemenadikebusofanoxivititononujasodoke

Java	design	patterns	tutorials	point	pdf

Java	design	patterns	simple	explanation.		Java	design	patterns	with	examples.		Important	design	patterns	in	java.		Java	design	patterns	tutorialspoint	pdf.		

A	design	patterns	are	well-proved	solution	for	solving	the	specific	problem/task.	Now,	a	question	will	be	arising	in	your	mind	what	kind	of	specific	problem?	Let	me	explain	by	taking	an	example.	
Problem	Given:	Suppose	you	want	to	create	a	class	for	which	only	a	single	instance	(or	object)	should	be	created	and	that	single	object	can	be	used	by	all	other	classes.	Solution:	Singleton	design	pattern	is	the	best	solution	of	above	specific	problem.	So,	every	design	pattern	has	some	specification	or	set	of	rules	for	solving	the	problems.	What	are
those	specifications,	you	will	see	later	in	the	types	of	design	patterns.	But	remember	one-thing,	design	patterns	are	programming	language	independent	strategies	for	solving	the	common	object-oriented	design	problems.	That	means,	a	design	pattern	represents	an	idea,	not	a	particular	implementation.	By	using	the	design	patterns	you	can	make	your
code	more	flexible,	reusable	and	maintainable.	It	is	the	most	important	part	because	java	internally	follows	design	patterns.	To	become	a	professional	software	developer,	you	must	know	at	least	some	popular	solutions	(i.e.	design	patterns)	to	the	coding	problems.	Advantage	of	design	pattern:	They	are	reusable	in	multiple	projects.	They	provide	the
solutions	that	help	to	define	the	system	architecture.	They	capture	the	software	engineering	experiences.	They	provide	transparency	to	the	design	of	an	application.	They	are	well-proved	and	testified	solutions	since	they	have	been	built	upon	the	knowledge	and	experience	of	expert	software	developers.	Design	patterns	don?t	guarantee	an	absolute
solution	to	a	problem.	They	provide	clarity	to	the	system	architecture	and	the	possibility	of	building	a	better	system.	When	should	we	use	the	design	patterns?	We	must	use	the	design	patterns	during	the	analysis	and	requirement	phase	of	SDLC(Software	Development	Life	Cycle).	
Design	patterns	ease	the	analysis	and	requirement	phase	of	SDLC	by	providing	information	based	on	prior	hands-on	experiences.	Categorization	of	design	patterns:	Basically,	design	patterns	are	categorized	into	two	parts:	Core	Java	(or	JSE)	Design	Patterns.	JEE	Design	Patterns.	Core	Java	Design	Patterns	In	core	java,	there	are	mainly	three	types	of
design	patterns,	which	are	further	divided	into	their	sub-parts:	1.Creational	Design	Pattern	Factory	Pattern	Abstract	Factory	Pattern	Singleton	Pattern	Prototype	Pattern	Builder	Pattern.	2.	Structural	Design	Pattern	Adapter	Pattern	Bridge	Pattern	Composite	Pattern	Decorator	Pattern	Facade	Pattern	Flyweight	Pattern	Proxy	Pattern	3.	Behavioral
Design	Pattern	Chain	Of	Responsibility	Pattern	Command	Pattern	Interpreter	Pattern	Iterator	Pattern	Mediator	Pattern	Memento	Pattern	Observer	Pattern	State	Pattern	Strategy	Pattern	Template	Pattern	Visitor	Pattern	Design	Patterns	Index	Do	you	know?	Christopher	Alexander	was	the	first	person	who	invented	all	the	above	Design	Patterns	in
1977.	But	later	the	Gang	of	Four	-	Design	patterns,	elements	of	reusable	object-oriented	software	book	was	written	by	a	group	of	four	persons	named	as	Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides	in	1995.	That's	why	all	the	above	23	Design	Patterns	are	known	as	Gang	of	Four	(GoF)	Design	Patterns.	Next	TopicCreational	Design
Patterns	For	Videos	Join	Our	Youtube	Channel:	Join	Now	Send	your	Feedback	to		Design	patterns	are	very	popular	among	software	developers.	A	design	pattern	is	a	well-described	solution	to	a	common	software	problem.	

	

A	design	patterns	are	well-proved	solution	for	solving	the	specific	problem/task.	Now,	a	question	will	be	arising	in	your	mind	what	kind	of	specific	problem?	Let	me	explain	by	taking	an	example.	Problem	Given:	Suppose	you	want	to	create	a	class	for	which	only	a	single	instance	(or	object)	should	be	created	and	that	single	object	can	be	used	by	all
other	classes.	Solution:	Singleton	design	pattern	is	the	best	solution	of	above	specific	problem.	

What	are	those	specifications,	you	will	see	later	in	the	types	of	design	patterns.	But	remember	one-thing,	design	patterns	are	programming	language	independent	strategies	for	solving	the	common	object-oriented	design	problems.	That	means,	a	design	pattern	represents	an	idea,	not	a	particular	implementation.	By	using	the	design	patterns	you	can
make	your	code	more	flexible,	reusable	and	maintainable.	It	is	the	most	important	part	because	java	internally	follows	design	patterns.	To	become	a	professional	software	developer,	you	must	know	at	least	some	popular	solutions	(i.e.	design	patterns)	to	the	coding	problems.	
Advantage	of	design	pattern:	They	are	reusable	in	multiple	projects.	They	provide	the	solutions	that	help	to	define	the	system	architecture.	They	capture	the	software	engineering	experiences.	They	provide	transparency	to	the	design	of	an	application.	
They	are	well-proved	and	testified	solutions	since	they	have	been	built	upon	the	knowledge	and	experience	of	expert	software	developers.	Design	patterns	don?t	guarantee	an	absolute	solution	to	a	problem.	They	provide	clarity	to	the	system	architecture	and	the	possibility	of	building	a	better	system.	When	should	we	use	the	design	patterns?	We	must
use	the	design	patterns	during	the	analysis	and	requirement	phase	of	SDLC(Software	Development	Life	Cycle).	Design	patterns	ease	the	analysis	and	requirement	phase	of	SDLC	by	providing	information	based	on	prior	hands-on	experiences.	Categorization	of	design	patterns:	Basically,	design	patterns	are	categorized	into	two	parts:	Core	Java	(or
JSE)	Design	Patterns.	JEE	Design	Patterns.	

So,	every	design	pattern	has	some	specification	or	set	of	rules	for	solving	the	problems.	What	are	those	specifications,	you	will	see	later	in	the	types	of	design	patterns.	
But	remember	one-thing,	design	patterns	are	programming	language	independent	strategies	for	solving	the	common	object-oriented	design	problems.	That	means,	a	design	pattern	represents	an	idea,	not	a	particular	implementation.	By	using	the	design	patterns	you	can	make	your	code	more	flexible,	reusable	and	maintainable.	It	is	the	most
important	part	because	java	internally	follows	design	patterns.	To	become	a	professional	software	developer,	you	must	know	at	least	some	popular	solutions	(i.e.	design	patterns)	to	the	coding	problems.	Advantage	of	design	pattern:	They	are	reusable	in	multiple	projects.	They	provide	the	solutions	that	help	to	define	the	system	architecture.	They
capture	the	software	engineering	experiences.	They	provide	transparency	to	the	design	of	an	application.	They	are	well-proved	and	testified	solutions	since	they	have	been	built	upon	the	knowledge	and	experience	of	expert	software	developers.	Design	patterns	don?t	guarantee	an	absolute	solution	to	a	problem.	They	provide	clarity	to	the	system
architecture	and	the	possibility	of	building	a	better	system.	When	should	we	use	the	design	patterns?	We	must	use	the	design	patterns	during	the	analysis	and	requirement	phase	of	SDLC(Software	Development	Life	Cycle).	
Design	patterns	ease	the	analysis	and	requirement	phase	of	SDLC	by	providing	information	based	on	prior	hands-on	experiences.	Categorization	of	design	patterns:	Basically,	design	patterns	are	categorized	into	two	parts:	Core	Java	(or	JSE)	Design	Patterns.	JEE	Design	Patterns.	Core	Java	Design	Patterns	In	core	java,	there	are	mainly	three	types	of
design	patterns,	which	are	further	divided	into	their	sub-parts:	1.Creational	Design	Pattern	Factory	Pattern	Abstract	Factory	Pattern	Singleton	Pattern	Prototype	Pattern	Builder	Pattern.	2.	Structural	Design	Pattern	Adapter	Pattern	Bridge	Pattern	Composite	Pattern	Decorator	Pattern	Facade	Pattern	Flyweight	Pattern	Proxy	Pattern	3.	Behavioral
Design	Pattern	Chain	Of	Responsibility	Pattern	Command	Pattern	Interpreter	Pattern	Iterator	Pattern	Mediator	Pattern	Memento	Pattern	Observer	Pattern	State	Pattern	Strategy	Pattern	Template	Pattern	Visitor	Pattern	Design	Patterns	Index	Do	you	know?	Christopher	Alexander	was	the	first	person	who	invented	all	the	above	Design	Patterns	in
1977.	But	later	the	Gang	of	Four	-	Design	patterns,	elements	of	reusable	object-oriented	software	book	was	written	by	a	group	of	four	persons	named	as	Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides	in	1995.	That's	why	all	the	above	23	Design	Patterns	are	known	as	Gang	of	Four	(GoF)	Design	Patterns.	Next	TopicCreational	Design
Patterns	For	Videos	Join	Our	Youtube	Channel:	Join	Now	Send	your	Feedback	to		Design	patterns	are	very	popular	among	software	developers.	A	design	pattern	is	a	well-described	solution	to	a	common	software	problem.	Some	of	the	benefits	of	using	design	patterns	are:	Design	patterns	are	already	defined	and	provide	an	industry-
standard	approach	to	solving	a	recurring	problem,	so	it	saves	time	if	we	sensibly	use	the	design	pattern.	

What	are	those	specifications,	you	will	see	later	in	the	types	of	design	patterns.	But	remember	one-thing,	design	patterns	are	programming	language	independent	strategies	for	solving	the	common	object-oriented	design	problems.	That	means,	a	design	pattern	represents	an	idea,	not	a	particular	implementation.	By	using	the	design	patterns	you	can
make	your	code	more	flexible,	reusable	and	maintainable.	It	is	the	most	important	part	because	java	internally	follows	design	patterns.	To	become	a	professional	software	developer,	you	must	know	at	least	some	popular	solutions	(i.e.	design	patterns)	to	the	coding	problems.	Advantage	of	design	pattern:	They	are	reusable	in	multiple	projects.	They
provide	the	solutions	that	help	to	define	the	system	architecture.	
They	capture	the	software	engineering	experiences.	They	provide	transparency	to	the	design	of	an	application.	
They	are	well-proved	and	testified	solutions	since	they	have	been	built	upon	the	knowledge	and	experience	of	expert	software	developers.	Design	patterns	don?t	guarantee	an	absolute	solution	to	a	problem.	They	provide	clarity	to	the	system	architecture	and	the	possibility	of	building	a	better	system.	When	should	we	use	the	design	patterns?	We	must
use	the	design	patterns	during	the	analysis	and	requirement	phase	of	SDLC(Software	Development	Life	Cycle).	Design	patterns	ease	the	analysis	and	requirement	phase	of	SDLC	by	providing	information	based	on	prior	hands-on	experiences.	Categorization	of	design	patterns:	Basically,	design	patterns	are	categorized	into	two	parts:	Core	Java	(or
JSE)	Design	Patterns.	JEE	Design	Patterns.	Core	Java	Design	Patterns	In	core	java,	there	are	mainly	three	types	of	design	patterns,	which	are	further	divided	into	their	sub-parts:	1.Creational	Design	Pattern	Factory	Pattern	Abstract	Factory	Pattern	Singleton	Pattern	Prototype	Pattern	Builder	Pattern.	2.	Structural	Design	Pattern	Adapter	Pattern
Bridge	Pattern	Composite	Pattern	Decorator	Pattern	Facade	Pattern	Flyweight	Pattern	Proxy	Pattern	3.	Behavioral	Design	Pattern	Chain	Of	Responsibility	Pattern	Command	Pattern	Interpreter	Pattern	Iterator	Pattern	Mediator	Pattern	Memento	Pattern	Observer	Pattern	State	Pattern	Strategy	Pattern	Template	Pattern	Visitor	Pattern	Design
Patterns	Index	Do	you	know?	Christopher	Alexander	was	the	first	person	who	invented	all	the	above	Design	Patterns	in	1977.	But	later	the	Gang	of	Four	-	Design	patterns,	elements	of	reusable	object-oriented	software	book	was	written	by	a	group	of	four	persons	named	as	Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides	in	1995.	That's
why	all	the	above	23	Design	Patterns	are	known	as	Gang	of	Four	(GoF)	Design	Patterns.	Next	TopicCreational	Design	Patterns	For	Videos	Join	Our	Youtube	Channel:	Join	Now	Send	your	Feedback	to		Design	patterns	are	very	popular	among	software	developers.	

So,	every	design	pattern	has	some	specification	or	set	of	rules	for	solving	the	problems.	What	are	those	specifications,	you	will	see	later	in	the	types	of	design	patterns.	But	remember	one-thing,	design	patterns	are	programming	language	independent	strategies	for	solving	the	common	object-oriented	design	problems.	That	means,	a	design	pattern
represents	an	idea,	not	a	particular	implementation.	By	using	the	design	patterns	you	can	make	your	code	more	flexible,	reusable	and	maintainable.	It	is	the	most	important	part	because	java	internally	follows	design	patterns.	To	become	a	professional	software	developer,	you	must	know	at	least	some	popular	solutions	(i.e.	design	patterns)	to	the
coding	problems.	Advantage	of	design	pattern:	They	are	reusable	in	multiple	projects.	They	provide	the	solutions	that	help	to	define	the	system	architecture.	They	capture	the	software	engineering	experiences.	They	provide	transparency	to	the	design	of	an	application.	They	are	well-proved	and	testified	solutions	since	they	have	been	built	upon	the
knowledge	and	experience	of	expert	software	developers.	Design	patterns	don?t	guarantee	an	absolute	solution	to	a	problem.	They	provide	clarity	to	the	system	architecture	and	the	possibility	of	building	a	better	system.	When	should	we	use	the	design	patterns?	We	must	use	the	design	patterns	during	the	analysis	and	requirement	phase	of
SDLC(Software	Development	Life	Cycle).	Design	patterns	ease	the	analysis	and	requirement	phase	of	SDLC	by	providing	information	based	on	prior	hands-on	experiences.	Categorization	of	design	patterns:	Basically,	design	patterns	are	categorized	into	two	parts:	Core	Java	(or	JSE)	Design	Patterns.	JEE	Design	Patterns.	Core	Java	Design	Patterns	In
core	java,	there	are	mainly	three	types	of	design	patterns,	which	are	further	divided	into	their	sub-parts:	1.Creational	Design	Pattern	Factory	Pattern	Abstract	Factory	Pattern	Singleton	Pattern	Prototype	Pattern	Builder	Pattern.	2.	Structural	Design	Pattern	Adapter	Pattern	Bridge	Pattern	Composite	Pattern	Decorator	Pattern	Facade	Pattern
Flyweight	Pattern	Proxy	Pattern	3.	Behavioral	Design	Pattern	Chain	Of	Responsibility	Pattern	Command	Pattern	Interpreter	Pattern	Iterator	Pattern	Mediator	Pattern	Memento	Pattern	Observer	Pattern	State	Pattern	Strategy	Pattern	Template	Pattern	Visitor	Pattern	Design	Patterns	Index	Do	you	know?	Christopher	Alexander	was	the	first	person
who	invented	all	the	above	Design	Patterns	in	1977.	But	later	the	Gang	of	Four	-	Design	patterns,	elements	of	reusable	object-oriented	software	book	was	written	by	a	group	of	four	persons	named	as	Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides	in	1995.	That's	why	all	the	above	23	Design	Patterns	are	known	as	Gang	of	Four	(GoF)
Design	Patterns.	Next	TopicCreational	Design	Patterns	For	Videos	Join	Our	Youtube	Channel:	Join	Now	Send	your	Feedback	to		Design	patterns	are	very	popular	among	software	developers.	A	design	pattern	is	a	well-described	solution	to	a	common	software	problem.	Some	of	the	benefits	of	using	design	patterns	are:	Design	patterns
are	already	defined	and	provide	an	industry-standard	approach	to	solving	a	recurring	problem,	so	it	saves	time	if	we	sensibly	use	the	design	pattern.	There	are	many	Java	design	patterns	that	we	can	use	in	our	Java-based	projects.	Using	design	patterns	promotes	reusability	that	leads	to	more	robust	and	highly	maintainable	code.	It	helps	in	reducing
the	total	cost	of	ownership	(TCO)	of	the	software	product.	Since	design	patterns	are	already	defined,	it	makes	our	code	easy	to	understand	and	debug.	It	leads	to	faster	development	and	new	members	of	the	team	understand	it	easily.	Java	design	patterns	are	divided	into	three	categories	-	creational,	structural,	and	behavioral	design	patterns.	This
article	serves	as	an	index	for	all	the	Java	design	pattern	articles.	Creational	Design	Patterns	Creational	design	patterns	provide	solutions	to	instantiate	an	Object	in	the	best	possible	way	for	specific	situations.	1.	Singleton	Pattern	The	singleton	pattern	restricts	the	instantiation	of	a	Class	and	ensures	that	only	one	instance	of	the	class	exists	in	the	Java
Virtual	Machine.	The	implementation	of	the	singleton	pattern	has	always	been	a	controversial	topic	among	developers.	Note:	Learn	more	about	the	Singleton	Design	Pattern.	2.	Factory	Pattern	The	factory	design	pattern	is	used	when	we	have	a	superclass	with	multiple	subclasses	and	based	on	input,	we	need	to	return	one	of	the	subclasses.	
This	pattern	takes	out	the	responsibility	of	the	instantiation	of	a	Class	from	the	client	program	to	the	factory	class.	We	can	apply	a	singleton	pattern	on	the	factory	class	or	make	the	factory	method	static.	Note:	Learn	more	about	the	Factory	Design	Pattern.	3.	Abstract	Factory	Pattern	The	abstract	factory	pattern	is	similar	to	the	factory	pattern	and	is
a	factory	of	factories.	If	you	are	familiar	with	the	factory	design	pattern	in	Java,	you	will	notice	that	we	have	a	single	factory	class	that	returns	the	different	subclasses	based	on	the	input	provided	and	the	factory	class	uses	if-else	or	switch	statements	to	achieve	this.	In	the	abstract	factory	pattern,	we	get	rid	of	if-else	block	and	have	a	factory	class	for
each	subclass	and	then	an	abstract	factory	class	that	will	return	the	subclass	based	on	the	input	factory	class.	Note:	Learn	more	about	the	Abstract	Factory	Pattern.	4.	Builder	Pattern	The	builder	pattern	was	introduced	to	solve	some	of	the	problems	with	factory	and	abstract	Factory	design	patterns	when	the	object	contains	a	lot	of	attributes.	This
pattern	solves	the	issue	with	a	large	number	of	optional	parameters	and	inconsistent	state	by	providing	a	way	to	build	the	object	step-by-step	and	provide	a	method	that	will	actually	return	the	final	Object.	
Note:	Learn	more	about	the	Builder	Pattern.	5.	Prototype	Pattern	The	prototype	pattern	is	used	when	the	Object	creation	is	costly	and	requires	a	lot	of	time	and	resources,	and	you	have	a	similar	Object	already	existing.	So	this	pattern	provides	a	mechanism	to	copy	the	original	Object	to	a	new	Object	and	then	modify	it	according	to	our	needs.	This
pattern	uses	Java	cloning	to	copy	the	Object.	The	prototype	design	pattern	mandates	that	the	Object	which	you	are	copying	should	provide	the	copying	feature.	It	should	not	be	done	by	any	other	class.	However,	whether	to	use	the	shallow	or	deep	copy	of	the	object	properties	depends	on	the	requirements	and	is	a	design	decision.	Note:	Learn	more
about	the	Prototype	Pattern.	Structural	Design	Patterns	Structural	design	patterns	provide	different	ways	to	create	a	Class	structure	(for	example,	using	inheritance	and	composition	to	create	a	large	Object	from	small	Objects).	1.	Adapter	Pattern	The	adapter	design	pattern	is	one	of	the	structural	design	patterns	and	is	used	so	that	two	unrelated
interfaces	can	work	together.	The	object	that	joins	these	unrelated	interfaces	is	called	an	adapter.	Note:	Learn	more	about	the	Adapter	Pattern.	2.	Composite	Pattern	The	composite	pattern	is	used	when	we	have	to	represent	a	part-whole	hierarchy.	When	we	need	to	create	a	structure	in	a	way	that	the	objects	in	the	structure	have	to	be	treated	the
same	way,	we	can	apply	the	composite	design	pattern.	Note:	Learn	more	about	the	Composite	Pattern.	3.	Proxy	Pattern	The	proxy	pattern	provides	a	placeholder	for	another	Object	to	control	access	to	it.	This	pattern	is	used	when	we	want	to	provide	controlled	access	to	functionality.	Note:	Learn	more	about	the	Proxy	Pattern.	4.	Flyweight	Pattern
The	flyweight	design	pattern	is	used	when	we	need	to	create	a	lot	of	Objects	of	a	Class.	Since	every	Object	consumes	memory	space	that	can	be	crucial	for	low-memory	devices	(such	as	mobile	devices	or	embedded	systems),	the	flyweight	design	pattern	can	be	applied	to	reduce	the	load	on	memory	by	sharing	Objects.	
String	pool	implementation	in	Java	is	one	of	the	best	examples	of	flyweight	pattern	implementation.	
Note:	Learn	more	about	the	Flyweight	Pattern.	5.	Facade	Pattern	The	facade	pattern	is	used	to	help	client	applications	easily	interact	with	the	system.	Note:	Learn	more	about	the	Facade	Pattern.	6.	Bridge	Pattern	When	we	have	interface	hierarchies	in	both	interfaces	as	well	as	implementations,	then	the	bridge	design	pattern	is	used	to	decouple	the
interfaces	from	the	implementation	and	to	hide	the	implementation	details	from	the	client	programs.	The	implementation	of	the	bridge	design	pattern	follows	the	notion	of	preferring	composition	over	inheritance.	Note:	Learn	more	about	the	Bridge	Pattern.	7.	Decorator	Pattern	The	decorator	design	pattern	is	used	to	modify	the	functionality	of	an
object	at	runtime.	At	the	same	time,	other	instances	of	the	same	class	will	not	be	affected	by	this,	so	the	individual	object	gets	the	modified	behavior.	The	decorator	design	pattern	is	one	of	the	structural	design	patterns	(such	as	adapter	pattern,	bridge	pattern,	or	composite	pattern)	and	uses	abstract	classes	or	interface	with	the	composition	to
implement.	
We	use	inheritance	or	composition	to	extend	the	behavior	of	an	object,	but	this	is	done	at	compile-time,	and	it’s	applicable	to	all	the	instances	of	the	class.	We	can’t	add	any	new	functionality	to	remove	any	existing	behavior	at	runtime	–	this	is	when	the	decorator	pattern	is	useful.	Note:	Learn	more	about	the	Decorator	Pattern.	Behavioral	Design
Patterns	Behavioral	patterns	provide	a	solution	for	better	interaction	between	objects	and	how	to	provide	loose-coupling	and	flexibility	to	extend	easily.	1.	Template	Method	Pattern	The	template	method	pattern	is	a	behavioral	design	pattern	and	is	used	to	create	a	method	stub	and	to	defer	some	of	the	steps	of	implementation	to	the	subclasses.	The
template	method	defines	the	steps	to	execute	an	algorithm,	and	it	can	provide	a	default	implementation	that	might	be	common	for	all	or	some	of	the	subclasses.	Note:	Learn	more	about	the	Template	Method	Pattern.	
The	mediator	design	pattern	is	used	to	provide	a	centralized	communication	medium	between	different	objects	in	a	system.	If	the	objects	interact	with	each	other	directly,	the	system	components	are	tightly-coupled	with	each	other	which	makes	maintainability	cost	higher	and	not	flexible	to	extend	easily.	The	mediator	pattern	focuses	on	providing	a
mediator	between	objects	for	communication	and	implementing	loose-coupling	between	objects.	The	mediator	works	as	a	router	between	objects,	and	it	can	have	its	own	logic	to	provide	a	way	of	communication.	Note:	Learn	more	about	the	Mediator	Pattern	3.	Chain	of	Responsibility	Pattern	The	chain	of	responsibility	pattern	is	used	to	achieve	loose-
coupling	in	software	design	where	a	request	from	the	client	is	passed	to	a	chain	of	objects	to	process	them.	Then	the	object	in	the	chain	will	decide	who	will	be	processing	the	request	and	whether	the	request	is	required	to	be	sent	to	the	next	object	in	the	chain	or	not.	We	know	that	we	can	have	multiple	catch	blocks	in	a	try-catch	block	code.	Here
every	catch	block	is	kind	of	a	processor	to	process	that	particular	exception.	So	when	an	exception	occurs	in	the	try	block,	it’s	sent	to	the	first	catch	block	to	process.	If	the	catch	block	is	not	able	to	process	it,	it	forwards	the	request	to	the	next	Object	in	the	chain	(i.e.,	the	next	catch	block).	If	even	the	last	catch	block	is	not	able	to	process	it,	the
exception	is	thrown	outside	of	the	chain	to	the	calling	program.	Note:	Learn	more	about	the	Chain	of	Responsibility	Pattern.	4.	Observer	Pattern	An	observer	design	pattern	is	useful	when	you	are	interested	in	the	state	of	an	Object	and	want	to	get	notified	whenever	there	is	any	change.	In	the	observer	pattern,	the	Object	that	watches	the	state	of
another	Object	is	called	observer,	and	the	Object	that	is	being	watched	is	called	subject.	Java	provides	an	built-in	platform	for	implementing	the	observer	pattern	through	the	java.util.Observable	class	and	java.util.Observer	interface.	However,	it’s	not	widely	used	because	the	implementation	is	limited	and	most	of	the	time	we	don’t	want	to	end	up
extending	a	class	solely	for	implementing	the	observer	pattern	as	Java	doesn’t	provide	multiple	inheritances	in	classes.	Java	Message	Service	(JMS)	uses	the	observer	pattern	along	with	the	mediator	pattern	to	allow	applications	to	subscribe	and	publish	data	to	other	applications.	Note:	Learn	more	about	the	Observer	Pattern.	5.	Strategy	Pattern
Strategy	pattern	is	used	when	we	have	multiple	algorithms	for	a	specific	task,	and	the	client	decides	the	actual	implementation	be	used	at	runtime.	A	strategy	pattern	is	also	known	as	a	policy	pattern.	We	define	multiple	algorithms	and	let	client	applications	pass	the	algorithm	to	be	used	as	a	parameter.	One	of	the	best	examples	of	this	pattern	is	the
Collections.sort()	method	that	takes	the	Comparator	parameter.	
Based	on	the	different	implementations	of	comparator	interfaces,	the	objects	are	getting	sorted	in	different	ways.	Note:	Learn	more	about	the	Strategy	Pattern.	6.	Command	Pattern	The	command	pattern	is	used	to	implement	loose-coupling	in	a	request-response	model.	In	this	pattern,	the	request	is	sent	to	the	invoker	and	the	invoker	passes	it	to	the
encapsulated	command	object.	The	command	object	passes	the	request	to	the	appropriate	method	of	receiver	to	perform	the	specific	action.	Note:	Learn	more	about	the	Command	Pattern.	7.	State	Pattern	The	state	design	pattern	is	used	when	an	Object	changes	its	behavior	based	on	its	internal	state.	If	we	have	to	change	the	behavior	of	an	Object
based	on	its	state,	we	can	have	a	state	variable	in	the	Object	and	use	if-else	condition	block	to	perform	different	actions	based	on	the	state.	The	state	pattern	is	used	to	provide	a	systematic	and	loosely-coupled	way	to	achieve	this	through	context	and	state	implementations.	
Note:	Learn	more	about	the	State	Pattern.	8.	Visitor	Pattern	The	visitor	pattern	is	used	when	we	have	to	perform	an	operation	on	a	group	of	similar	kinds	of	objects.	
With	the	help	of	a	visitor	pattern,	we	can	move	the	operational	logic	from	the	objects	to	another	class.	Note:	Learn	more	about	the	Visitor	Pattern.	9.	Interpreter	Pattern	The	interpreter	pattern	is	used	to	define	a	grammatical	representation	of	a	language	and	provides	an	interpreter	to	deal	with	this	grammar.	10.	Iterator	Pattern	The	iterator	pattern
is	one	of	the	behavioral	patterns	and	is	used	to	provide	a	standard	way	to	traverse	through	a	group	of	objects.	The	iterator	pattern	is	widely	used	in	Java	Collection	Framework	where	the	iterator	interface	provides	methods	for	traversing	through	a	Collection.	This	pattern	is	also	used	to	provide	different	kinds	of	iterators	based	on	our	requirements.	
The	iterator	pattern	hides	the	actual	implementation	of	traversal	through	the	Collection	and	client	programs	use	iterator	methods.	
Note:	Learn	more	about	the	Iterator	Pattern.	11.	Memento	Pattern	The	memento	design	pattern	is	used	when	we	want	to	save	the	state	of	an	object	so	that	we	can	restore	it	later	on.	This	pattern	is	used	to	implement	this	in	such	a	way	that	the	saved	state	data	of	the	object	is	not	accessible	outside	of	the	Object,	this	protects	the	integrity	of	saved
state	data.	Memento	pattern	is	implemented	with	two	Objects	–	originator	and	caretaker.	The	originator	is	the	Object	whose	state	needs	to	be	saved	and	restored,	and	it	uses	an	inner	class	to	save	the	state	of	Object.	The	inner	class	is	called	“Memento”,	and	it’s	private	so	that	it	can’t	be	accessed	from	other	objects.	Miscellaneous	Design	Patterns
There	are	a	lot	of	design	patterns	that	don’t	come	under	Gang	of	Four	design	patterns.	Let’s	look	at	some	of	these	popular	design	patterns.	1.	DAO	Design	Pattern	The	Data	Access	Object	(DAO)	design	pattern	is	used	to	decouple	the	data	persistence	logic	to	a	separate	layer.	DAO	is	a	very	popular	pattern	when	we	design	systems	to	work	with
databases.	The	idea	is	to	keep	the	service	layer	separate	from	the	data	access	layer.	This	way	we	implement	the	separation	of	logic	in	our	application.	
Note:	Learn	more	about	the	DAO	Pattern.	2.	Dependency	Injection	Pattern	The	dependency	injection	pattern	allows	us	to	remove	the	hard-coded	dependencies	and	make	our	application	loosely-coupled,	extendable,	and	maintainable.	We	can	implement	dependency	injection	in	Java	to	move	the	dependency	resolution	from	compile-time	to	runtime.
Spring	framework	is	built	on	the	principle	of	dependency	injection.	Note:	Learn	more	about	the	Dependency	Injection	Pattern.	3.	MVC	Pattern	Model-View-Controller	(MVC)	Pattern	is	one	of	the	oldest	architectural	patterns	for	creating	web	applications.	Conclusion	This	article	summarized	Java	design	patterns.	You	can	check	out	Java	design	patterns
example	code	from	our	GitHub	Repository.	Continue	your	learning	with	more	Java	tutorials.	You	can	download	the	PDF	of	this	wonderful	tutorial	by	paying	a	nominal	price	of	$9.99.	Your	contribution	will	go	a	long	way	in	helping	us	serve	more	readers.	

