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Abstract

Shopping time lacks strong positive comovement with either output or business formation.

I develop and estimate by Bayesian means a multisector model in which product diversity

arises from both shopping time and firm entry and investigate its ability to match these and

salient features of the aggregate data. I compare the full model to alternatives in which either

shopping time or firm entry is absent. The baseline generates mildly procyclical firm entry

and shopping time and flat comovement of these two series. Demand shocks induce firm

entry, and shopping time is less procyclical in the baseline model than the no-entry variant.
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1. Introduction

Intuitively, consumption diversity can rise due to greater business formation or shopping

intensity. The search literature has emphasized a frictional process in which buyers and sellers

match and trade goods from its inception (i.e. Diamond (1982)), and more recently shopping

intensity plays a role in estimated DSGE models (i.e. Bai et al. (2012)). Moreover, a recent

literature examines the effects of sluggish firm entry over the business cycle (i.e. Bilbiie et al.

(2012), Offick and Winkler (2019), Lewis and Stevens (2015), and other successor papers).

In a setting with both firm entry and shopping time, agents can raise consumption diversity

with either margin. We can thereby examine how the relative response of these margins
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depends on the type of shock and compare their comovement to the data. As we will see,

shopping time and firm entry do not comove strongly in the data. Therefore, if either variable

is procyclical conditional on certain shocks, the shocks must be composed in such a way that

largely negates their overall correlation.

The model features households and firms. The former consume, shop, work a variable

amount of hours, accumulate capital and invest in firm shares; the latter produce a unique

variety given labor and capital. Firms must pay a sunk entry cost in terms of labor to initiate

production the following period, following Bilbiie et al. (2012). There is, therefore, a tradeoff

between allocating labor to the production of existing goods or new goods. In this sense,

the model has multiple sectors and does not feature an aggregate production technology.

The environment also incorporates shopping time similarly to Laing et al. (2007) and Huo

and Ŕıos-Rull (2016). Matches between households and products depend on a technology

with shopping time and firms as inputs. Consequently, consumption diversity depends on a

weighted average of jump and predetermined variables. Moreover, habit formation induces

households to smooth consumption with less curvature in preferences, and congestion effects

in entry create a friction that prevents too many firms from entering at once.

Investment in this model takes the form of product creation and capital and thus directly

pertains to the tradeoff between quantity and diversity studied by Dixit and Stiglitz (1977).

The share of product creation in output depends on the elasticity of substitution, rate of

time preference, and rate of product destruction. Whereas the (intratemporal) elasticity

of substitution and markup only affect dynamics in a small-scale New Keynesian model

through their interaction with nominal rigidities, here they are fundamental for investment

and shopping.2

To understand how the responses depend on the type of disturbance, first consider a

positive preference shock. Consumers spend more on existing varieties and shop more to

expand their basket of goods. Increased demand for labor pushes up wages and labor-

intensive entry costs. Provided the shock is sufficiently persistent, the discounted value of

firm profits rises enough to promote entry. Aggregate firm profits increase from both higher

2Indeed, it is well-known that if a standard real business cycle model is augmented with CES monopolistic

competition, then the elasticity of substitution does not affect the first-order dynamics. Bilbiie et al. (2007)

make a related point.
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sales of incumbents and entry. In the absence of shopping time, consumption variety expands

by less, so that households consume relatively more of fewer goods. Technology shocks,

however, induce a strong response in business formation but actually reduce shopping time

due to wealth effects. That is, with a lower marginal utility of consumption, the rate of

return on shopping falls. Therefore, the composition of shocks plays an important role in

the comovement between shopping time, output, and entry. To better understand the role

of each ingredient, I also compare the forecast error variance decomposition of the baseline

model to separately estimated alternative models in which either ingredient is absent.

The results depend on two delicate challenges. First, Bilbiie et al. (2007) consider sticky

prices but flexible wages. Under a standard calibration, a reduction in nominal interest rates

boosts consumption demand but also sharply raises the real wage and entry costs. On net,

entry declines. Lewis (2009) recommends nominal wage rigidity as a means to flip the sign

of the response. Similar issues apply to the response of firm entry under a preference shock.

However, in this setting the estimated demand shock is sufficiently persistent as to generate

positive entry. Second, under standard additively separable preferences between consump-

tion and labor, the response of shopping time is ambiguous. As wealth rises, households

raise consumption, which increases the incentive to diversify the basket of goods. However,

the falling marginal utility of consumption actually reduces the incentive to shop. It turns

out that if wealth effects exceed substitution effects (the inverse intertemporal elasticity of

substitution exceeds 1), then the second effect predominates and households shop less. By

allowing for habit formation, as in Lewis and Stevens (2015), households act as if they are

more risk averse. Therefore, they smooth consumption with more modest curvature in pref-

erences and hence less pronounced wealth effects. In fact, shopping time remains procyclical

if demand shocks account for most of its variation, which is borne out by the forecast error

variance decomposition.3

3There are, of course, a number of other modifications of preferences that weaken wealth effects in the

literature. The GHH preferences from Greenwood et al. (1988) eliminate wealth effects altogether. The

preferences from Jaimovich and Rebelo (2009) are time inseparable and nest those of King et al. (1988).

However, the nature of the time inseparability seems difficult to interpret economically, and it raises the

concern of whether the weaker wealth effects should be regarded as an intertemporal vs. and intratemporal

phenomenon. Home production models, such as Benhabib et al. (1991), weaken wealth effects by inducing by

the substitution of work at the market and work at home. As labor supply rises, market consumption rises
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I estimate the model by Bayesian means to data on consumption, investment, output,

labor supply, real wages, and firm entry, which include all the real series used by Lewis and

Stevens (2015).4 The choice of these series is intuitively reasonable for the following rea-

sons. Consumption and output/investment are important series for disentangling demand

and technology shocks. The reason is that demand shocks trigger a bigger response of con-

sumption to output, or, equivalently, that technology shocks induce stronger investment in

new goods relative to output. Data on investment directly disciplines the size of both product

creation and development of physical capital. Labor supply is also an important amplifica-

tion mechanism but responds differently depending on the type of shock. Consistent with

Basu et al. (2006), I find that demand shocks account for a much larger response in labor

supply. Firm entry is a proxy for product creation and disciplines the investment margin in

the model. Though shopping time data would be ideal, the construction of this variable from

the American Time Use Survey only allows for an annual frequency and insufficient years.

However, this fact allows us to assess the implications of the model for a variable that was

not used in estimation.

The stochastic disturbances include (intratemporal) consumption preference shocks, discount-

factor shocks, shopping disutility shocks, technology shocks, and entry-cost shocks. Each

shock follows an AR(1) process in logs except for that of shopping disutility, which is iid.5

Following Offick and Winkler (2019), I also include measurement errors in wages and invest-

ment.

I find that the model fits the data well, generates moderately procyclical firm entry and

shopping time and a flat correlation between the two, and induces a positive response of firm

entry to demand shocks. Moreover, consumption diversity is most volatile in the baseline

specification. However, shopping time is less procyclical than in the model without entry.

more sharply than overall consumption. This mechanism is well-supported empirically but detracts from the

purpose of building the simplest estimable model.
4Lewis and Stevens (2015) study a monetary model and thus also include data on interest rates and

inflation. Moreover, Offick and Winkler (2019) also make use of aggregate profits. In general, a two-

sector model of the vein of Bilbiie et al. (2012) cannot match the volatility of profits relative to output, so

measurement error ends up absorbing much of the variability in profits.
5If one attempts to estimate κt as an AR(1) process in logs, then it turns out that its persistence is not

identified. Moreover, in the no-entry specification even the volatility is not identified.
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For each model, preference shocks explain nearly two fifths of the variation in consumption

and a majority of the variation of labor supply. Moreover, technology shocks explain most

variation in output, and discount-rate shocks account for about two thirds of total investment

in each model. Disturbances to entry costs explain nearly all consumption diversity under

firm entry even though but preference shocks are the most important source in the absence

of entry.

The structure of the paper is as follows. Section 2 describes empirical evidence on firm

entry and shopping time over the business cycle. Sections 3 and 4 lay out the environment

and equilibrium. Section 5 discusses the quantitative results, and Section 6 concludes. The

appendices describe the data sources, derive and list equilibrium conditions, and provide

additional results from the estimation.

2. Empirical evidence on business formation and shopping time

There is limited evidence that consumption diversity is procyclical. Broda and Weinstein

(2010) analyze data from the Nielsen Consume Panel Dataset and find that net product

creation is procyclical and that households spend 9% of annual consumer purchased on new

goods. In this model, consumption diversity arises from either both endogenous entry and

shopping time. To that end, it is important to quantify how these series comove with output

and each other. The primary available data on shopping time for the United States is by the

American Time Use Survey (ATUS). The ATUS is a nationally representative diary time use

survey available since 2003. The Bureau of Labor Statistics conducts the ATUS and draws

on individuals exiting the Current Population Survey. Each wave is based on 24-hour time

diaries in which respondents document the activities from the previous day in detailed time

intervals. The activities are then classified into one of 400 time use categories. Thus, the

ATUS represents repeated cross sections of daily time use. Petrosky-Nadeau et al. (2016) run

cross-state and individual regressions on shopping time, income, and demographic variables

from the ATUS. Comparing the periods 2005-2007 and 2008-2010, they find that shopping

time fell more greatly in states in which GDP per capita contracted more.

Following Aguiar et al. (2013), I limit the sample to individuals between the ages of 18

and 65 and remove any observations with unclassified time.6 I merge shopping time data

6I compile the dataset using the ATUS Extract Builder database accessible from IPUMS. The American
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with two types of data on firm entry. The first is the entry of establishments from the

Business Dynamics Statistics(BDS) program of the Census Bureau. The BDS is compiled by

the Center for Economic Studies from the Longitudinal Business Database. The BDS uses

employment to identify new businesses. This dataset provides measures on job creation and

destruction, establishment births and deaths, and firm startups and shutdowns. It is available

annually from 1977 to 2018. The second dataset is the Business Formation Statistics (BFS),

which is available after 2004. The BFS calculates business formations and applications based

on the first recorded payroll tax liability. I use the dataset on business applications with

planned wages because it is available through 2018 and also to verify the extent to which

business applications track entry of establishments. Merging the two series with the time

use data and state-level per capita output provides a state-level panel between 2003 and

2018.7 In general, using both variables ensures that the conclusion is not sensitive to the

entry measure.

Figure 1 plots the growth rates of business applications and new establishments. The two

series roughly track each other.

Time Use Survey classifies activities in the diary into 18 major categories, which is further broken down

into second and third tiers. The activities at the finest level are coded as a sequence of three two-digit

combinations, i.e. 07 − 01 − 04. See Petrosky-Nadeau et al. (2016) Appendix B1 for a description of the

codes in each shopping category. Hamermesh et al. (2005) provide more information on the types of activities

recorded in the ATUS.
7The Bureau of Economic Analysis provides data on state output through the Gross Domestic Product

by State release. The Census Bureau provides data on the resident population for each state. Both types of

data are accessible through the FRED database. Dividing these two series yields per capita output.

6



2006 2008 2010 2012 2014 2016 2018
Year

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

En
try

 g
ro

wt
h

 business application growth
establishment entry growth 

Figure 1: Growth rate of business applications and new establishments from the Business Formation Statistics

and Business Dynamics Statistics databases, respectively. Entry is summed across states for each year, and

then percentage differences are calculated between years.

Though my focus is on time-series properties of shopping time, I characterize basic fea-

tures of the distribution at the respondent level. Figure 2 plots the empirical cumulative

distribution function. Shopping time appears very lumpy: slightly over half of the obser-

vations are 0. Though over 90% of observations fall below 200 minutes, there is a small

tail extending to much greater values. This lumpiness is qualitatively reminiscent of firm-

level data on investment; aggregation to the state level of course dramatically smooths the

distribution.
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Figure 2: Cumulative distribution function of shopping time at the respondent level.

Following Aguiar et al. (2013), I use state-level variation of business cycles and smooth

measurement error in time use by taking two-year averages. Specifically, the sample consists

of the two-year periods 2005-2006, 2007-2008, 2009-2010, 2011-2012, 2013-2014, 2015-2016,
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and 2017-2018. The first time period is lost due to differencing, leading to an effective sample

size of 7× 50 = 350. The state-level aggregates of the time use categories are

τ jst =
1∑Nst

i=1wist

Nst∑
i=1

wistτ
j
ist

where τ jist denotes the daily minutes that individual i from state s during period t spends on

category j, wist is the corresponding sampling weight, and Nst is the number of individuals

from state s at time t. The sample weight represents the number of person-days in the

calendar quarter that a single ATUS respondent represents. The weights adjust for two

features of the sample data. First, individuals with particular characteristics (i.e. gender)

are either over-or under-represented. Second, weekend days are over-represented.

Before turning to the regressions, Figure 3 shows a bubble plot of output growth with

both shopping growth and shopping time from the pooled sample. Though I emphasize

shopping growth in the regression exercises to remove any low-frequency trend, it is also

worth inspecting against the series in levels. The size of each circle is proportional to the

average state population over the sample.
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Figure 3: Bubble plot of output growth with shopping growth (left subplot) and shopping growth (right

subplot) in the full sample. The size of each circle is proportional to the average state population over the

sample. The horizontal axis is set to the interval between the 1 and 99 percentiles.

The plot displays no obvious pattern but provides significant evidence of outliers. The

outliers are overwhelmingly from small states; thus, weighting the regressions by the state

population also attenuates the influence of outliers.

We can also gain insight by examining the time trend of shopping time (in levels and

growth) and output growth. Figure 4 calculates the means of each series for each pair of

years weighted by the average population of the state.
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Figure 4: Means over pairs of years for shopping time, shopping growth, and output growth weighted by the

average state population over the time period.

.

A direct comparison of shopping time and output growth through 2009-2010 suggests

a negative relationship. However, shopping time decreases further through 2011-2012 even

though output growth rises significantly in this period. Furthermore, shopping time only

slightly recovers in 2013-2014 and does not revert to pre-crisis levels. Indeed, if we compare

shopping growth and output growth, there is no obvious relationship. These figures illustrate

why, following Aguiar et al. (2013), we need to account for trends in time use.

Next, we examine the procyclicality of shopping time, market hours, entry of establish-

ments, and applications of businesses with planned wages more formally in panel regressions.

I also include market hours, which are defined using the same time use codes as Aguiar

et al. (2013) and listed in the data appendix. Though this variable in the ATUS has been

analyzed before, I include it to affirm the close relationship between market work and out-

put directly from time use data in a state-level panel. All variables enter as growth rates.

There are four specifications. The first (I) is a simple unweighted regression. The second

(II) weights by population. The third (III) adds state-level fixed effects, and the (IV) adds a

state-specific linear time trend. State-specific fixed effects in the growth formulation corre-

sponds to state-specific linear trends in log levels, and a state linear time trend corresponds

to nonlinear trends specific to each state. The fourth column is the preferred specification,

but we do not expect a radical difference in results between II-IV as they only reflect the role

of state-specific time trends. With four dependent variables and four specifications of the

independent variables, there are a total of sixteen regressions. Table 1 presents the results.
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Dependent variable I II III IV

Shopping growth 0.382 -0.0557 -0.0206 -0.0709

(0.549) (0.314) (0.349) (0.426)

Market hours growth 0.341 0.634∗∗∗ 0.688∗∗∗ 0.678∗∗

(0.318) (0.148) (0.170) (0.216)

Establishment entry growth 0.840∗∗∗ 0.881∗∗∗ 0.973∗∗∗ 1.089∗∗∗

(0.0866) (0.0692) (0.0738) (0.103)

Business application growth 0.968∗∗∗ 1.088∗∗∗ 1.175∗∗∗ 1.121∗∗∗

(0.124) (0.0673) (0.0831) (0.103)

Table 1: Per capita output growth is the independent variable in specification I. Column II weights by pop-

ulation, column III adds state-fixed effects, and column IV adds a state-specific linear time trend. Standard

errors are clustered by state. Significance values follow ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

The first key observation is there is no significant evidence of positive comovement between

shopping time and output. The estimated coefficient is small and actually negative for

specifications II-IV, and the standard errors are large.8 Given the imprecise estimates, we

can say little other than that shopping time is unlikely to be either strongly procyclical or

countercyclical. Appendix B considers a regression of log shopping time on output growth

for the four specifications, and the results remain insignificant. The time use data on market

work supports the evidence that labor hours are strongly procyclical. A one-unit increase in

output growth rate is expected to raise labor growth by 0.678 units in column IV. Finally,

both measures of firm entry are strongly procyclical, with similar estimates and standard

errors. A one-unit increase in the output growth rate is associated with a 1.1-unit increase

in the growth rate of both establishment entry and business applications.9

To further establish the strong comovement between the two entry series, we regress the

growth of business applications on the growth of establishments. Table 2 presents the results

for specifications I-IV. Each specification gives a similar result, which has a very low standard

8The results are robust to excluding the lowest and highest percentiles of shopping time.
9The correlation between establishment entry growth rates and output growth at the state level is much

higher than the correlation between output growth and firm entry growth on the aggregate data used for the

estimation.
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error. Column IV indicates that a one-unit increase in the growth rate of establishments is

associated with a nearly 0.98 unit increase in business application growth.

Dependent variable (I) (II) (III) (IV)

Business application growth 0.926∗∗∗ 0.951∗∗∗ 0.949∗∗∗ 0.977∗∗∗

(0.0494) (0.0579) (0.0577) (0.0584)

Table 2: The table presents regressions of business application growth on establishment entry growth. Column

I is the simple, unweighted regression. Column II weights by population, column III adds state-fixed effects,

and column IV adds a state-specific linear time trend. Standard errors are clustered by state. Significance

values follow ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

We also examine whether there is positive comovement between shopping time and entry

of establishments. Table 3 reports the result using the same specifications as in Figure 1.

Each result is statistically insignificant, though the sign is positive in the main specification.

I II III IV

Shopping growth -0.0964 0.140 0.137 0.129

(0.340) (0.165) (0.170) (0.181)

Table 3: Regression of shopping growth on establishment entry growth. The column specifications I-IV are

analogous to Table 1.

3. Environment

3.1. Households

There is a unit mass of households and an endogenous mass Nt of firms. Each firm sells

a differentiated product. Prices are written in nominal terms but are flexible. Households

consume, shop, and supply labor.

The preference of the representative household is

E
∑
t

βtbt

{
θt

(Ct − hCt−1)1−σ

1− σ
− χ L

1+1/ψ
t

1 + 1/ψ
− κtSt

}
where consumption C takes the form of a Dixit-Stiglitz aggregator:

Ct =

(∫ A
0

c
(ε−1)/ε
i,t di

)(ε/(ε−1))

(1)
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and A is the measure of the potential set of goods. The parameter ψ is the Frisch elasticity

of labor supply and the parameter κ measures the cost of one more unit of shopping. Finally,

the intratemporal shock θt affects the relative desirability of consumption. The preferences

nest Lewis and Stevens (2015) if κ = 0 and Bai et al. (2012) if h = 0.10

I follow Laing et al. (2007), Bai et al. (2012), and Huo and Ŕıos-Rull (2016) in assuming

a constant returns to scale matching function between shopping time and the measure of

firms. The aggregate number of shopper-firm matches Mt ⊂ A is

Mt = ASφt N
1−φ
t

where S is the aggregate shopping time devoted to searching and satisfies

St =

∫ 1

0

si,tdi

for individual search units si.

Define the market tightness as the ratio of firms per shopping unit: Qt = Nt/St. The

measure of matches for a particular firm is µN,t = Mt/Nt = AQ−φt and the measure of

matches for a single search unit is µS(Qt) = Mt/St = AQ1−φ
t . The matches of an individual

shopper with si,t search units are si,tAQ
1−φ
t . Note that, upon aggregating,

∫ 1

0
si,tAQ

1−φ
t di =

StAQ
1−φ
t = Mt. Thus, the amount of product variety that households enjoy depends on

individual shopping effort and market tightness. Implicitly, shopping allows consumers to

extend the range of goods. Each firm i posts price pit. Households take the prices as given

in deciding how much to shop.

An entrant is successful with probability m(NE,t) = min(1, N−ηE,t), as in Berentsen and

Waller (2009). This congestion externality captures the idea that entrants crowd each other

out and affect their ability to enter the market. The successful entrants are of measure

m(NE,t)NE,t and produce each period until they are hit with an obsolescence shock, which

10It is arguably more natural to embed shopping time and labor in a time budget constraint. However, I

have found that quantitatively it makes little difference but has technical disadvantages. In this formulation,

the only steady-state quantities necessary for the log linearized system can be computed analytically. To the

best of my knowledge, with the time budget constraint one needs to solve for the steady state numerically

for each parameter draw.

12



occurs at rate δ each period. The laws of motion for firms and capital are

Nt = (1− δ)[Nt−1 +m(NE,t−1)NE,t−1]

Kt = (1− δK)Kt−1 + It−1

Each period the household consumes a subset At ⊂ A goods of measure stAQ
1−φ
t , which

depends on tightness Qt and shopping effort st. To formulate a budget constraint of the

household, we define the price index P :

Pt =

(∫
i∈At

p1−εi,t di

)1/(1−ε)

The price index Pt satisfies PtCt =
∫
i∈At pitcitdi and can be interpreted as the minimal cost

of one unit of consumption. Under a symmetric equilibrium, 1/(1− ε) is the elasticity of the

price index with respect to the range of goods and thus measures the love of variety. The

budget constraint in units of currency is

PtCt + Ptνt(Nt +m(NE,t)NE,t)xt+1 + PtIt = Pt(dt + νt)Ntxt +WtLt + Ptr
K
t Kt

Firms issue stock after successfully entering the market place but before facing the obsoles-

cence shock. Households hold shares xt in a mutual fund of all Nt+m(NE,t)NE,t firms. They

receive income from dividends, the value of shares, and labor and capital rental. In turn,

they consume and purchase new shares and capital. The omission of firm indices reflects the

assumed symmetry of firms. The next section verifies that this symmetry holds.

The aggregate state is Ωt = {Nt, Kt, Ct−1, Zt, θt, ft, bt, κt}. The sunk entry cost and entry

lag make the number of firms Nt a state variable, and habit formation makes Ct−1 a state.

3.2. Firm entry

Prospective entrants in period t produce in period t + 1. They compute the expected

discounted stream of dividends

νt = Et
∞∑

s=t+1

Qt,sds

where the stochastic discount factor is Qt,s = [β(1− δ)]s−tλt+s/λt and dividends satisfy

dt = ρtyt − wtlt − rKt kt

Entry requires ft/Zt units of labor. A prospective entrant is successful with probability

m(NE,t), and enjoys the present discounted value νt. This formulation reflects the evidence
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that entry margins rise with labor costs in Bollard et al. (2014). Thus, as in Bilbiie et al.

(2012), productivity shocks Zt are truly aggregate, affecting both the production of existing

goods and the development of new ones. Labor employed in new goods LEt is determined

by the production function NEt = ZtLEt/ft. Even unsuccessful startups nevertheless require

labor in setup.11

4. Equilibrium

We examine the household problem, the firm problem, aggregation, and steady-state

properties.

4.1. Households: consumption, shopping, labor supply, and investment

Consumers choose consumption, shopping effort, shares, and work hours to maximize util-

ity, given the laws of motion for firms and capital specified below. The dynamic programming

problem for a household is

v(xt, kt,Ωt) = max
cit,Lt,st,xt+1,kt+1,It

bt

[
θt

(Ct − hCt−1)1−σ

1− σ
− χ L

1+1/ψ
t

1 + 1/ψ
− κtSt

+βE {v(xt+1, kt+1,Ωt+1) }]

subject to

Ct + νt(Nt +m(NE,t)NE,t)xt+1 + It = (dt + νt)Ntxt + wtLt + rKt kt (2)

Ct =

∫ stAQ
1−φ
t

0

ρi,tci,tdi (3)

kt+1 = (1− δK)kt + It

where ρi = pi/P is the relative price. Note that, as greater availability of goods reduces the

price index P , it raises ρi for a given nominal price pi. Thus, we interpret ρi as a measure

of consumption diversity. We will see that ρi is a function of the range of goods that the

household actually consumes.

11This congestion externality is related to work on research and development races and simultaneous

innovation, as by Gabrovski (2020).

14



Let λ denote the Lagrangian multiplier on the budget constraint (2). Substituting (3),

then the optimality conditions for consumption and shopping time are

[C] btθt(Ct − hCt−1)−σ = λt (4)

[ci] ci,t = ρ−εt Ct (5)

[s] btθt(Ct − hCt−1)−σ(ε/(ε− 1))C
1/ε
t µS,tc

(ε−1)/ε
i,t − κt = λtµs,tρtci,t (6)

[Lt] wt =
χL

1/ψ
t

θt(Ct − hCt−1)−σ
(7)

We differentiate (1) with respect to ci to calculate individual consumption demand.12 The

Euler equations with respect to next-period shares xt+1 and capital are

1 = β(1− δ)E
{
λt+1

λt

dt+1 + νt+1

νt

}
(8)

1 = βE
{
λt+1

λt

[
1− δK + rKt+1

]}
(9)

Equation (4) equates the marginal utility of market consumption to the marginal utility

of wealth. Equation (5) characterizes the demand curve for an individual good, which is a

constraint on the firm problem. Equation (6) says that the benefit of extra search equals the

foregone leisure value. The benefit of extra search is the net utility from switching expenditure

from existing goods to new goods. Equation (7) equates the wage to the marginal rate of

substitution between consumption and leisure. Equations (8) and (9) equate the marginal

utility of consumption to the discounted expected marginal utility next period of consumption

adjusted for the rate of return on shares and capital, respectively.

Using ρt = (Ct/ci,t)
1/ε and substituting for λt yields the shopping optimality condition:

θt(Ct − hCt−1)−σCt
ε− 1

= κtSt (10)

Equation (10) notes that shopping time rises with taste for diversity for a given consumption

level. Consider the special case of no habit formation: h = 0. In that case, if σ > 1, then

consumption and shopping time vary inversely unless θt rises.

12The first order condition with respect to ci yields

∂C

∂ci
= sAQ1−φρi

Since ∂C
∂ci

= sAQ1−φ
(
C
ci

)1/ε
from (1), it follows that (C/ci)

1/ε = ρi, or ci = ρ−εi C.
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4.2. Firms: entry, input choices, and price setting

Firms enter until the value equals entry cost:

m(NE,t)νt =
wtft
Zt

A firm matches with AQ−φt consumers and produces yt = AQ−φt ct units of output. Each firm

produces Ztk
α
t l

1−α
t given lt units of labor and kt units of capital. Consider the problem of

minimizing the cost of producing yt units of output, taking the factor prices wt and rKt as

given:

min
l,k

wtlt + rKt kt s.t. (11)

Ztk
α
t l

1−α
t ≥ yt

Let mct denote the marginal cost (Lagrangian multiplier on (11)). The first order conditions

yield

wt = (1− α)
yt
lt
mct

rKt = α
yt
kt
mct

Profit maximization implies the familiar price setting rule

ρt =
ε

ε− 1
mct

Multiplying both numerator and denominator by Nt and using the pricing rule yields

wt =
(1− α)Y C

t
ε
ε−1LCt

rKt =
αY C

t
ε
ε−1Kt

where LCt is the total labor involved in goods production.

4.3. Aggregation

Aggregate retail output in the economy satisfies

Y C
t = Ntρtyt

= ρtZtK
α
t (LCt)

1−α
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The profit of a firm satisfies dt = ρtyt/ε. Multiplying by Nt and rearranging yields the

profit equation for the household sector:

dt =
Y C
t

εNt

Hence, aggregate profits are Dt = Ntdt = Y C
t /ε. With constant markups, retail output and

aggregate profits exhibit the same dynamics.

We aggregate (2) across households, using xt = 1 for all t and the law of motion for firms

to yield

Yt = Ct + It + νtm(NE,t)NE,t = wtLt +Ntdt + rKKt (12)

Equation (12) says that total expenditures (consumption and both types of investment)

equals the sum of labor income, profits, and rental income.

4.4. Steady state

I highlight a few key steady state results but defer a sequential calculation to Appendix

E.2. The Euler equation implies that the gross return on shares satisfies 1 + d
ν

= 1+r
1−δ , or that

the dividend value ratio is d/ν = (r+ δ)/(1− δ). The number of new entrants replaces those

firms which are exogenously destroyed: mNE = δN/(1 − δ). The Euler equation on capital

implies rK = r + δK . The shares of profits and the extensive margin of investment to retail

output is

dN

Y C
=

1

ε

γ ≡ νmNE

Y C
=
ν

d

δ

1− δ
Nd

Y C

=
δ

(r + δ)ε

The share of (firm) investment and profit income to output are

νmNE

Y
=

γ

1 + γ
=

δ

δ + ε(r + δ)

dN

Y
=

dN

νmNE

νmNE

Y
=
r + δ

δ

γ

1 + γ
=

r + δ

δ + ε(r + δ)

The income approach to output implies Y = wL + rKK + Nd, so that the joint share of

rental and labor income to output is therefore 1 − Nd/Y = 1 − r+δ
δ+ε(r+δ)

. As discussed by

Bilbiie et al. (2012), the model is consistent with a constant share of profits in firm capital

17



dN/(νN) = (r + δ)/(1 − δ) and a high correlation between the profit share and investment

share of output.

Using these formulas and the capital share of retail output from the appendix, we can

calculate the steady state shares of physical capital and firm entry in investment. Note that

I

TI
=

δKK

δKK + νmNE

=
δKK/Y

C

δKK/Y C + νmNE/Y C

=
δKα

δKα + δ(r+δK)
(r+δ)(ε−1)

Hence, the investment share in new businesses is

νmNE

TI
=

δ
(r+δ)(ε−1)

δKα
r+δK

+ δ
(r+δ)(ε−1)

The investment share in new goods depends positively on δ, negatively on the elasticity of

substitution ε, and negatively on δKα.

Since the labor can be used in both for producing existing goods and developing new

ones sold at a markup, the labor share of income reflects more than just technology. The

appendix shows that the ratio of labor income to rental income satisfies wL/(rKuK) =

[(1−α)(ε− 1)(r+ δ) + δ]/[α(ε− 1)(r+ δ)]. Let α̃ denote the capital share of income. Using

this ratio and the total share of labor and rental income of output, we find that the labor

share of income is
wL

Y
≡ 1− α =

(1− α)(ε− 1)(r + δ) + δ

δ + ε(r + δ)

The labor share of income is a function of the elasticity of retail output with respect to

labor 1 − α, the elasticity of substitution between goods ε, the rate of time preference r,

and the firm destruction rate δ. Applying limits helps to better understand the contribution

of each ingredient. As ε → ∞, the labor share converges to 1 − α, which coincides with a

neoclassical Cobb-Douglas production economy. Interestingly, as ε → 1, the lower bound,

the labor share of income approaches 1/(2 + r/δ). Given consumers’ preferences, it is profit

maximizing to devote all resources to producing new firms and infinitely little to production.

Since essentially no resources are used for production, the coefficient α does not matter.

However, setting up new firms requires labor. The amount of labor employed varies inversely

with r/δ. In a steady state, a higher depreciation rate requires a bigger rate of firm entry to
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keep the mass of firms fixed. However, a higher discount rate lowers the present discounted

profits and leads to fewer firms operating overall. Finally, if r → ∞ or δ → 0, then the

labor share of income satisfies (1−α)(ε− 1)/ε. That is, the labor share of income equals the

neoclassical analogue scaled down by the gross markup. For the reasons discussed, I consider

the labor share to be an important target and choose α to satisfy the mean value in the data.

The appendix discusses in closer detail the relationship between the labor income share and

markups. We finally note that the share of income in physical capital satisfies

rKK

Y
=
α(ε− 1)(r + δ)

δ + ε(r + δ)

which approaches α(ε− 1)/ε in a one-sector model (as δ → 0).

4.5. The relative price and consumption diversity

The relative price ρt is the willingness to pay divided by the welfare-consistent price index.

In log deviations, it satisfies

ρ̃t =
φS̃t + (1− φ)Ñt

ε− 1
(13)

There are four key objects of interest. The numerator reflects the amount of products de-

pends, which are a weighted average of shopping time and firm entry, S̃t and Ñt. The total

stock of firms is a state and only adjusts sluggishly, but this also provides a source of per-

sistence in consumption variety. On the other hand, households can adjust shopping time

quickly, but there is no built-in persistence. The parameter φ defines the weight of these two

components. Finally, the elasticity of substitution ε maps numerical diversity of goods into

a measure of consumption diversity ρ̃t. Equation (13) synthesizes the role of goods market

frictions and search intensity, frictional firm entry, and imperfect competition; the model

sub-types differ in the variation of shopping time and entry and the estimates of φ and ε.

5. Quantitative analysis

5.1. Data used for estimation

Firm entry data from the Business Formation Statistics and Business Dynamics Statistics

are not suitable for use as observable variables in estimation. The BFS does not start until

2004, and the BDS is only available annually. Instead, I follow Offick and Winkler (2019)
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and combine new business incorporations from the Survey of Current Business and private

sector establishment births from the Bureau of Labor Statistics into an entry series.13

The observables used for estimation are output, consumption, investment, wages, firm

entry, and labor supply. Below, I plot the comovement of output with the other series after

detrending with Hamilton’s regression filter with a horizon of 8 quarters. For the actual

estimation, though, I transform nonstationary variables using growth rates as Smets and

Wouters (2007) to link observables to their model analogues.14 The quantitative analysis

later explicitly compares the second moments of the data to each model.
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Figure 5: Business cycle component of major variables. Each variable ranges from 1950Q4− 2009Q4. These

dates reflect the initial loss of observations due to the forecast horizon. The symbols Y,C, I, w,NE , and L

are shorthand for output, consumption, investment, real wages, firm entry, and labor hours. Given series x,

the Hamilton regression filter is the residual of series xt+h on series xt, xt−1, xt−2, and xt−3, where I let the

horizon h = 2 years following Hamilton’s recommendation.

13New business incorporations are discontinued after 1994, so I use private sector establishment births from

1995 onward.
14Hamilton (2018) recommends the use of the regression filter over the Hodrick-Prescott filter because

it avoids spurious autocorrelation, the endpoint bias, and the arbitrary choice of the smoothing parameter.

However, demeaned growth rates are more standard in the literature for linking observables to model variables

in estimation.
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As is well-known, consumption comoves closely with output but is slightly less volatile

and labor exhibits similar volatility. Investment is about 3.5 times more volatile than output

and more correlated than consumption. Firm entry is slightly less volatile than investment

and comoves with output. Each series is highly autocorrelated.

5.2. Bayesian estimation

A quantitative evaluation of the model requires us to remove the variety effects of variables

denominated in consumption units. The reason is that the consumer price index (CPI) data

does not adjust for the availability of new products as in the welfare-consistent price index.

Hence, for each variable in units of the consumption basket, we follow Bilbiie et al. (2012)

and define XR,t = Xt/ρt. The use of Bayesian estimation is natural for three reasons. First,

with important exceptions, there are few direct ways of identifying the shocks.15 Estimating

the relative contributions of the shocks is an important objective and is implementable via

the forecast error variance decomposition. Second, the are several parameters which are

very important for the transmission mechanism but uninformed by prior studies, especially

the matching function elasticity φ and the congestion parameter η. Third, we can quantify

parameter uncertainty by incorporating probability bands in the impulse responses.

I discuss the procedure very briefly as An and Schorfheide (2007) and Herbst and Schorfheide

(2015) provide detailed expositions. First, I set a joint prior distribution P (Θ). Level pa-

rameters do not affect the first-order dynamics, and thus are excluded from Θ. I also fix

several parameters. I set β = 0.99, consistent with an annual real interest rate of 4%,

δK = 0.025, which is consistent with 10% annual depreciation of physical capital. Moreover,

I set δ = 0.025, which approximates an average product destruction rate of 9% from Bernard

et al. (2010). I also set α so that it matches a labor share of income of 62%.16 Since the

elasticity of substitution ε is a random variable from a Bayesian perspective, α varies each

15Major exceptions include the approach of Basu et al. (2006) for technology shocks, that of Greenwood

et al. (1988) for investment-specific productivity shocks, and substantial work in identifying monetary policy,

government spending, and news shocks. A few key references are Romer and Romer (2004) and Swanson

(2015) for monetary policy shocks, Blanchard and Perotti (2002) and Ramey (2011) for government spending

shocks, and Barsky and Sims (2011) for news shocks, but there are many more.
16I measure labor share of income using the FRED code LABSHPUSA156NRUG. The average between

1948 and 2009 is 62%.
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iteration to be consistent with the labor income share. Thus, in the estimation, the parame-

ter ε balances competing demands of a prior on the elasticity of substitution, the labor share

of income, and fluctuations.

Parameter Value Interpretation

β 0.99 Discount factor

δ 0.025 Firm exit rate

δK 0.025 Capital depreciation rate

α 1− 0.62(δ+ε(r+δ))−δ
(ε−1)(r+δ) Elasticity of retail output with respect to capital

Table 4: Calibrated parameters. Here α is implicitly a random variable, since ε is a random variable and α

varies with ε so as to match a labor income share of 62%.

We include iid measurement errors to wages and investment. This choice is primarily

to prevent stochastic singularity. We need as many shocks as observables to calculate the

likelihood function, as explained by Ruge-Murcia (2007).17 Additionally, aggregate wage

data is known to be noisy, and firm entry is a proxy for product creation. Removing the

parameters which do not affect the first-order dynamics and those calibrated directly and

including the standard deviations of measurement errors yields

Θ = (ψ, h, σ, φ, ε, η, ρZ , ρθ, ρf , ρb, σZ , σθ, σf , σb, σκ, σw,ME, σTI,ME)′

Appendix F.3 plots the prior distributions for each parameter and also provides a table

of 95% probability intervals and the means and standard deviation for each parameter. For

several parameters, I use tight priors. For the Frisch elasticity of labor supply, the prior mean

is 0.72 and the standard deviation is 0.4. This choice is based on the results of Heathcote

et al. (2010), who account for the hours worked for both men and women in a setting in

which husbands and wives form households. The prior distribution for ε has a mean of 3.8

17To grasp the problem of stochastic singularity, consider a simple real business cycle model with an

unobserved technology series and consumption and output used as observables. In the reduced form VAR(1)

solution, the shocks in each equation are just multiples of each other. This finding, in turn, implies that

certain ratios of observed variables are constant. Thus, one observable can be inferred deterministically from

the other. However, this relationship does not hold in the data, so another stochastic disturbance is necessary.
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with a prior standard deviation of 0.5. In contrast, the prior distributions for φ and η are

very diffuse.

The next step is to recast the model in linear state space form. Accordingly, Table

E.11 summarizes the log linear system. For a linearized model, the likelihood function can

be computed using the Kalman filter, which generates optimal predictions and updates of

the unobservable variables given the data. We first maximize the posterior density, and

then use the Metropolis Hastings algorithm to sample the posterior distribution. I simulate

250, 000 draws with a burn-in of 20%, which suffices given the rapid convergence to the

posterior distribution. Appendix F.2 traces the posterior density and its moving average

across iterations, which looks stationary.

5.3. Posterior distribution and identification

Figure 6 shows the marginal densities from the posterior and prior distribution. Plotting

the densities together allows us to visually assess the information imparted by the data and

the identification of each parameter. Each parameter looks well-identified. The posterior

mean on the Frisch elasticity of labor supply is 1.19, which is slightly high for microeconomic

estimates but low for macroeconomic applications. The estimated elasticity of matching

with respect to shopping time φ is has a posterior mean of 0.29 and standard deviation of

0.12, indicating moderate importance of shopping time to consumption diversity. The entry

congestion externality η has a similar posterior mean as the prior mean but is much more

concentrated. The shock autocorrelation coefficients are very compressed and high. Later,

we verify that each shock plays an important role in the variance decomposition, albeit for

different variables.
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Figure 6: Marginal prior and posterior densities. The prior densities are set according to standard univariate

distributions and the posterior distribution is approximated using the random walk Metropolis-Hastings

algorithm.

5.4. Second moments and impulse responses

We next compare second moments between the model and data. Table 5 presents the

second moments of output, consumption, labor supply, investment, and net firm entry in

the data. The top panel reports moments of the series used as observations; Appendix C

describes the exact transformation of the raw data. The bottom panel compares moments for

the Hamilton-filtered level series of the model and data. The model implied second-moments

are derived from a simulation of size 100, 000.
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SD(x) RSD Cor(x, Y ) Cor(x, x−1)

Data Model Data Model Data Model Data Model

Estimation

∆YR 1.00 1.02 1.00 1.00 1.00 1.00 0.37 0.00

∆CR 0.62 0.66 0.62 0.64 0.48 0.28 0.31 0.25

∆TIR 3.77 3.69 3.77 3.61 0.84 0.89 0.34 -0.07

∆wR 0.76 0.78 0.76 0.76 0.17 0.40 0.03 0.02

∆NE 3.60 3.72 3.60 3.63 0.22 0.25 0.15 -0.02

L 4.20 3.62 4.21 3.53 0.09 0.16 0.97 0.96

Hamilton filter

YR 3.63 2.76 1.00 1.00 1.00 1.00 0.91 0.88

CR 2.46 2.33 0.68 0.85 0.74 0.53 0.89 0.90

TIR 11.36 8.55 3.13 3.10 0.82 0.81 0.91 0.86

wR 2.06 2.26 0.57 0.82 0.23 0.53 0.88 0.87

NE 10.08 9.24 2.77 3.35 0.11 0.23 0.89 0.87

L 3.67 2.50 1.01 0.90 0.86 0.65 0.90 0.87

C – 2.47 – 0.89 – 0.56 – 0.90

S – 5.31 – 1.92 – 0.28 – 0.60

ρ – 0.52 – 0.19 – 0.26 – 0.74

Cor(S,NE) = 0.019

Table 5: Second moments of model and data. Model moments are based on series of 100, 000 periods. The

top panel examines the series for output, consumption, investment, wages, firm entry, and labor supply,

consistent with the detrending procedure; and the bottom panel filters the model and empirical variables

using the Hamilton regression filter.

We first examine the top panel. The standard deviations of the model match the data

extremely well except for labor supply, which is slightly lower. However, even the fit of labor

hours is reasonably good considering the that the prior Frisch elasticity of labor supply is

clustered around a low mean relative to what macroeconomic models typically require. The

contemporaneous correlations with output are also very close to the data. The autocorre-
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lations of the variables in growth rates are generally difficult to match, but the model does

reasonably well for consumption and wages. Any further improvement requires additional

frictions and adjustment costs. Importantly, firm entry is procyclical and has similar volatil-

ity as the data. The Hamilton-filtered analogue has a remarkably similar autocorrelation to

the data.

Some other features stand out from the bottom panel. The model matches the empirical

autocorrelations well. Shopping time is moderately procyclical. Welfare-based consumption

has similar properties as data-based consumption but is slightly more volatile.18

We are particularly concerned with the comovement of shopping time with output and

firm entry. In contrast to the other series, shopping time is not an observable in the esti-

mation. From the Hamilton-filtered data, we see that these correlations are 0.28 and 0.019,

respectively. Therefore, shopping time is only moderately procyclical and is essentially un-

correlated with firm entry. We will see that entry-cost shocks and technology shocks induce a

negative comovement between shopping time and the other two series, which counterbalances

the positive comovement from preference and discount-rate shocks.

5.4.1. Productivity shocks

Figure 7 considers a one-standard deviation positive technology shock. Higher produc-

tivity raises profit expectations and demand for all goods. Free entry drives the firm value

equal to the entry cost. The rate of return on investing in new varieties is high both because

of expectations that firm shares will appreciate and profits will rise. Hence, entry expands

on impact and gradually raises the number of products. Data-consistent firm value rises due

to the congestion externality of entry. Labor supply rises initially in both sectors. Here, the

presence of both forms of investment plays a key role. Setting up new firms requires labor,

but raising physical capital also enhances the marginal product of labor in the production

of existing goods. However, labor supply eventually dips below the steady state value and

converges slowly from below. The intuition is that wealth effects increase demand for leisure

and that less labor is necessary for entry once the stock of firms has been built up. Note

18The correlation between Hamilton-filtered firm entry and output is, admittedly, rather low. As we saw, in

growth rates, which is used for the filter, we obtain a correlation of 0.22. The use of the HP-filter generates a

higher correlation of 0.34. However, because of the arguments given by Hamilton (2018), I opt to describe the

data by the regression filter, though I emphasize that this does not affect the observables used in estimation.
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that the change in consumption variety is relatively small relative to output. In general, the

change in ρ̃t relative to ỸR,t is much higher in Bilbiie et al. (2012). Moreover, wealth effects

cause a decline in shopping time, which implies that consumption variety initially falls before

rising due to the buildup of firms.
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Figure 7: A positive one standard-deviation technology shock. All variables are in percentage deviations.

The units of the horizontal axis are quarters following the shock. The bold line represents the mean impulse

response, and the shaded region represents the 90% probability bands. The horizontal line denotes an impulse

of 0 for reference.

5.4.2. Preference shocks

Figure 7 considers a one-standard deviation positive preference shock.
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Figure 8: A positive one standard-deviation preference shock. All variables are in percentage deviations.

The horizontal axis is in a quarterly frequency. The bold line represents the mean impulse response, and

the shaded region represents 90% probability bands. The dashed horizontal line denotes an impulse of 0 for

reference.

A positive one-standard deviation demand shock generates an immediate rise in shopping

time of over 1.3%, which increases the relative price ρ by 0.1% at the mean. However,

the posterior confidence bands on consumption variety are very large. Greater consumption

demand boosts both the production of existing goods and new varieties. Shopping time and

firm entry both raise consumption diversity, but the former is relatively more important.

Compared to a technology shock, firm entry peaks at 0.15% compared to 0.4% and exhibits

greater variability. Higher consumption demand initially crowds in investment. A noteworthy

feature of positive demand shocks is that labor in both existing existing and new products

remains higher than the steady state throughout and converges monotonically. However, the
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change in consumption variety ρ̃t remains relatively small.

5.5. Entry cost shock

Figure 9 examines the effects of a one-standard deviation negative shock to the entry cost.

This shock triggers a reallocation of resources away from consumption and toward business

formation. Firm value declines alongside the entry cost, reaches a minimum, and then rises

monotonically. The congestion externality dampens the fall in firm value. Labor in entry rises

dramatically at 2.5% on impact, though it falls by over 0.4% in the production of existing

goods. Intuitively, it is cheaper to produce new goods than existing ones, and households’

desire for goods remains unchanged. Overall, labor demand rises by just about 0.15%. The

rise in output is the mirror image of data-consistent consumption, and aggregate profits fall

with lower expenditure. The dynamics of shopping time are a scaled negative of those of

welfare-based consumption. The posterior mean of consumption variety rises eventually to

0.17%, nearly double the amount associated with preference shocks.
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Figure 9: A negative one standard-deviation entry cost shock. All variables are in percentage deviations.

The horizontal axis is in a quarterly frequency. The bold line represents the mean impulse response, and

the shaded region represents 90% probability bands. The dashed horizontal line denotes an impulse of 0 for

reference.

Generally speaking, disturbances to entry costs lead to a far stronger response in firm

entry compared to technology shocks. However, they reduce firm value and investment in

physical capital. These effects cause the impact on overall investment to be small.

5.5.1. Discount rate shock

Figure 10 examines a one standard-deviation expansionary discount rate shock. That is,

the discount rate falls and consumers become more patient. Intertemporal smoothing implies

an immediate drop in consumption, which converges then rises gradually and eventually

exceeds the steady state. Investment in physical capital rises far more than in new products.

There is, however, a modest rise in consumption variety ρ due to both entry and increased
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shopping. Labor increases in both sectors, which also helps promote a rise in output.

Whereas firm value rises with a discount rate shock (welfare-based wages and entry costs

increase), it falls with an entry-cost shock. In general, discount-rate shocks trigger a larger

initial rise in shopping time but a much smaller effect on firm entry and consumption variety

overall.
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Figure 10: A negative one standard-deviation discount rate shock. All variables are in percentage deviations.

The horizontal axis is in a quarterly frequency. The bold line represents the mean impulse response, and

the shaded region represents 90% probability bands. The dashed horizontal line denotes an impulse of 0 for

reference.

5.6. Alternate models

The model without shopping time arises by shutting down the role of shopping in match-

ing: φ = 0. The shopping time equation vanishes, and the log-linearized variety effects

condition is (ε − 1)ρ̃t = Ñt. The model is otherwise the same. Appendix F.5 plots the

marginal posterior distributions for the no-shopping model, which are extremely similar to
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the baseline. It also shows the impulse responses to a technology shock; consumption variety

rises unambiguously and has narrower probability bands.

Table F.14 calculates the second moments of the model and compares to the data ana-

logues under both the transformation used for estimation and the Hamilton filter. The second

moments are similar to the full model with shopping time. However, consumption diversity is

only half as volatile, and welfare-based consumption is slightly less volatile. Thus, shopping

time and consumption diversity are less variable with only firm entry. This fact is plausible

given that households can change shopping time immediately as economic conditions change,

whereas it takes time to build the stock of products. Additionally, the full model fits the

data on consumption and investment slightly better.

Figure 11 shows the impulse response to a unit standard deviation preference shock. The

responses are generally similar to the baseline model, except that consumption variety rises

far less than in the baseline. This result is consistent with the fact that consumption variety

is less volatile without shopping time.
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Figure 11: A positive one standard-deviation preference shock. All variables are in percentage deviations.

The units of the horizontal axis are quarters following the shock. The bold line represents the impulse

response, and the shaded region represents 90% probability bands. The horizontal line denotes an impulse

of 0 for reference.

We now turn to the no-entry model with shopping time. Formally, we normalize Nt = 1,

so that NEt = 0. This specification implies LEt = 0, Yt = Y C
t , and TIt = It. That is, all

labor is used for production of goods and investment is entirely in terms of physical capital.

There is still a goods market friction between firms and shoppers, but now the tightness is

just Qt = 1/St. Implicitly, δ = 0, so that the labor share of income is (1 − α)(ε − 1)/ε.

Equating this quantity to 0.62, we set α = 1 − 0.62ε/(ε − 1). Moreover, profits are a share

1/ε of output, and hence move one-for-one with the latter. It turns out that, without entry,

even iid shopping disutility shocks are no longer identified, so we exclude them. Entry

and shopping time are thus complementarity from a methodological point of view: product

creation helps us identify disturbances to shopping time.

Appendix E.4 lists the log linearized conditions for the no-entry model. We lose the law of

motion of firms, the Euler equation in shares, aggregate expenditure, and total investment.
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As far as estimation is concerned, there is one less observable (firm entry) and two fewer

shocks (entry cost and shopping disutility). We have just as many shocks as observables, so

stochastic singularity does not arise.

Table F.15 calculates the second moments of the model and compares to the data ana-

logues under both the transformation used for estimation and the Hamilton filter. Hamilton-

filtered shopping time has a correlation of 0.39 with output compared to 0.28 in the baseline

model. Thus, firm entry reduces the procyclicality of shopping time as consumers have alter-

native means of diversifying consumption. Thus, entry helps bring the model closer to the

evidence suggested from the American Time Use Survey.

Firm entry plays an important role in fitting data more generally. Investment is too

volatile, which is also the case in the basic model without capital examined by Bilbiie et al.

(2012). Thus, it turns out that the presence of both entry and physical capital matter for

matching aggregate investment. Otherwise, the model matches output, consumption, and

wages well. The volatility of consumption variety, 0.29, is significantly below that of the

baseline model.

Figure 12 shows the impulse response of a positive one standard deviation technology

shock. Shopping falls due to wealth effects, so that, in the absence of firm entry, consumption

variety declines as well. However, the magnitude is small and diffuse; the response of welfare-

based and data-consistent consumption is nearly identical. Compared to the response of a

productivity shock in the standard model, total investment rises by more. The response of

output is similar.
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Figure 12: A positive one standard-deviation technology shock. All variables are in percentage deviations.

The units of the horizontal axis are quarters following the shock. The bold line represents the mean impulse

response, and the shaded region represents 90% probability bands. The horizontal line denotes an impulse

of 0 for reference.

Figure 13 shows the impulse response of a positive one standard-deviation preference

shock. Consumption variety rises by 0.10% in the posterior mean with a large spread,

and in general the response of welfare-based consumption exceeds significantly that of data-

consistent consumption. The rise in consumption variety is similar to that of the baseline

model.
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Figure 13: A positive one standard-deviation preference shock. All variables are in percentage deviations.

The units of the horizontal axis are quarters following the shock. The bold line represents the mean impulse

response, and the shaded region represents 90% probability bands. The horizontal line denotes an impulse

of 0 for reference.

5.6.1. Forecast error variance decomposition

Table 6 examines the fraction of the unconditional forecast error variance explained by

each shock for the three models. The focus is on data-consistent consumption, output, labor

hours, total investment, shopping time, and net product creation. Intratemporal preference

shocks explain nearly 40% of the variation in consumption and over 55% of the variation

in labor supply across the board. Moreover, for each model, technology shocks explain a

majority of the variation in output and nearly half of consumption; discount-rate shocks

explain about a quarter of output in each case. Discount-rate shocks, however, account for

at least two thirds of total investment in each model. Perhaps the most striking result is that

shocks to entry costs explain nearly all variability of firm entry and consumption variety in

the baseline and no-shopping models. In the no-entry model, by contrast, preference shocks

explain over 80% of the variation in shopping time and consumption variety. In general,

adding firm entry with entry-cost shocks changes the forecast error variance decomposition

dramatically, whereas adding shopping time has a much milder effect. This finding is related

to the fact that the number of firms, which directly affects the relative price, is a state variable

that responds sluggishly. Though this limits the immediate impact, it also means that the
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number of products continue to affect the relative price even as the effects of shopping time

have abated.

Finally, the presence of firm entry actually increases the contribution of technology shocks

to total investment by facilitating the buildup of firms. This effect occurs even though now

there is an additional shock that can also contribute to investment.

Note that entry cost shocks can explain nearly all variation in entry while explaining

only a small portion of investment. The explanation arose in the discussion of the impulse

response. An expansionary entry-cost shock reduces barriers to entry and hence lowers firm

value. Additionally, investment is diverted from physical capital. By contrast, a positive

technology shock raises firm value and induces investment in physical capital, though the

impact on firm entry is much lower.

Baseline No shopping No entry

Z θ f b κ Z θ f b Z θ b

CR 47.5 39.7 2.7 10.5 0.2 48.3 39.6 3.7 10.8 48.2 38.5 13.3

YR 58.3 16.3 0.2 27.0 0.0 57.8 14.5 0.2 28.3 53.7 19.7 26.2

L 6.4 60.7 5.3 26.1 0.2 8.1 55.4 6.7 27.8 6.9 70.9 21.3

TIR 31.4 0.5 2.4 67.3 0.6 31.4 0.1 2.5 66.3 22.0 0.4 76.7

ρ 0.2 9.1 85.6 1.8 2.0 1.1 0.1 97.2 2.7 10.4 86.0 3.1

S 9.1 70.3 1.4 2.6 17.8 – – – – 10.4 86.0 3.1

NEnet 1.3 0.1 94.9 3.3 0.0 1.1 0.2 96.1 3.1 – – –

Table 6: Unconditional forecast error variance decomposition for the baseline, no-shopping, and the no-entry

models. The numbers do not add up to 100 due to non-zero correlation of simulated shocks in small samples,

as well as rounding.

5.7. Interpretation: shopping time versus effort

We have seen that the limited data from the American Time Use Survey does not favor

strong procyclicality and can partially account for this finding in a model with wealth effects

and a mixture of technology and demand-type shocks. Business formation also allows house-

holds to raise their consumption diversity with a given level of shopping. However, papers

such as Huo and Ŕıos-Rull (2016) stress shopping effort rather than time. They argue that

37



shopping effort should be procyclical even if time is not. The point is apt and analogous to

the distinction between working hours and variable labor effort. However, in building testable

theory, it is important to utilize as much information from observable variables (i.e. time) to

inform unobservable ones (i.e. effort). For instance, Basu et al. (2006) show that under mild

conditions working hours can proxy effort. This paper finds that the baseline model does

not require very high procyclicality of shopping time even without distinguishing effort from

time. Further progress on this requires a more careful treatment of the relationship between

these two variables.

6. Conclusion

Even though shopping time is a prominent feature of models with goods market frictions,

the available evidence does not favor strong procyclicality. Time spent shopping also does not

comove significantly with entry of establishments, which is an alternate means of increasing

consumption diversity.

This paper investigates the ability of a multisector business cycle model in which product

diversity depends on both (intertemporal) frictional business formation and (intratemporal)

shopping time of households to fit both these facts and other features of the aggregate data.

There are two investment margins (new goods and physical capital), labor in production and

entry, congestion externalities of entrants, and habit formation so that households smooth

consumption without very strong wealth effects. I estimate the model by Bayesian means

on output, consumption, investment, labor supply, wages, and firm entry. To sort out the

role of firm entry and shopping time, I separately estimate versions in which one of these

ingredients is absent.

The baseline model fits the aggregate data very well and produces only mild procyclicality

of shopping time and essentially zero comovement between shopping time and firm entry.

Moreover, shopping time is less procyclical in the presence of firm entry, showcasing how

business formation provides households an alternate means to diversify consumption.

These results rely on the fact that the comovement between shopping time and output

depend on the type of shock. Whereas preference shocks generate positive comovement,

technology shocks induce negative comovement, and the correlation is mixed for other types

of shocks. By contrast, business formations and output positively comove more consistently
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across shocks.

The forecast error variance decomposition shows that entry-cost shocks explain nearly

all variation in firm entry and most consumption diversity even though they explain a much

smaller amount of other series. Entry also enhances the relative contribution of technology

shocks to investment. The volatility of shopping disutility shocks cannot be identified without

entry. Preference shocks explain large shares of consumption and labor supply in each model.

They also play an important role in generating the procyclicality of shopping time but can

only explain a small amount of consumption diversity with entry.

There are additional issues to address in follow-up work. The first regards identification.

It would be very useful to partially identify the elasticity of the matching function φ using

microeconomic estimates and thereby reduce dependence on macroeconomic data. It may

be possible to estimate a version of (13) by merging the proprietary Nielsen Consumer Panel

Dataset with the shopping time and firm entry data used in this paper in a state-year panel.

A slightly richer model may also permit identification of the persistence of shopping disutility

shocks in addition to the conditional volatility.

Second, there are a number of papers which exploit shopping time (or search effort) in

the goods market to explain productivity (Bai et al. (2012), Huo and Rı́os-Rull (2016)). The

idea is that shopping reduces the share of idle inputs by firms; shopping time would thereby

provide additional amplification of demand shocks. The results of this article lead me to

strongly recommend the inclusion of both shopping time and frictional firm entry in such

applications. A reasonable follow-up is to incorporate endogenous utilization as in Huo and

Ŕıos-Rull (2016) and estimate the model with the Solow residual alongside the series used in

this paper.
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Appendix A. Shopping time statistics by state

Table A.7 presents the number of observations and mean and standard deviation of shop-

ping time by state. California has the most observations (13, 565), and Wyoming has the

least (264). The means and standard deviations only vary moderately by state.

count mean std

California 13565 49.0 79.9

Texas 9924 48.5 83.2

New York 7281 46.4 78.1

Florida 6954 46.5 79.5

Illinois 5666 48.8 81.3

Pennsylvania 5579 45.5 77.2

Ohio 5184 46.8 76.8

Michigan 4807 44.7 76.0

North Carolina 4112 47.5 80.1

Virginia 3932 47.1 79.4

Georgia 3859 46.4 83.4

New Jersey 3614 50.6 81.9

Washington 3190 47.8 76.3

Minnesota 3121 43.6 76.1

Indiana 3048 47.0 82.1

Wisconsin 3025 46.0 77.8

Missouri 2900 47.1 78.1

Massachusetts 2854 48.4 81.0

Tennessee 2694 44.7 78.1

Colorado 2603 44.2 75.5

Maryland 2589 49.7 84.5

Arizona 2517 51.4 82.7

Alabama 2282 41.5 73.1

Kentucky 2267 41.5 75.5

South Carolina 2200 41.8 75.8
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Oregon 2021 44.7 72.6

Louisiana 1928 43.7 81.6

Oklahoma 1864 45.6 83.8

Iowa 1804 41.4 77.7

Kansas 1638 39.4 70.2

Connecticut 1562 49.2 77.1

Mississippi 1462 37.3 73.9

Arkansas 1425 43.4 82.4

Utah 1424 37.6 68.6

Nevada 1205 43.8 71.1

New Mexico 1042 46.5 83.7

Nebraska 985 45.5 78.2

West Virginia 884 45.2 88.1

Idaho 837 43.2 75.5

New Hampshire 638 44.4 71.0

Maine 619 43.8 76.4

Montana 519 36.3 70.8

Rhode Island 479 54.3 95.5

South Dakota 467 37.9 78.5

North Dakota 419 40.8 83.8

Delaware 403 47.6 79.4

Hawaii 395 51.7 85.8

District of Columbia 348 42.5 76.9

Vermont 302 47.2 83.0

Alaska 287 38.5 71.2

Wyoming 264 42.2 90.7

Table A.7: Number of observations and mean and standard deviation of shopping time (unweighted) for each

state
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Appendix B. Additional regression results

We regress log shopping time (weighted by the ATUS sampling weight) on output growth

following the four specifications detailed on the text. Column I is the simple unweighted

regression. Column II weights by the average state population over the sample. Column III

adds fixed effects, and Column IV adds a state-specific linear trend. The results switch sign

in IV but remain insignificant.

I II II IV

Log shopping time -0.153 -0.0130 -0.0305 0.149

(0.246) (0.213) (0.242) (0.246)

Table B.8: Regression of log shopping time on output growth. Standard errors are clustered by state and in

parentheses. The significance levels are p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix C. Data appendix

All data is accessible from the St. Louis Fed Economic database other than the shopping

time data, which is available from the American Time Use Survey, and the entry data,

which comes from several sources described below. The construction of specific shopping-

time variables follows Petrosky-Nadeau et al. (2016). The Bureau of Economic Analysis

provides data on state output through the Gross Domestic Product by State release. The

Census Bureau provides data on the resident population for each state. I omit the list of

codes for brevity. Table C.9 describes the raw data sources used in both the motivation and

estimation. Table C.10 describes the transformations used to link the data and model in

estimation. Each series used as an observable ranges from 1948Q4 to 2009Q4. I construct

firm entry using new business incorporations up to 1994Q4 and private establishment births

after 1995Q1.
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ID Description Source

LABSHPUSA156NRUG Labor share of income University of Groningen

PCND Personal consumption: non-durable BEA

PCESV Personal consumption: services BEA

HOANBS Nonfarm business hours worked BLS

CPIAUCSL Consumer price index BLS

GDPC1 Real GDP BEA

GDPDEF GDP Deflator BEA

GDPIC1 Real gross private domestic investment BEA

CNP160V Civilian non-institutional population BLS

estabsentry Entry of establishments BDS, Census

firms Number of firms BDS, Census

BAWBA Business applications with planned wages BFS, Census

NBI New business incorporations SCB, BEA

ESTB Private sector establishment births BLS

- State resident population Census

- State GDP BEA

- Shopping categories ATUS

Table C.9: Data sources used in motivating evidence and estimation. The shopping time variables are

constructed from the American Time Use Survey (https://www.atusdata.org) as by Petrosky-Nadeau et al.

(2016), and the market time is constructed as Aguiar et al. (2013). See the description below.

I also list the time use codes for market work and shopping time:

1. Market work. Codes 05-01, 05-02, 05-99, 18-05-1, 18-05-02, and 18-05-99.

2. Shopping time. Comprised of the following subcategories:

(a) Consumer goods and services shopping other than groceries, gas, and food.

i. Shopping for consumer goods: 07-01-04, 07-01-05, 07-01-99, 07-99

ii. Researching goods and services: 07-02

iii. Waiting time: 08-01-02, 08-02-03, 08-03-02, 08-04-03, 08-05-02, 08-06-02, 08-

07-02, 09-01-04, 09-02-02, 09-03-02, 09-04-02, 09-05-02, 12-05-04.

(b) Purchasing groceries, gas, and food:

i. Groceries: 07-01-01
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ii. Gas: 07-01-02

iii. Food: 07-01-03

(c) Travel time associated with shopping: 18-07, 18-08, 18-09, 18-12-04

Time series Construction Description

dl(Yt) dl
(

GDPC1t
CNP160Vt

)
growth rate of real per capita GDP

dl(Ct) dl
(

PCNDt+PCESVt
CNP160Vt×CPIAUCSLt

)
growth rate of per capita consumption

dl(wt) dl(COMPRNFBt) growth rate of real wage

l(Lt) l(HOANBS
CNP160Vt

) logarithm of per capita hours worked

dl(INVt) dl
(

FPIt+PCDGt+CBIt
CNP160Vt×GDPDEFt

)
growth rate of per capita investment

dl(NEnet,t)

dl
(

NBIt
CNP160Vt

)
t ≤ 1994Q4

dl
(

ESTBt
CNP160Vt

)
t > 1995Q1

growth rate of per capita firms

Table C.10: Construction of data series. The function l and dl denote the demeaned logarithm and demeaned

log-difference, respectively.

48



Appendix D. Derivation of key results within text

Appendix D.1. Shopping time equation

λt
ε

ε− 1
ρtµstct − λtρtµstct = κtbt

λt
1

ε− 1
ρtµstct = κtbt

λtStρtµstct
ε− 1

= κtbtSt

λtCt
ε− 1

= κtbtSt

θt(Ct − hCt−1)−σ

ε− 1
Ct = κtSt

which coincides with (10).

Appendix D.2. Pricing rule

The firm matches with AQ−φ consumers and produces y = AQ−φc units. Since cost

minimization implies that wl + rKk = mcy, the firm problem can be written as

max
c
ρ(c)AQ−φc−mcAQ−φc

⇔ max
c
AQ−φc[ρ(c)c−mcc]

⇔ max
c

[ρ(c)c−mcc]

which gives rise to the first order condition

ρ′(c)c+ ρ(c)

ρ(c)
=

mc

ρ(c)

Substituting ρ′(c)c/ρ(c) = −1/ε, we find that

ρ =
ε

ε− 1
mc

The fact that search frictions do not affect the pricing rule arises from the fact that search

does not affect the share of overhead inputs, unlike in Bai et al. (2012).
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Appendix D.3. The labor share of income and elasticity of substitution

As shown in the text, the labor share of income satisfies

wL

Y
≡ 1− α =

(1− α)(ε− 1)(r + δ) + δ

δ + ε(r + δ)

The last limits motivate us to examine the effects of the elasticity of substitution ε on the

labor share of income more generally. As we have seen, if all production was composed

of the retail sector, then a higher gross markup depresses the labor share of income. In

fact, this result justifies the use of labor income share to proxy markups in several studies.

However, in the multisector economy, as ε falls and goods become more differentiated, this

both depresses the income of retail workers and induces the creation of new firms, which

requires labor. Differentiation of 1− α with respect to ε shows that the labor income share

rises with the elasticity of substitution provided that δ(1− 2α) + r(1− α) > 0. It turns out

that the labor income share rises provided that α < αS, where

αS =
1 + r/δ

2 + r/δ
> 1/2

Therefore, a sufficient–but not necessary–condition for the labor income share to rise with

product substitutability is α < 1/2, which is satisfied under a reasonable parameterization.

Thus, markups and the labor income share are generally inversely related in the steady state,

though not as strongly as in a one-sector model.
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Appendix E. Details on equilibrium

Appendix E.1. Characterization of equilibrium (nonlinear)

Relative price ρt =
ε

ε− 1
mct

Variety effect ρt = (ASφt N
1−φ
t )1/(ε−1)

Profits dt =
Y C
t

εNt

Congestion externality mt = N−ηE,t

Labor intratemporal optimality wt =
χL

1/ψ
t

θt(Ct − hCt−1)−σ

Free entry mtνt = wt
ft
Zt

Firm law of motion Nt = (1− δ) (Nt−1 +mt−1NE,t−1)

Capital accumulation Kt = (1− δK)Kt−1 + It−1

Shopping intratemporal optimality St =
θt(Ct − hCt−1)−σCt

κt(ε− 1)

Consumption marginal utility λt = btθt(Ct − hCt−1)−σ

Euler equation (shares) λt = β(1− δ)E
{
λt+1

dt+1 + νt+1

νt

}
Euler equation (capital) 1 = βE

{
λt+1

λt

[
1− δK + rK

′

t+1

]}
Produced output Y C

t = Ct + It

Aggregate accounting Y C
t + νtmtNE,t = wtLt +Ntdt + rKt Kt

Total investment TIt = It + νtmtNE,t

Labor in entry NEt =
ZtLEt
ft

Appendix E.2. Sequential computation of steady state

The key ratios can be solved for directly in terms of parameters. It is straightforward

to solve for many variables as a function of consumption. Equilibrium consumption can be

determined as a root of the loss function whose output is the distance between a hypothesized

quantity of labor and that level which is consistent with intratemporal optimality.
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First, in the steady state, Z = θ = f = b = κ = 1. The Euler equation for shares implies

d/ν = (r + δ)/(1− δ). Rewrite the aggregate accounting relationship as follows:

Y C +
δN

1− δ
ν = wL+ rKK +

Y C

ε

Y C

(
ε− 1

ε

)
+

δN

1− δ
ν = wL+ rKK

Y C

(
ε− 1

ε

)
+

δN

1− δ
ν

d
d = wL+ rKK

Y C

(
ε− 1

ε

)
+

δN

1− δ
1− δ
r + δ

d = wL+ rKK

Y C

(
ε− 1

ε

)
+

δN

r + δ
d = wL+ rKK

Y C

(
ε− 1

ε

)
+

δ

r + δ

Y C

ε
= wL+ rKK

Y C

(
ε− 1 +

δ

r + δ

)
= (wL+ rKK)ε (E.1)

Using the rental rate of capital and the composition of retail output we find

Y C

K
=

ε
ε−1r

K

α
(E.2)

Using (E.1) and (E.2) yields the ratio of labor income to capital income:

wL

rKK
=

( ε
ε−1

α

)(
ε− 1

ε
+

δ

ε(r + δ)

)
− 1

=
(1− α)(ε− 1)(r + δ) + δ

α(ε− 1)(r + δ)
(E.3)

Taking the ratio of the real wage and rental rate conditions and using (E.3) pins down the

ratio of production labor to total labor LC/L:

L

LC
=

α

1− α
wL

rKuK
L

LC
=

(1− α)(ε− 1)(r + δ) + δ

(1− α)(ε− 1)(r + δ)
(E.4)

Now, given a guess for C, we can find shopping time from the first order condition:

S =
θC1−σ(1− h)−σ

κ(ε− 1)

Using (E.1), K can be pinned down in terms of consumption:

K =
αC

ε
ε−1r

K − δKα
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Given K, investment in physical capital satisfies I = δKK. Retail output satisfies Y C = C+I.

Labor can be found by rearranging the labor supply equation (7):

wL

rKK
=

χL1+1/ψ

θC−σ(1− h)−σ
1

rKK

Using the ratio of labor income to capital income, we can solve for L as a function of C:

L =

[
θC−σ(1− h)−σrKK

χ

(1− α)(ε− 1)(r + δ) + δ

α(ε− 1)(r + δ)

]1/(1+1/ψ)

The intratemporal condition, given L and C, can be also be used to find w. Labor in

production follows from (E.4). We can now find ρ from the production function: ρ =

Y C/(ZKα(LC)1−α). The variety effects condition then pins down N given ρ and S: N =

(ρ/(ASφ))1/(1−φ). Finally, the loss is the discrepancy in market clearing: wL+ rKK +Nd−

Y C − νNE.

This procedure implicitly defines a loss function: L(C) : R+ → R. A modified bisection

method can be used to find a zero C.19

Appendix E.3. Derivation of select log linearized equations

1. Consumption marginal utility

Let Jt = (Ct − hCt−1)−σ. Apply logs to both sides and then take a first-order approxi-

mation:

−σ log(Ct − hCt−1) = log Jt

−σCt − C − h(Ct−1 − C)

C(1− h)
=
Jt − J
J

−σC̃t − hC̃t−1
1− h

= J̃t

Using this expression, we log linearize the consumption marginal utility:

btθt(Ct − hCt−1)−σ = λt

b̃t + θ̃t − σ
C̃t − hC̃t−1

1− h
= λ̃t

19A robust choice is the function brentq from the optimization library of SciPy in Python.
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2. Law of motion for firms

Nt = (1− δ)(Nt−1 +m(NE,t−1)NE,t−1)

NeÑt = (1− δ)(NeÑt−1 +mNEe
m̃t−1+ÑE,t−1)

NÑt = (1− δ)NÑt−1 + (1− δ)mNE

N
(m̃t−1 + ÑE,t−1)

NÑt = (1− δ)NÑt−1 + (1− δ)mNE(m̃t−1 + ÑE,t−1)

Ñt = (1− δ)Ñt−1 + δ(m̃t−1 + ÑE,t−1)

Ñt = (1− δ)Ñt−1 + δ(1− η)ÑE,t−1

3. Euler equation for shares

Let Rt+1 = (dt+1 + νt+1)/νt be the one-period rate of return on holding a share in a

mutual fund.

λt = β(1− δ)E {λt+1Rt+1}

1 = β(1− δ)E
{
Reλ̃t+1−λ̃t+R̃t+1

}
1 = β(1− δ)E

{
Reλ̃t+1−λ̃t+R̃t+1

}
λ̃t = E(λ̃t+1 + R̃t+1)

upon substituting the steady state relationship and rearranging. We next find an

expression for the rate of return on shares Rt+1.

Rt+1 =
dt+1 + νt+1

νt

=
ded̃t+1 + νeν̃t+1

νeν̃t

=
d

ν
ed̃t+1−ν̃t + eν̃t+1−ν̃t

so that

(d+ ν)R̃t+1 = d(d̃t+1 − ν̃t) + ν(ν̃t+1 − ν̃t)

R̃t+1 =
d

d+ ν
(d̃t+1 − ν̃t) +

ν

d+ ν
(ν̃t+1 − ν̃t)

From the steady state Euler equation, d/(d + ν) = (r + δ)/(1 + r) and ν/(d + ν) =
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(1− δ)/(1 + r). Hence,

λ̃t = E

{
λ̃t+1 +

(r + δ)(d̃t+1 − ν̃t) + (1− δ)(ν̃t+1 − ν̃t)
1 + r

}

λ̃t + ν̃t = E

{
λ̃t+1 +

(r + δ)d̃t+1 + (1− δ)ν̃t+1

1 + r

}

4. Aggregate income

We decompose aggregate income and apply steady-state ratios:

Yt = Ntdt + wtLt + rKt Kt

Ỹt =
Nd

Y
(Ñt + d̃t) +

wL

Y
( ˜wtLt) +

rKK

Y
˜rKt Kt

Ỹt =
(r + δ)(Ñt + d̃t) + [(1− α)(ε− 1)(r + δ) + δ](w̃t + L̃t) + α(ε− 1)(r + δ)(r̃t

K + K̃t)

δ + ε(r + δ)
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Appendix E.4. Log linearized system of baseline and no-entry models

Table E.11 describes the log linearized system for the baseline model.

Label Equation

Relative price ρ = mc

Variety effects (ε− 1)ρ = φS + (1− φ)N

Profits d = Y C −N

Firm value ν +m = w + f − Z

Labor intratemporal L = ψ(w + θ − σ
1−h(C − hC−1))

Number of firms N = (1− δ)N−1 + (1− η)δNE,−1

Capital accumulation K = (1− δK)K−1 + δKI−1

Shopping time S = θ + C − σ
1−h(C − hC−1)− εκ

Consumption multiplier λ = b+ θ − σ
1−h(C − hC−1)

Euler equation (shares) λ+ ν = E
{
λ′ + (r+δ)d′+(1−δ)ν′

1+r

}
Euler equation (capital) λ = Eλ′ + β(r + δK)(Y C′ −K ′)

Production function Y C = ρ+ Z + αK + (1− α)LC

Produced output Y C =
[ ε
ε−1

(r+δK)−δKα]C+δKαI
ε
ε−1

(r+δK)

Aggregate expenditure Y = ε(r+δ)
δ+ε(r+δ)

Y C + δ
δ+ε(r+δ)

(ν +NE +m)

Aggregate income Y = (r+δ)(N+d)+[(1−α)(ε−1)(r+δ)+δ](w+L)+α(ε−1)(r+δ)(Y C)
δ+ε(r+δ)

Total investment TI = δKα(r+δ)(ε−1)I+δ(r+δK)(ν+m+NE)
δKα(r+δ)(ε−1)+δ(r+δK)

Real wage w = Y C − LC

Labor in entry LE = NE + f − Z

Stochastic processes x = ρxx−1 + εx for x ∈ {Z, θ, f, b}

Table E.11: Log linearized system of baseline model. The table omits the symbol ˜, which denotes log

deviations from steady state and abuse notation by using the equality sign = rather than the approximation

sign ≈ for first-order approximations.

Table E.12 describes the log-linearized system for the no-entry model.
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Label Equation

Relative price ρ = mc

Variety effects (ε− 1)ρ = φS

Labor intratemporal L = ψ(w + θ − σ
1−h(C − hC−1))

Capital accumulation K = (1− δK)K−1 + δKI−1

Shopping time S = θ + C − σ
1−h(C − hC−1)

Consumption multiplier λ = b+ θ − σ
1−h(C − hC−1)

Euler equation (capital) λ = Eλ′ + β(r + δK)(Y C′ −K ′)

Production function Y = ρ+ Z + αK + (1− α)L

Produced output Y =
[ ε
ε−1

(r+δK)−δKα]C+δKαI
ε
ε−1

(r+δK)

Real wage w = Y − L

Stochastic processes x = ρxx−1 + εx for x ∈ {Z, θ, b}

Table E.12: Log linearized system of no-entry model. The table omits the symbol ˜, which denotes log

deviations from steady state and abuse notation by using the equality sign = rather than the approximation

sign ≈ for first-order approximations.
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Appendix F. Bayesian estimation

Appendix F.1. Details on Bayesian estimation

The log linearized system admits the matrix representation

Γ0β̃t = Γ1β̃t−1 + Ψεt + Πηt

where β̃t consists of all the variables (including the expectational variables). In this form, the

model can be solved using Chris Sims’ algorithm, which relies on the Schur decomposition

and produces a VAR(1) representation

βt = Fβt−1 + gεt (F.1)

where βt consists of all the non-expectational variables of β̃t. Moreover, var(εt) is a matrix

with the shock variances on the diagonal. The reduced form (F.1) is the transition equation

of the state space representation. The measurement equation is

Yt = Hβt

where Yt is the vector of observable variables.

To calculate the (logarithmic) posterior distribution, we use Bayes’ rule:

log p(Θ|Y ) = log p(Y |θ) + log p(Θ)− log p(Y )

where the likelihood p(Y |θ) is a distribution of the data given the parameters and the posterior

g(θ|Y ) is the distribution of the parameters given the data.20

Appendix F.2. Convergence diagnostics and table of prior distributions

Convergence of the posterior distribution implies that the sample properties Markov Chain

Monte Carlo iterations have stabilised. In particular, the moments of parameters as well as

posterior density should be stable after iterations. Figure (F.14) plots the posterior density

20The constant is

p(Y ) =

∫
p(Y |θ)p(θ)dθ

and is known as the marginal likelihood. This quantity integrates the likelihood with respect to the prior

density. It ensures that the posterior density integrates to one but is immaterial for the shape of the posterior

distribution. Thus, we discard p(Y ) for characterizing the posterior distribution.
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across the MCMC draws and the 20, 000-period moving average.21 The posterior density

looks fairly stationary.

0.5 1 1.5 2 2.5

×105

4435

4440

4445

4450

4455

MCMC draw
20000 period moving average

Figure F.14: Trace plot of posterior density.

Figure F.15: Trace plot of the posterior density for each of the 250, 000 Metropolis Hastings draws and a

10, 000-period moving average.

21Given a series {xt}Tt=1, where T is the number of simulations, the moving average curve is defined as

xj = (1/(2q + 1))
∑q
k=−q xj+k.
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Appendix F.3. Table of prior distributions

Parameter Distribution(µ, σ) 95% interval

σ gamma(1.500,0.250) 1.051 .. 2.028

h beta(0.200,0.160) 0.007 .. 0.593

ψ gamma(0.720,0.400) 0.161 .. 1.690

φ beta(0.500,0.270) 0.040 .. 0.960

ε gamma(3.800,0.500) 2.884 .. 4.841

η beta(0.500,0.250) 0.061 .. 0.939

ρZ beta(0.500,0.200) 0.129 .. 0.871

ρθ beta(0.500,0.200) 0.129 .. 0.871

ρf beta(0.500,0.200) 0.129 .. 0.871

ρb beta(0.500,0.200) 0.129 .. 0.871

σZ inverse gamma(0.007,0.004) 0.003 .. 0.017

σθ inverse gamma(0.015,0.007) 0.007 .. 0.033

σf inverse gamma(0.007,0.004) 0.003 .. 0.017

σb inverse gamma(0.007,0.004) 0.003 .. 0.017

σκ inverse gamma(0.015,0.007) 0.007 .. 0.033

σw,ME inverse gamma(0.015,0.007) 0.007 .. 0.033

σTI,ME inverse gamma(0.015,0.007) 0.007 .. 0.033

Table F.13: Table of prior distributions. Each row contains the parameter symbol; the prior distribution

family, mean, and standard deviation; and 95% coverage interval.
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Appendix F.4. Second moments of alternate models

Tables F.14 and F.15 document the second moments of the no-shopping and no-entry

models, respectively.

SD(x) RSD Cor(x, Y ) Cor(x, x−1)

Data Model Data Model Data Model Data Model

Estimation

∆YR 1.00 1.02 1.00 1.00 1.00 1.00 0.37 -0.01

∆CR 0.62 0.68 0.62 0.66 0.48 0.43 0.31 0.25

∆TIR 3.77 3.43 3.77 3.35 0.84 0.88 0.03 0.03

∆wR 0.76 0.76 0.76 0.75 0.17 0.43 0.03 0.03

∆NE 3.60 3.72 3.60 3.63 0.22 0.24 0.15 -0.02

L 4.20 3.68 4.21 3.59 0.09 0.16 0.97 0.96

Hamilton filter

YR 3.63 2.70 1.00 1.00 1.00 1.00 0.91 0.87

CR 2.46 2.26 0.68 0.84 0.74 0.52 0.89 0.90

TIR 11.36 8.41 3.13 3.11 0.82 0.81 0.91 0.87

wR 2.06 2.25 0.57 0.83 0.23 0.54 0.88 0.87

NE 10.08 9.22 2.77 3.42 0.11 0.21 0.89 0.87

L 3.67 2.48 1.01 0.92 0.86 0.62 0.90 0.87

C – 2.29 – 0.85 – 0.53 – 0.89

ρ – 0.26 – 0.10 – 0.14 – 0.84

Table F.14: Second moments of model with no shopping time. Model moments are based on a series of

100, 000 periods. The top panel examines the series for output, consumption, investment, wages, firm entry,

and labor supply, consistent with the detrending procedure; and the bottom panel filters the model and

empirical variables using the Hamilton regression filter.
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SD(x) RSD Cor(x, Y ) Cor(x, x−1)

Data Model Data Model Data Model Data Model

Estimation

∆YR 1.00 1.05 1.00 1.00 1.00 1.00 0.37 -0.00

∆CR 0.62 0.70 0.62 0.66 0.48 0.44 0.31 0.27

∆TIR 3.77 6.43 3.77 6.15 0.84 0.83 0.34 -0.01

∆wR 0.76 0.74 0.76 0.71 0.17 0.42 0.03 0.02

L 4.20 3.47 4.21 3.32 0.09 0.16 0.97 0.96

Hamilton filter

YR 3.63 2.76 1.00 1.00 1.00 1.00 0.91 0.88

CR 2.46 2.33 0.68 0.84 0.74 0.58 0.89 0.90

TIR 11.36 15.03 3.13 5.44 0.82 0.75 0.91 0.87

wR 2.06 2.16 0.57 0.78 0.23 0.53 0.88 0.88

L 3.67 2.42 1.01 0.88 0.86 0.65 0.90 0.87

C – 2.48 – 0.90 – 0.58 – 0.90

S – 3.95 – 1.43 – 0.39 – 0.88

ρ – 0.29 – 0.10 – 0.39 – 0.88

Table F.15: Second moments of model with no entry. Model moments are based on series of 100, 000 periods.

The top panel examines the series for output, consumption, investment, wages, and labor supply, consistent

with the detrending procedure; and the bottom panel filters the model and empirical variables using the

Hamilton regression filter.
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Appendix F.5. Additional results of Bayesian estimation

Figure (F.16) plots the marginal prior and posterior densities for the no-shopping model.

The posterior distributions are similar, but the estimated amount of external habit formation

is lower.
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Figure F.16: Marginal prior and posterior densities for no-shopping model. The prior densities are set ac-

cording to standard univariate distributions and the posterior distribution is approximated using the random

walk Metropolis-Hastings algorithm.

Figure F.17 shows the impulse responses to a unit standard deviation positive technology

shock. The responses are similar to the baseline model except that consumption variety

unambiguously rises and has narrower confidence bands. Even this effect is quantitatively

small, however.
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Figure F.17: A positive one standard-deviation technology shock in the no-shopping model. All variables

are in percentage deviations. The units of the horizontal axis are quarters following the shock. The bold

line represents the mean impulse response, and the shaded region indicates the 90% probability bands. The

horizontal line denotes an impulse of 0 for reference.
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