Introduction to phonons in crystalline solids

Fabio Caruso

https://cs2t.de

S

С

Christian-Albrechts-Universität zu Kiel

CAU

August 22nd, 2023

Selb **Summer School** of the CRC 1242

Funded by

Deutsche Forschungsgemeinschaft German Research Foundation

Solid-State

About me

from Cesena
1 Master in Milan
2 PhD in Berlin (FHI)
3 Postdoc in Oxford
4 Postdoc in Berlin
5 Since March 2020 Kiel

The University of Kiel (founded in 1665)

Max Planck

Hans Geiger

Heinrich Hertz

Theory of phonons in crystalline solids

$$\hat{H}^{\mathrm{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

Phonons in experiments

Ab-initio calculations of phonons in solids

Phonons: recommended books

C. Kittel Introduction to Solid-State Physics Wiley (2004)

P. Brüesch

Phonons: Theory and experiments Volumes 1, 2 Springer (1982)

G. P. Srivastava

The Physics of Phonons Taylor & Francis (1990)

Early developments of the lattice dynamics

- (1875) Weber:
- (**1907**) Einstein:
- (1911) **Debye**:
- Theory of specific heat: including atomic motion Theory of specific heat: including **collective** atomic motion
- (1912) Born-van-Karman: Modern theory of phonons in a periodic 3D lattice (1954) Bardeen-Cooper-Schrieffer: Theory of superconductivity

Bardeen

- The specific heat of Si, B, C deviates from the Dulong-Petit law.

Early theory of specific heat

$c_v(T) \approx 3N_a k_{\rm B}$ The Dulong-Petit Law:

The Einstein model of the specific heat

Vibrational energy of the oscillators

... and its break down:

Each atom \rightarrow harmonic oscillator Frequency ω_E **Bose-Einstein statistics** $n(T) = [e^{\hbar \omega_E / k_B T} - 1]^{-1}$

$$U(T) = \sum \hbar \omega_E n(T)$$

Specific heat:
$$c(T) = \partial U(T) / \partial T = 3N_a k_B \left(\frac{\hbar \omega_E}{k_B T}\right)^2 \frac{e^{\frac{\hbar \omega_E}{k_B T}}}{(e^{\frac{\hbar \omega_E}{k_B T}} - 1)^2}$$

The model reproduces the low and high-temperature limit

Atom vibrations determine the temperature dependence of the specific heat

Phonons: from 1D to real materials

Rigorous formulation: the many-body Hamiltonian

$$\hat{H} = \hat{T}_{e} + \hat{T}_{n} + \hat{V}_{e-e} + \hat{V}_{e-n} +$$

Kinetic energy

$$\hat{T}_e = \sum_{i=1}^{N_e} -\frac{\hat{\nabla}_i^2}{2} \quad , \quad \hat{T}_n = \sum_{I=1}^{N_n} -\frac{\hat{\nabla}_I^2}{2M_I}$$

Coulomb interaction

$$\hat{V}_{e-e} = \frac{1}{2} \sum_{ij}^{N_e} \frac{1}{|\hat{r}_i - \hat{r}_j|} \quad , \quad \hat{V}_{e-n} = \sum_i^{N_e} \sum_{I}^{N_n} \frac{-Z_I}{|\hat{r}_i - \hat{R}_I|} \quad , \quad \hat{V}_{n-n} = \frac{1}{2} \sum_{IJ}^{N_n} \frac{Z_I Z_J}{|\hat{R}_I - \hat{R}_J|}$$

$$\hat{V}_{n-n}$$

$$\hat{H} = \hat{H}(\{\hat{r}_i, \hat{R}_I\})$$
$$\Phi_n = \Phi_n(\{\hat{r}_i, \hat{R}_I\})$$

e-function for ctrons and nuclei

The Born-Oppenheimer approximation

The Born-Oppenheimer approximation:

electrons (fixed nuclei)

$$\hat{H}^{\rm el}\,\psi_{\nu}(r) = E_{\nu}^{\rm el}\psi_{\nu}(r)$$

Density functional theory (DFT):

approximation)

Figs.: Giustino, Materials Modelling using Density Functional Theory (2014)

 $\Psi_s(r,R) \simeq \psi_{\nu}(r;R)\chi_{\nu s}(R)$

nuclei (fixed electrons)

$$\hat{H}^{\mathrm{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

Hohenberg and Kohn, Phys. Rev. (1964) Kohn and Sham, Phys. Rev. (1965)

Exp.: [1] Courths, and Hüfner, Phys. Rep. 112, 53 (1984) [2] Warren et al., Phys. Rev. 158, 805 (1967)

The lattice Schrödinger equation (or equation of motion)

Quantum

Classical

$$M_I \ddot{R}_I = -\frac{\partial U(\{R\})}{\partial R_I}$$

Equivalent in the Harmonic approximation

Atomic displacements in a (1D) crystal lattice

- 1 atom per unit cell
- N unit cells (periodically repeated)

The harmonic approximation

Central ingredient: The potential energy surface $U(\{R\}) =$ Highly-dimensional and very complex to handle **(approximati**

If the displacements $\{u_I\}$ are small ... we can Taylor expand the electronic ground-state energy

Lattice equation of motion in the harmonic approximation

$$F_I = M_I \ddot{u}_I = -\frac{\partial U^{(h)}(\{u\})}{\partial u_I}$$

$$U(R_1, R_2, ..., R_N)$$
 $M_I \ddot{u}_I = -\frac{\partial U(\{R\})}{\partial u_I}$
ion needed)

Harmonic approximation (not valid for liquids/gases) $U \simeq U^{(h)} = U_0 + \frac{1}{2} \sum_{IJ} \frac{\partial^2 U}{\partial u_I \partial u_J}$ $u_I u_J$ $\Phi_{IJ} \equiv \frac{\partial^2 U}{\partial u_I \partial u_J}$ second-order force constant matrix (2FC) $U^{(h)} = U_0 + \frac{1}{2} \sum_{IJ} \Phi_{IJ} u_I u_J = U_0 + \mathbf{u}^{\dagger} \cdot \mathbf{\Phi} \cdot \mathbf{u}$ $(\underline{u}) \longrightarrow M_{I}\ddot{u}_{I} = -\frac{\partial}{\partial u_{I}} \left| U_{0} + \frac{1}{2}\sum_{II} \Phi_{IJ}u_{I}u_{J} \right| = \sum_{I} \Phi_{IJ}u_{J}$

$$M\ddot{u}_I = \sum_J \Phi_{IJ} u_J$$
 A second

Ansatz for the displacement. Most general function that: *(i)* satisfies the EOM *(ii)* obey the boundary conditions *(iii)* not an approximation

wave vector $q = 2\pi/\lambda$ wave length $\lambda = L/n$ with $n = \{1, 2, ..., N\}$

[D(a

d-order differential equation for the displacements

Key quantities:

- Phonon frequency ω_q
- Phonon eigenvector u_q

$$\int_{I}^{2} u_{q} = \sum_{J} \Phi_{IJ} e^{iq(R_{J} - R_{I})} u_{q}$$

Dynamical matrix: $D(q) = \sum M^{-1} \Phi_{IJ} e^{iq(R_J - R_I)} = g \sin(qa)$

Secular equation (can be solved to obtain ω_q and u_q)

$$q) - \omega_q^2] u_q = 0 \quad \longrightarrow \quad \omega_q^2 = D(q)$$

Phonon dispersion for the 1D chain

In general:
$$N_{\rm ph}^{\rm 1D} = N_{\rm atoms}$$
 $N_{\rm ph}^{\rm 3D} = 3N_{\rm atoms}$

• Acoustic phonons: *in-phase* vibrations of the atoms in the unit cell

• Optical phonons: <u>out-of-phase</u> vibrations of the atoms in the unit cell

(at least 2 atoms per unit cell are needed)

- **Transverse phonons:** displacement perpendicular to propagation
- Longitudinal phonons: displacement parallel to propagation

- Transverse Optical (TO)
- Longitudinal Optical (LO)
- Transverse Acoustic (TA)
- Longitudinal Acoustic (LA)

Classification of lattice vibrations

Symmetry classification based on group theory

Dresselhaus,

Group Theory: Applications to the Physics of Condensed Matter Springer

Phonons: from 1D to 3D

- N_b atoms in a unit cell
- 3 spatial dimensions

$$\{\mathbf{R}_I\}
ightarrow \{\mathbf{R}_I + \mathbf{u}_I\}$$

The potential energy surface

In 1D:
$$U^{(h)}(R_1, \dots, R_N) \simeq U_0 + \frac{1}{2} \sum_{IJ} \frac{\partial^2 U}{\partial u_I \partial u_J} \begin{vmatrix} u_I u_J \\ u_I = 0 \end{vmatrix}$$

In 3D: $U^{(h)}(\mathbf{R}_1, \mathbf{R}_2, \dots) \simeq U_0 + \frac{1}{2} \sum_{\mathbf{K}\mathbf{K}'}^{N_{atoms}} \sum_{pp'}^{N_p} \sum_{\alpha\alpha'}^{\mathbf{X},\mathbf{Y},\mathbf{Z}} \frac{\partial^2 U}{\partial u_{\kappa\alpha p} \partial u_{\kappa'\alpha' p'}}$
atoms cells coordinates

Straightforward generalization from 1D to 3D

Born-von-Karman supercell

Summary of phonon calculations (1D chain)

Phonon calculations in 3D crystals

- κ : atom index
- *p* : cell index
- α : cartesian coordinate

Part 2

Experimental measurements of the phonon dispersion

Brockhouse et al., Phys. Rev. **111**, 747 (1958)

Phonon dispersions from Inelastic neutron scattering

Bertram Brockhouse, Nobel prize in Physics 1994

"for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter"

Phonons in solids: elemental semiconductors and metals

Brockhouse et al., Phys. Rev. **111**, 747 (1958)

- 2 atoms per unit cell \rightarrow 6 phonon modes symmetry \rightarrow degeneracies (only 4 modes visible)
- Longitudinal Acoustic = LA
- Transverse Acoustic = TA
- Longitudinal Optical = LO
- Transverse Optical = TO

1 atoms per unit cell \rightarrow 3 phonon modes

- Longitudinal Acoustic = LA
- Transverse Acoustic = TA

Phonon dispersions of GaAs

Points: **experiment** Lines: **parametrized model** (12-14 parameters)

Strauch et al., J. Phys. Cond. Mat. 2, 1457 (1990)

Phonons in experiments: Raman and Brillouin scattering

Brafman, Phys. Rev. **171**, 931 (1968)

Jasperse et al, Phys. Rev. **146**, 526 (1966)

Phonons in experiments: Diffuse and elastic X-ray and electron scattering

Seiler, Caruso et al. Nano Lett. 21, 6171 (2021)

Rovalar at al Dhue Dav R 10 1570 (1070)

Part 3

Towards ab-initio calculations of phonons

Quantities of interest for the lattice dynamics

- phonon frequency $\omega_{{f q}
 u}$
- phonon eigenvector $u_{\mathbf{q}\nu}^{\kappa}$

Directly available from $\left| \mathbf{D}(\mathbf{q}) - \omega_{\mathbf{q}}^2 \right| \mathbf{u}_{\mathbf{q}}^{\kappa} = 0$ the secular equation

• not predictive (need experiments)

Back to theory: Phonon calculations in practice

- thermal conductivity
- electron-phonon interactions \bullet
- phonon lifetimes $\tau_{\mathbf{q}\nu}$
- influence of phonon in spectroscopy

We need the second-derivatives of the potential energy surface

Yu, Cardona, Fundamentals of Semiconductors, Springer

How to calculate the second derivatives?

 $\Phi_{\kappa\alpha p,\kappa'\alpha'p'} = \frac{\partial^2 U}{\partial u_{\kappa\alpha p}\partial u_{\kappa'\alpha'p'}}$

Option 2: Density functional perturbation theory

REVIEWS OF MODERN PHYSICS, VOLUME 73, APRIL 2001

Phonons and related crystal properties from density-functional perturbation theory

Stefano Baroni, Stefano de Gironcoli, and Andrea Dal Corso

SISSA-Scuola Internazionale Superiore di Studi Avanzati and INFM-Istituto Nazionale di Fisica della Materia, I-34014 Trieste, Italy

Paolo Giannozzi*

Does not requires supercell.
 More difficult to converge

H. Shang, Comp. Phys. Commun. **215**, 26 (2017) Silicon

Phonons in polar semiconductors and long-range electric fields

$$\mathbf{q} \cdot \mathbf{D} = 0$$
 and $\mathbf{q} \times \mathbf{E} = 0 \implies \mathbf{E} = \mathbf{q}(\mathbf{q} \cdot \mathbf{E})$

Replace E into F_I

$$\mathbf{F}_{I} = M \ddot{\mathbf{u}}_{I} = -\sum_{J} \left[\Phi_{IJ} - \frac{4\pi e^{2}}{\Omega} \sum_{I} \frac{(\mathbf{Z}_{I}^{\star} \cdot \mathbf{q}) (\mathbf{q} \cdot \mathbf{Z}_{J}^{\star})}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}} \right] \mathbf{u}_{J}$$

Polar materials: materials with finite Born effective charges \mathbf{Z}_{k}^{2}

$$A_{\kappa}^{\star} = -\frac{\partial \mathbf{P}}{\partial \mathbf{R}_{\kappa}}$$

Electric fields must be included in the lattice equation of motion

$$\mathbf{F}_{I} = M \ddot{\mathbf{u}}_{I} = -\sum_{J} \Phi_{IJ} \mathbf{u}_{J} - e \sum_{I} \mathbf{Z}_{I}^{\star} \mathbf{E}$$

Lattice contribution to the polarization

$$\mathbf{E} = -\frac{4\pi e}{\Omega} \sum_{I} \frac{\mathbf{q} \left(\mathbf{q} \cdot \mathbf{Z}_{I}^{\star} \mathbf{u}_{I} \right)}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}}$$

The non-analytic part fo the dynamical matrix

$$\mathbf{F}_{I} = M \ddot{\mathbf{u}}_{I} = -\sum_{J} \left[\Phi_{IJ} - \frac{4\pi e^{2}}{\Omega} \sum_{I} \frac{(\mathbf{Z}_{I}^{\star} \cdot \mathbf{q}) (\mathbf{q} \cdot \mathbf{Z}_{J}^{\star})}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}} \right] \mathbf{u}_{J}$$

- LO-TO splitting
- Lyddane-Sachs-Teller relations
- Modern theory of polarization in ferroelectrics
- Fröhlich electron-phonon coupling
- Polarons

X. Gonze, C. Lee Phys. Rev. B 55, 10355 (1997) S. Baroni et al, Rev. Mod. Phys. 73, 515 (2001)

$$\Phi_{IJ}^{(na)} = \frac{4\pi e^2}{\Omega} \sum_{I} \frac{(\mathbf{Z}_{I}^{\star} \cdot \mathbf{q}) (\mathbf{q} \cdot \mathbf{Z}_{J}^{\star})}{\mathbf{q} \cdot \epsilon_{\infty} \cdot \mathbf{q}}$$

$$\tilde{\Phi}_{IJ} = \Phi_{IJ} +$$

Phenomena associated to polar semiconductors (and to $\Phi_{II}^{(na)}$)

 $\omega_{\underline{LO}}$ \mathcal{E}^{∞} • Absorption of infrared light (Rehstrahlen bands)

Assumption: timescales of ionic motions much slower than electronic timescales

timescales of ionic dynamics
$$au_{\rm ph} = rac{2\pi}{\omega_{\rm ph}} \simeq 50-200~{\rm fs}$$

timescales of electron dynamics 2π $\tau_{\rm e} = - \omega_{
m pl}$

Phenomena beyond the adiabatic approximation:

- Phonon "*damping*" due to electron-phonon scattering
- Non-adiabatic renormalization of the phonon energies

Harmonic approximation

$$E_0(\{R_I + u_I\}) = E_0(\{R_I\}) + \frac{1}{2} \sum_{II'} \frac{\partial^2 E_0}{\partial u_I \partial u_{I'}} \Big|_{R_I} u_I u_{I'}$$

Assumption:
$$+ \frac{1}{3!} \sum_{II''''} \frac{\partial^3 E_0}{\partial u_I \partial u_{I''}} \Big|_{R_I} u_I u_{I'} u_{I''+1}$$

Phenomena beyond the harmonic approximation:

- Phonon-phonon scattering
- Thermal expansion
- Thermal conductivity
- Non-equilibrium dynamics of the lattice
- Ferroelectricity, piezoelectricity

Perovskite structure ABO₃

- Anharmonic effects can become important in "soft" crystals
- Structural disorder can alter the vibrational spectrum
- Does it make sense to talk about phonons?

Beyond phonons: Breakdown of the harmonic approximation

Beyond phonons: Breakdown of the adiabatic approximation

1. <u>https://henriquemiranda.github.io/phononwebsite/phonon.html</u>

2. <u>https://interactivephonon.materialscloud.io/</u>

Theory of phonons in crystalline solids

$$\hat{H}^{\mathrm{nuc}} \chi_{\nu s}(R) = E_s \chi_{\nu s}(R)$$

Phonons in experiments

Ab-initio calculations of phonons in solids

