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introduction to phonons: outlines

Theory of phonons in crystalline solids
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Phonons in experiments
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Fzo. 2. The (110) plane of the reciprocal lattice and several
typical neutron groups for copper obtained in "constant-Q"
experiments such as the one shown for group 35.The groups are
labeled with the branch designation and the value of the reduced
wave vector g.

branches are constructed from the known symmetry
about 8'. The straight lines drawn from the points j.
represent the velocities of sound for the various branches
calculated from the elastic constants of Overton and
Gaffney" (see Table III). The points nearest I" on all

except the LOg7T) branch agree very well with the
velocity of sound values. The points on the T~ branch
are significantly high.
In I'ig. 4 the low-wave-vector region of the LOg7T)

branch is shown together with a typical neutron group
measured with the McMaster spectrometer. (After the
original study, five groups on the low-[ part: of this
branch were remeasured with the vertical collimation
increased by about a factor of 3. It was found that for
/&0 3th. e original frequencies were lowered by about
0.015&&10" cps; the values of Table II have been
corrected accordingly, but the points plotted in Fig. 4
represent the original uncorrected values. The groups
taken with the higher vertical resolution were also
about 20'Po narrower. The higher energy resolution and
the increased vertical collimation used in the experi-
ments at McMaster University easily account for the
frequencies in Table II being slightly lower than the
corresponding frequencies in Table I.)
The T} branch is of particular interest for several

reasons: (i) It is very nearly a straight line up to at
least ] =0 5 (Th.er.e is evidence for this in I'ig. 1 where
it is seen that the neutron groups for t =0.2 and 0.5
have almost equal widths which implies that the slope
of the dispersion curve is almost identical for the two
values of ].) (ii) The slope of this almost straight line is
about 5% greater than the velocity of sound for this
branch which is determined by the shear elastic constantC'= (c)t—c)s)/2. (This does not necessarily imply that
either the elastic constants" or the neutron-scattering
results are incorrect since the elastic constant measure-
ments correspond to very much smaller velues of [ than
any of the neutron results. ) (iii) The ratios of the
nickel to the copper frequencies are highest for the low-]
part of this branch. (iv) The low-] part of this branch
in palladium'7 has been found to have an anomalous S
shape. (v) A Kohn anomaly" might possibly appear in
this branch at )=0.45, corresponding to transitions
across the "belly" of the Fermi surface. "
The low-] part of the Ti branch thus appears to be

FIG. 3. The dispersion
curves for copper in the
four major symmetry direc-
tions at 296'K. The dia-
gram is labeled with the
group theoretical notation
of Koster (Ref. 21) and the
straight lines through the
points I' give the initial
slopes of the dispersion
curves as calculated from
the elastic constants (Table
III). The solid and dashed
curves are the result of an
analysis in terms of general
forces to 4th-nearest neigh-
bors (model M1 of Table
IV).
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"))V.C. Overton, Jr., and J. Gaffney, Phys. Rev. 98, 969 (1955).» Q. Segall, Phys. Rev. 125, 109 (1962).
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Ab-initio calculations of phonons in solids
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Fig. 16. Vibrational band structure of graphene computed at the LDA level using
both DFPT (solid blue line) and finite-difference (red open circles). All calculations
have been performed using a 11⇥11⇥1 k-grid sampling for the primitive Brillouin
zone, tight settings for the integration, and a ‘‘tier 1’’ basis set.

Fig. 17. Vibrational band structure of silicon in the diamond structure computed
at the LDA level using both DFPT (solid blue line) and finite-difference (red open
circles). All calculations have beenperformedusing 7⇥7⇥7kpoints in theprimitive
Brillouin zone, tight settings for the integration, a ‘‘tier 1’’ basis set, and the LDA
functional.

Fig. 18. H(C2H4)nH molecules: CPU time of one full DFPT cycle required to
compute all perturbations/responses associated with the 3(6n + 2) (3 is for three
cartesian directions, 6n + 2 is the number of atoms.) degrees of freedom on 32
CPU cores (see text). Following the flowchart in Fig. 4, also the timings required for
the computation of the individual response properties (density n(1) , electrostatic
potential V (1)

es,tot , Hamiltonian matrix H(1) , density matrix P (1)) are given. Here we
use light settings for the integration, a ‘‘tier 1’’ basis set, and the LDA functional.

systems (N ⌧ 1000), it would thus be beneficial to switch to a
more advanced formalism for this computational step [16,17].

To understand the timings shown in Fig. 19 for the periodic
linear chain, it is important to realize that such periodic
calculations do not directly scale with the number of atoms N , as
it was the case in the finite system, in which an N ⇥ N Hessian
was computed. Rather, the calculations are inherently performed
in a supercell (see Fig. 3) that features Nsc atoms in total. As
discussed in Section 2.3, only an N ⇥ Nsc subsection of the Hessian
needs to be determined. Accordingly, the scaling is thus best
rationalized as function of the effective number of atoms Neff =
p
N · Nsc , as shown in Fig. 19 and Table 3. In this representation, the

scaling and the respective exponents closely follow the behavior
discussed for the finite systems already with one exception: Due
to the fact that a sparse matrix formalism is used in the periodic
implementation (see Section 3.3 and Ref. [74]), a more favorable
scaling for the construction of the density matrix response P (1) is
found.

As also shown in the lower panel of Fig. 19 and Table 3, the scal-
ing does however not follow these intuitive expectations if plotted
with respect to the number of atoms N present in the primitive
unit cell, since Neff , Nsc , and N are not necessarily linearly re-
lated. For the case of the linear chain, the number of periodic im-
agesNsc�N with atomic orbitals that reach into the unit cell should
be a constant that is independent of the chain length viz. number
of atoms N present in the unit cell. Accordingly the ratio Nsc/N de-
creases from a value of 9 in the primitive C2H4 unit cell (6 atoms)
to a value ofNsc/N = 3, if a (C2H4)4 unit cell with 24 atoms is used.
In this regime, in which Neff is approximately proportional to

p
N ,

we find a very favorable overall scaling ofO(N1.3), whereby neither
of the involved steps scales worse than O(N1.7).

For larger system sizes (N > 24), however, the scaling deterio-
rates. The reason for this behavior is the rather primitive and sim-
ple strategy that we have employed in the generation of the DFPT
supercells to facilitate the treatment of integrals using the min-
imum image convention, as discussed in Section 3.2. Effectively,
these supercells are constructed using fully intact, translated unit
cells — even if a considerable part of the periodic atomic images
contained in this translated unit cell do not overlap with the orig-
inal unit cell. For the case of the linear chain, the minimal possible
ratioNsc/N = 3 is thus reached in theN = 24 case and retained for
all larger systems N > 24. In this limit, Neff becomes proportional
to N , so that we effectively recover the scaling exponents found
for Neff and for finite molecular systems (cf. Table 3).

In summary, we find an overall scaling behavior that is always
clearly smaller than O(N3) for the investigated system sizes both
in the molecular and the periodic case. For the periodic case, we
find a particularly favorable scaling regime of O(N1.3) for small to
medium sized unit cells N 6 24. As discussed in more detail in
the outlook, this regime can be potentially improved and extended
to larger unit cell sizes. Please note that the scaling relations
discussed above for the linear chain are qualitatively also found
in the case of 2D and 3D materials. Given that the utilized atomic
orbitals are spatially confined within a cut-off radius [55], similar
relations between Nsc and N are effectively found in the case
of graphene and silicon. Although the prefactors depend on the
shape and dimensionality of the unit cell, the relation Neff /

p
N

also approximately holds in these cases. In this context it is very
gratifying to see that even quite extended systems (moleculeswith
more than 100 atoms and periodic solids withmore than 50 atoms
in the unit cell) are in principle treatable within the relatively
moderate CPU and memory resources offered by a single state-of-
the-art workstation.

Eventually, let us note that a parallelization over cores viz.
nodes is already part of the presented implementation, given
that the discussed real-space DFPT formalism closely follows the



Phonons: recommended books
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Early developments of the lattice dynamics

(1759) Lagrange:                Equation of motions for a continuous string

(1819) Dulong and Petit:    Measurement of the specific heat for 13 solids

            Dulong-Petit law : The product of the atomic masses and the specific heat is (roughly) a constant.

(1827) Cauchy:                   Dynamics of mass points with forces between them

(1875) Weber:                     The specific heat of Si, B, C deviates from the Dulong-Petit law.  

(1907) Einstein:                  Theory of specific heat: including atomic motion

(1911) Debye:                     Theory of specific heat: including collective atomic motion

(1912) Born-van-Karman: Modern theory of phonons in a periodic 3D lattice

(1954) Bardeen-Cooper-Schrieffer: Theory of superconductivity
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Early theory of specific heat

The Dulong-Petit Law: 

... and its break down: 

3 

( 1.1) 

where kB is Boltzmann's constant and NL js Loschmidt's number. The atomic 
specific heat follows from 

(1. 2) 

In Fig.l.l, Cv is shown as a function of T/8E where the Einstein temperature 

8E is an abbreviation for Cv is zero at T = 0 and rises asymptoti-
cally to the Dulong-Petit value 3R when T »8E. For high temperatures, there-
fore, quantization is unimportant and the specific heat has the same value 
as if each degree of freedom of the system had energy kBT/2; at lower tem-
peratures, however, there is a pronounced deviation from the law of equipar-
tition. According to PAIS [1.4], Fig.1.1 is the first graph dealing with the 
quantum theory of solids. 
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Fig.1.1. Comparison of experi-
mental values of the heat ca-
pacity of diamond observed by 
WEBER [1.2] with values cal-
culated by EINSTEIN [1.3] based 
on (1.1,2). For diamond, the 
Einstein temperature 8E = 
= 1320 K 

By these assumptions, EINSTEIN was able to explain the deviations from 
the Dulong-Petit law. But new measurements soon showed that EINSTEIN's theory 
was not satisfactory, particularly at low temperatures. In a later paper, 
EINSTEIN [1.5], therefore, studied the motion of an atom in a crystal consider-
ing its interactions with its neighbours and found that the assumption of a 
single vibrational frequency must be abandoned. 

The idea of independently vibrating atoms had then already been questioned 
by MADELUNG [1.6] in a paper in 1909. In this study, the infrared vibrations 
of some alkali halides observed by RUBENS and coworkers [1.7] were, for the 
first time, regarded as aoZZeative vibrations where all the atoms in the lat-
tice participate. MADELUNG chose, several years before the discovery of the 

Vibrational energy 

of the oscillators U(T) = ∑ ℏωEn(T)

Specific heat: c(T) = ∂U(T)/∂T

The Einstein model of the specific heat

Each atom  harmonic oscillator 

Frequency 


→
ωE

n(T) = [eℏωE/kBT − 1]−1

Bose-Einstein statistics 

The model reproduces the low and high-temperature limit

Atom vibrations determine the temperature 
dependence of the specific heat

New paradigm: 



Part 1 

Phonons: from 1D to real materials 



2 THE MANY-BODY PROBLEM

2.1 THE MANY-BODY HAMILTONIAN

A system of non-relativistic interacting quantum particles in a static time-independent
potential is described by the time-independent Schrödinger equation [1]:

Ĥ |�ni = En |�ni . (2.1)

Here, |�ni is the wave function of the quantum system in its n-th excited state, and En

the corresponding energy. The eigenvalues and eigenvectors of Eq. 2.1 grant access to all
time-independent properties of the system. In the absence of external electro-magnetic
fields, the Hamilton operator Ĥ is:

Ĥ = T̂e + T̂n + V̂e�e + V̂e�n + V̂n�n , (2.2)

where T̂e and T̂n are the electronic and nuclear kinetic-energy operators, V̂e�e and V̂n�n

account for electron-electron and nuclear-nuclear Coulomb repulsions, and V̂e�n is the
electron-nuclear Coulomb interaction. The kinetic operators are given by:

T̂e =

NeX

i=1

�r̂2
i

2
, T̂n =

NnX

I=1

� r̂2
I

2MI

, (2.3)

whereas the interaction terms can be expressed as:

V̂e�e =

NeX

ij
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IJ

ZIZJ

|R̂I � R̂J |
.

(2.4)

Here, Ne and Nn are the number of electrons and nuclei, respectively. ZI is the electric
charge of the I-th atom and MI its mass. Here and through the rest of this thesis Hartree
atomic units (~ = me = e2

= 1) are used.

7

2 THE MANY-BODY PROBLEM

2.1 THE MANY-BODY HAMILTONIAN

A system of non-relativistic interacting quantum particles in a static time-independent
potential is described by the time-independent Schrödinger equation [1]:
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Kinetic energy 

10

V̂e�e =
1

2

NeX

ij

1

|r̂i � r̂j |
, V̂e�n =

NeX

i

NnX

I

�ZI

|r̂i � R̂I |
, V̂n�n =

1

2

NnX

IJ

ZIZJ

|R̂I � R̂J |
.

(143)
Coulomb interaction
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Ĥelec | ni = E
e
n | ni(101)

Rigorous formulation: the many-body Hamiltonian
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The Born-Oppenheimer approximation

Ĥ
el
 ⌫(r) = E

el
⌫  ⌫(r)(1)

Ĥ
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electron-phonon interactions 
(beyond the Born-Oppenheimer 
approximation)



The lattice Schrödinger equation (or equation of motion)
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Equivalent in the Harmonic approximation



One-dimensional case 
(Born-von-Karman boundary conditions)

I-1 I I+1 I+2

… …… …

I-1 I I+1 I+2

a

3D case has more complex notation, but otherwise equivalent

Atomic displacements in a (1D) crystal lattice 

• 1 atom per unit cell 
• N unit cells (periodically repeated)

a

… I-1 I … I+1

RI
uI (RI)

atomic position at equilibriumRI

displacement from equilibriumuI

Nuclei at equilibrium Displaced nuclei

U({RI}) U({RI + uI})
{RI} {RI + uI}

MI
··RI = −

∂U({R})
∂RI

Classical equation of motion  
(Newton's law) MI

··uI = −
∂U({R})

∂uI



U({RI + uI}) = U0({RI})

+ ∑
I

∂U
∂uI

uI=0

uI

+
1
2 ∑

IJ

∂2U
∂uI∂uJ

uI=0

uIuJ

+
1
3! ∑

IJL

∂3U
∂uI∂uJ∂uL

uI=0

uIuJuL + ⋯

The harmonic approximation 

we can Taylor expand the electronic ground-state energyIf the displacements {uI} are small … 

MI
··uI = −

∂U({R})
∂uI

Central ingredient:  The potential energy surface  
Highly-dimensional and very complex to handle (approximation needed) 

U({R}) = U(R1, R2, …, RN)

U ≃ U(h) = U0 +
1
2 ∑

IJ

∂2U
∂uI∂uJ

uI=0

uIuJ

Harmonic approximation (not valid for liquids/gases)

U(h) = U0 +
1
2 ∑

IJ

ΦIJ uIuJ = U0 + u† ⋅ Φ ⋅ u

exactly zero at 
equilibrium

1st order 

2nd order 

neglected
3rd order 

ΦIJ ≡
∂2U

∂uI∂uJ
uI=0

second-order force 
constant matrix (2FC)

FI = MI
··uI = −

∂U(h)({u})
∂uI

MI
··uI = −

∂
∂uI [U0 +

1
2 ∑

IJ

ΦIJ uIuJ] = ∑
J

ΦIJ uJLattice equation of motion in 
the harmonic approximation



uI = uq eiqRI e−iωqt
Ansatz for the displacement.  
Most general function that:
(i)  satisfies the EOM 
(ii) obey the boundary conditions
(iii) not an approximation 

Dynamics of a 1D lattice in the harmonic approximation

M··uI = ∑
J

ΦIJ uJ

Phonons Oscillations

Oscillation in time:

𝒒 = wavevector

Oscillation in space:

𝝎 = frequency (→ energy)

wave vector  
wave length      with 

q = 2π/λ
λ = L/n n = {1,2,…, N}

I = 1 I = 2 I = N

L = Na

a

Bloch form 
time 

periodicity 

Key quantities: 
• Phonon frequency  

• Phonon eigenvector 
ωq

uq

A second-order differential equation for the displacements 

Mω2
quq = ∑

J

ΦIJeiq(RJ−RI)uq

D(q) = ∑
J

M−1ΦIJeiq(RJ−RI) = g sin(qa)Dynamical matrix:

[D(q) − ω2
q]uq = 0 ω2

q = D(q)

Secular equation  (can be solved to obtain  and )ωq uq



I-1 I I+1 I+2
… …

1D chain with 
identical atoms 

M

Phonon dispersion for the 1D chain

1D chain with 
different atoms 

I-1 I I+1 I+2
… …

M1 M2

-π /a π /a

ω(q)

          

               

optical

acoustic

-π /a π /a

ω(q)

momentum
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Secular equation4

Second-order 
force constant

1

MI
··uI = −

∂U({R})
∂uI

0
Lattice EOM

M··uI = ∑
J

ΦIJ uJ

ΦIJ ≡
∂2U

∂uI∂uJ
uI=0

Dynamical 
matrix

3
D(q) = ∑

J

M−1ΦIJeiq(RJ−RI)

2 Ansatz uI = uq eiqRI e−iωqt

Summary of phonon calculations (1D chain)

N1D
ph = Natoms N3D

ph = 3NatomsIn general: 

Acoustic modes vanish at q=0 (equivalent to crystal translation)



•Acoustic phonons: in-phase vibrations of the atoms in the unit cell 

… …

•Optical phonons: out-of-phase vibrations of the atoms in the unit cell

… …

(at least 2 atoms per unit cell are needed)

•Transverse phonons: displacement perpendicular to propagation

•Longitudinal phonons: displacement parallel to propagation

•Transverse Optical (TO)

•Longitudinal Optical (LO)

•Transverse Acoustic (TA)

•Longitudinal Acoustic (LA)

Classification of lattice vibrations

Symmetry classification 
based on group theory

Dresselhaus,  
Group Theory: Applications to the 
Physics of Condensed Matter 

Springer 
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FIG. 2. Schematic illustration of the Born–von Kármán supercell
and of the notation adopted to denote the nuclear displacements from
equilibrium.

approaches based on ab initio molecular dynamics [55,56].
The electron-phonon coupling Hamiltonian is given by [57]

Ĥeph = N
− 1

2
p

∑

mnk

∑

qν

gν
mn(k, q)ĉ†

mk+qĉnkQ̂qν . (6)

ĉ†
nk and ĉnk denote fermionic creation and annihilation oper-

ators, respectively, gν
mn(k, q) is the electron-phonon coupling

matrix element, and Np is the number of q points.
For electromagnetic fields with frequencies in the IR range,

the coupling to the field can be expressed as

ĤIR = −e
∑

κ p

E(t ) · Z*
κ · #τ̂κ p. (7)

For the sake of completeness, the derivation of Eq. (7) is
reported in Appendix B. Z*

κ is the Born effective-charge tensor
[58,59], E(t ) is a time-dependent electric field, and #τ̂κ p
denotes the displacement of the κth nucleus in the pth unit
cell from its equilibrium configuration, which can be written
as a linear combination of normal modes [57]:

#τ̂κ p =
(

M0

NpMκ

) 1
2 ∑

qν

eiq·Rpeκ
qν lqνQ̂qν . (8)

Here, M0 is an arbitrary reference mass, Mκ is the mass
of the κth nucleus, eκ

qν are the phonon eigenvectors, and

lqν = (h̄/2ωqνM0)
1
2 is the characteristic length of a quantum

harmonic oscillator with mass M0 and frequency ωqν . The
position operator τ̂κ p is related to the displacement #τ̂κ p by
τ̂κ p = Rp + τκ + #τ̂κ p, where Rp is a crystal-lattice vector,
and τκ is the equilibrium coordinate of the κth nucleus in the
unit cell, as illustrated schematically in Fig. 2.

The operator #τ̂κ p is a key quantity for the study of the
lattice dynamics: its expectation value #τκ p(t ) = 〈#τ̂κ p(t )〉
quantifies the displacement of a given nucleus from its equi-
librium position at time t , and describes the coherent nuclear
dynamics of the lattice. In the absence of a radiation field,
the eigenstates of a harmonic lattice are the eigenstates |χn〉
of the Hamiltonian Ĥph. They satisfy 〈χn|Q̂qν |χn〉 = 0, thus

leading to vanishing displacements τκ p(t ) = 0. This is also
the case for incoherent phonons which do not contribute to
the average displacement of the nuclei. It is clear from the def-
inition in Eq. (8) that a prerequisite for having nonvanishing
displacements of the nuclear wave packets from equilibrium
(#τκ p $= 0) is the expectation value of the operator Q̂qν to
be finite, i.e., Qqν = 〈Q̂qν〉 $= 0 [19]. Before proceeding to
discuss how this condition is realized, we briefly outline the
TDBE and its application to the description of the incoherent
lattice dynamics.

III. INCOHERENT PHONONS AND THE
TIME-DEPENDENT BOLTZMANN EQUATION

The TDBE is a well-established formalism to investigate
the incoherent lattice dynamics and determine the change
of phonon population nqν for a vibrating lattice subject to
external perturbations [32]. The influence of the electron-
phonon coupling on the dynamics of phonons has been the
subject of several ab initio studies based on the TDBE ap-
proach [30,31,33,34]. In the following, we briefly discuss
the application of the TDBE to the lattice dynamics of polar
semiconductors interacting with a THz field. In this case, all
bands are either filled or empty (i.e., we consider thermal
energies kBT significantly smaller than the fundamental band
gap), and electron-phonon interactions are inconsequential for
the dynamics. The TDBE reads

∂t nqν = 'IR
qν (t ) + 'pp

qν (t ), (9)

with ∂t = ∂/∂t . Here, 'pp
qν is the scattering rate due to phonon-

phonon interactions, which can be obtained by applying
Fermi’s “golden rule” to the Hamiltonian Ĥpp [32]. Alterna-
tively, it can be expressed in the relaxation time approximation
(RTA) as '

pp
qν = −(nqν − neq

qν )/τ pp
qν [30], where neq

qν denotes
the equilibrium Bose-Einstein distribution, and τ

pp
qν is the

relaxation time due to phonon-phonon scattering [52]. 'IR
qν

is the collision integral due to IR absorption. We show in
Appendix C that it takes the following integral form:

'IR
qν (t ) = e2E2

0
|Fν · π|2

h̄ωqν

δq0 f (t )

×
∫ t

−∞
dτ f (τ ) cos[ωqν (τ − t )], (10)

where Fν =
∑

κ Z*
κ · eκ

0ν M
− 1

2
κ is the IR cross section of the

phonon ν, also called mode effective charge. Here, we express
the electric field as E(t ) = E0π f (t ), where E0 is the field
intensity, π the light-polarization unitary vector, and f (t ) an
adimensional time-envelope function.

To exemplify the (incoherent) lattice dynamics resulting
from the solution of Eq. (9), we illustrate in Fig. 3 the phonon
distribution function nqν for an IR-active mode with fre-
quency ωIR = 6 THz coupled to a THz field with pulse profile
f (t ) = sin(ωt )e−(t/2τ )2

and resonant frequency ω = ωIR. The
variation of the pulse profile f (t ) for durations τ = 0.1, 0.3,
and 1.0 ps is shown in Figs. 4(a)–4(c). To solve Eq. (9)
phonon-phonon scattering is accounted for in the RTA with
relaxation times τ

pp
qν ranging between 1 and 10 ps and for the

undamped limit (τ pp
qν → ∞). We considered a pulse duration

054102-3

Phonons: from 1D to 3D 

• N unit cells 
• Nb atoms in a unit cell 
• 3 spatial dimensions
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In 3D: U(h)(R1, R2, ⋯) ≃ U0 +
1
2

Natoms

∑
κκ′ 

Np

∑
pp′ 

x,y,z

∑
αα′ 

∂2U
∂uκαp∂uκ′ α′ p′ 

u=0

uκαpuκ′ α′ p′ 

In 1D: U(h)(R1, ⋯, RN) ≃ U0 +
1
2 ∑

IJ

∂2U
∂uI∂uJ

uI=0

uIuJ

The potential energy surface

atoms cells coordinates

Φκαp,κ′ α′ p′ 

second-order force 
constant matrix 

Straightforward generalization from 1D to 3D 
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MüI = �1

2

X

I0

DII0uI0 uI(t) = AIe
�i!t(109)

uI(t) = Ae
iqRIe

�i!t(110)

�M!
2
Ae

iqRIe
�i!t = �1

2

X

I0

DII0Ae
iqRI0e

�i!t(111)

M!
2 =

X

I0

DII0e
iq(RI0�RI) M!(q)2 = D(q)(112)

D(q) =
X

I0

DII0e
iq(RI0�RI)

(113)

Secular equation4

Second-order 
force constant

1

MI
··uI = −

∂U({R})
∂uI

0
Lattice EOM

M··uI = ∑
J

ΦIJ uJ

ΦIJ ≡
∂2U

∂uI∂uJ
uI=0

D(q) = ∑
J

M−1ΦIJeiq(RJ−RI)

3 Ansatz uI = uq eiqRI e−iωqt

Summary of phonon calculations (1D chain)

Dynamical 
matrix

2

Secular equation
(eigenvalue problem, easy solution)

4

Second-order 
force constant

1

Mκ
··uκαp = −

∂U({R})
∂uκαp

0
Lattice EOM

M··uκαp = ∑
καp

Φκαp,κ′ α′ p′ 
uκ′ α′ p′ 

D(q) = ∑
καp

Φκαp,κ′ α′ p′ 

MκMκ′ 

eiq(Rp−Rp′ )

3 Ansatz uκαp = uκα
q eiqRκαp e−iωqt

Phonon calculations in 3D crystals

Φκαp,κ′ α′ p′ 
=

∂2U
∂uκαp∂uκ′ α′ p′ 

[D(q) − ω2
q] uκ

q = 0

 : atom index κ
p : cell index 
 : cartesian coordinateα
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Phonon dispersions from Inelastic neutron scattering

Sample

E0, k0

Incoming 
neutron

E1, k1

Outgoing 
neutron

9

⌧ph =
2⇡

!ph
' 50� 200 fs(117)

⌧e =
2⇡

!pl
(118)

!pl ' 5� 10 eV(119)

!pl ' 10� 20 eV(120)

!pl ' 10� 100 meV(121)

⌧e ⌧ ⌧ph(122)

⌧e ⇠ ⌧ph(123)

un,q(t) = un+N,q(t)(124)

q ! q +
2⇡

a
(125)

un,q(t) = ↵e
i(qna�!t)(126)

e
iqna = e

iq(n+N)a(127)

qNa = 2⇡(128)

q = 0(129)

q = 0 ,
⇡

a
(130)

q = 0 ,
⇡

2a
,

⇡

a
,

3⇡

2a
,

2⇡

a
(131)

u1(R) = (0, 0, 0)(132)

u2(R) = a(u, u, u)(133)

E0(R+ u)� E0(R) =
3

4
Ma

2
!
2
LOu

2(134)

E0 =
~2k20
2Mn

E1 =
~2k21
2Mn

(135)

k = 2⇡/�(136)

2 d sin✓ = n�(137)

k0 = k1 + q(138)

E0 = E1 + ~!q⌫(139)
momentum and 

energy conservation

phonon 
momentum 

phonon 
energy 

Brockhouse et al., Phys. Rev. 111, 747 (1958)
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FIG. 1. Schematic drawing of the apparatus.
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conventional way with a fixed incoming energy, Eo, by
measuring the energy distribution of the outgoing
neutrons by varying the angle 28&. In this method the
frequency for a desired q is obtained by repeated
experiments using successive approximations.
A more sophisticated method, called the "constant

momentum transfer method" or "constant Q"method, '
is generally employed. With a fixed incoming energy,
the angle of scattering P and crystal orientation P are
varied nonlinearly in step with the angle 20& of the
analyzing spectrometer (and thus with

~

k'~ ), in such a
way as to keep the vector Q=ks—k' constant. Thus
by Eq. (2a) any neutron group which appears in the
energy distribution gives the frequency of a phonon
with wave vector q in the reduced zone. The increments
in the angles required to accomplish this are calculated
on a digital computer, and the instructions transmitted
to the spectrometer by means of a punched paper tape. '
Figure 2 shows the limits of a typical experiment
designed to determine the frequency of the longitudinal
phonon at the point (a/2s)Q= (0,0,3), that is, with q
at the zone boundary in the [00(7 direction" of the
reduced zone.
For technical reasons it is often desirable to use

another mode of operation in which 20~ (and therefore
~
k'~) is kept fixed and the incoming energy varied by
means of 20sr. In the constant Q method g and f are
then changed nonlinearly in step with 20~, in such a
way as to keep Q fixed. The limits of a typical experi-
ment designed to determine the frequency of the
longitudinal phonon at the point aQ/2z-= (3/2, 3/2, 3/2),
that is at the zone boundary of the [fg] direction in
the reduced zone, are shown in Fig. 3.
Measurements were made along the symmetric lines

[$00], [gi], [g0], and [$10] of the reduced. zone at
temperatures within ten degrees of 100'K. (Measure-
ments were also made along the zone boundary in a
(110}plane, a nonsymmetric direction. )

's This would ordinarily be termed the L001] direction, but
the present notation is used since we will also discuss lines in
reciprocal space in which one component or more is constant,
with others varying,

Fio. 2. The (100) plane of the reciprocal lattice with a typical
"constant Q" experiment designed to measure the frequency of
the longitudinal phonon at the point (0,0,3), i.e., at the point X
in the reduced zone. The double-headed arrows A., m show the
directions of the polarizations along the line L0$1$. The third
polarization vector is normal to the (100) plane, and has the
same v(q) relation as er but shifted in phase.

Vsing the method of successive approximations,
sometimes with the associated techniques' for keeping
q in the correct direction, measurements were made on
specimens A and 8 in [f007, [gi ], and [g0]directions
of a (110}plane and also along the zone boundary.
The (111)and (200) planes of aluminiurn crystals were
variously used as the monochromator and analyzer,
and wavelengths of 1.91 A and 2.26 A were employed.
Details and typical neutron groups were presented in
reference 2.
Using the constant Q method with fixed incoming

energy, measurements were made in [&007, [g07, and
[$10] directions in a (100}plane of specimen B. The
Al (111) monochromator was set to a wavelength of
2.26 A, and the Al (200) analyzer was generally em-
ployed. . Figure 2 shows the (100) plane of the reciprocal
lattice with the initial and final vector diagram for a
typical experiment. Typical neutron groups were shown
in reference 2.
Using the constant Q method with fixed analyzer

energy, measurements were made in [$00], @f07, and
[gg] directions of the reduced zone, in a (110}plane
of specimen C. Lines studied in reciprocal space are
shown in Fig. 3 as dashed lines. They were selected to
aBord maximum discrimination between longitudinal
and transverse modes, through the factor (Q. g)s jn
Eq. (3). The limits of the vector diagram [Eq. (2a)7
for a typical experiment are also shown in Fig. 3. A
typical series of neutron groups is shown in Fig. 4.
The number of counts accumulated during a preset
number of monitor counts" is plotted as a function of

' The monitor is a thin 6ssion counter located in the rnono-
energetic beam (indicated as M in Fig. 1).

Bragg 
reflection 

points

sampleE0, k0

E1, k1

Bertram Brockhouse, 
Nobel prize in Physics 1994 

"for pioneering contributions to 
the development of neutron 

scattering techniques for 
studies of condensed matter"



Phonons in solids: elemental semiconductors and metals

SPECTROMETRYOF Ge BY NEUTRON SNORMAL MODES OF Ge

Fre. 4. The (110)
plane of the reciprocal
lattice, with neutron
groroups plotted accord-
ing to Eqs. (2).
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Brockhouse et al., Phys. Rev. 111, 747 (1958)

•Longitudinal Acoustic = LA

•Transverse Acoustic = TA 

diamond-like 
crystal structure

2 atoms per unit cell  6 phonon modes

symmetry  degeneracies (only 4 modes visible)

→
→

GeGe

•Longitudinal Optical = LO 

•Transverse Optical = TO

Svensson et al. 
Phys. Rev. 155, 619 (1967)
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Fzo. 2. The (110) plane of the reciprocal lattice and several
typical neutron groups for copper obtained in "constant-Q"
experiments such as the one shown for group 35.The groups are
labeled with the branch designation and the value of the reduced
wave vector g.

branches are constructed from the known symmetry
about 8'. The straight lines drawn from the points j.
represent the velocities of sound for the various branches
calculated from the elastic constants of Overton and
Gaffney" (see Table III). The points nearest I" on all

except the LOg7T) branch agree very well with the
velocity of sound values. The points on the T~ branch
are significantly high.
In I'ig. 4 the low-wave-vector region of the LOg7T)

branch is shown together with a typical neutron group
measured with the McMaster spectrometer. (After the
original study, five groups on the low-[ part: of this
branch were remeasured with the vertical collimation
increased by about a factor of 3. It was found that for
/&0 3th. e original frequencies were lowered by about
0.015&&10" cps; the values of Table II have been
corrected accordingly, but the points plotted in Fig. 4
represent the original uncorrected values. The groups
taken with the higher vertical resolution were also
about 20'Po narrower. The higher energy resolution and
the increased vertical collimation used in the experi-
ments at McMaster University easily account for the
frequencies in Table II being slightly lower than the
corresponding frequencies in Table I.)
The T} branch is of particular interest for several

reasons: (i) It is very nearly a straight line up to at
least ] =0 5 (Th.er.e is evidence for this in I'ig. 1 where
it is seen that the neutron groups for t =0.2 and 0.5
have almost equal widths which implies that the slope
of the dispersion curve is almost identical for the two
values of ].) (ii) The slope of this almost straight line is
about 5% greater than the velocity of sound for this
branch which is determined by the shear elastic constantC'= (c)t—c)s)/2. (This does not necessarily imply that
either the elastic constants" or the neutron-scattering
results are incorrect since the elastic constant measure-
ments correspond to very much smaller velues of [ than
any of the neutron results. ) (iii) The ratios of the
nickel to the copper frequencies are highest for the low-]
part of this branch. (iv) The low-] part of this branch
in palladium'7 has been found to have an anomalous S
shape. (v) A Kohn anomaly" might possibly appear in
this branch at )=0.45, corresponding to transitions
across the "belly" of the Fermi surface. "
The low-] part of the Ti branch thus appears to be

FIG. 3. The dispersion
curves for copper in the
four major symmetry direc-
tions at 296'K. The dia-
gram is labeled with the
group theoretical notation
of Koster (Ref. 21) and the
straight lines through the
points I' give the initial
slopes of the dispersion
curves as calculated from
the elastic constants (Table
III). The solid and dashed
curves are the result of an
analysis in terms of general
forces to 4th-nearest neigh-
bors (model M1 of Table
IV).
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experiments such as the one shown for group 35.The groups are
labeled with the branch designation and the value of the reduced
wave vector g.

branches are constructed from the known symmetry
about 8'. The straight lines drawn from the points j.
represent the velocities of sound for the various branches
calculated from the elastic constants of Overton and
Gaffney" (see Table III). The points nearest I" on all

except the LOg7T) branch agree very well with the
velocity of sound values. The points on the T~ branch
are significantly high.
In I'ig. 4 the low-wave-vector region of the LOg7T)

branch is shown together with a typical neutron group
measured with the McMaster spectrometer. (After the
original study, five groups on the low-[ part: of this
branch were remeasured with the vertical collimation
increased by about a factor of 3. It was found that for
/&0 3th. e original frequencies were lowered by about
0.015&&10" cps; the values of Table II have been
corrected accordingly, but the points plotted in Fig. 4
represent the original uncorrected values. The groups
taken with the higher vertical resolution were also
about 20'Po narrower. The higher energy resolution and
the increased vertical collimation used in the experi-
ments at McMaster University easily account for the
frequencies in Table II being slightly lower than the
corresponding frequencies in Table I.)
The T} branch is of particular interest for several

reasons: (i) It is very nearly a straight line up to at
least ] =0 5 (Th.er.e is evidence for this in I'ig. 1 where
it is seen that the neutron groups for t =0.2 and 0.5
have almost equal widths which implies that the slope
of the dispersion curve is almost identical for the two
values of ].) (ii) The slope of this almost straight line is
about 5% greater than the velocity of sound for this
branch which is determined by the shear elastic constantC'= (c)t—c)s)/2. (This does not necessarily imply that
either the elastic constants" or the neutron-scattering
results are incorrect since the elastic constant measure-
ments correspond to very much smaller velues of [ than
any of the neutron results. ) (iii) The ratios of the
nickel to the copper frequencies are highest for the low-]
part of this branch. (iv) The low-] part of this branch
in palladium'7 has been found to have an anomalous S
shape. (v) A Kohn anomaly" might possibly appear in
this branch at )=0.45, corresponding to transitions
across the "belly" of the Fermi surface. "
The low-] part of the Ti branch thus appears to be

FIG. 3. The dispersion
curves for copper in the
four major symmetry direc-
tions at 296'K. The dia-
gram is labeled with the
group theoretical notation
of Koster (Ref. 21) and the
straight lines through the
points I' give the initial
slopes of the dispersion
curves as calculated from
the elastic constants (Table
III). The solid and dashed
curves are the result of an
analysis in terms of general
forces to 4th-nearest neigh-
bors (model M1 of Table
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Copper 
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FIG. 5. The dispersion curves for
lead at 100'K, plotted so as to show
the inter-relation of the various
branches. The older measurements
(reference 2) are shown by open and
closed circles, the most recent by
crosses. The straight lines through
the origin give the initial slopes of the
curves as calculated from the elastic
constants (Table III). 0.5

actually depends on the shape of the peak and on the
ratio hu/k&7. '. Typically this correction turned. out to
be about 0.5 j~, and was ignored. For some especially
broad groups the correction was applied and brought
the frequencies into good agreement with narrow
groups at the same q. Most of the broad groups were
omitted from the final data compilation nevertheless.

Values of the frequencies for the three symmetric
directions, with estimates of over-all "probable" errors,
are given in Tables I and II. The errors contain allow-
ance for calibration and other determinate errors, and
hence cannot be expected to be random. Values for the
Lt 10' direction, and for the zone boundary in the (110)
plane, are possibly less accurate since only one set of

TABLE I. Frequencies (units 10"cps) of the lattice vibrations in lead at 100'K which propagate in the [l'00$ and [l'g] directions.

0.20
0.30
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

[I'00$

0.47 &0.04
0.73 &0.03
0.90 &0.02
0.96 a0.03
1.04 &0.02
1.115&0.02

1.10 &0.03
1.03 &0.03
0.95 &0.02
0.89 &0.02

0.87&0.03
1.27&0.03
1.61%0.03
1.71&0.04
1.83&0.04
1.91&0.03
2.00&0.03
2.07&0.03
2.14a0.04
2.16%0.02
2.15&0.02
2.14%0.02
2.05W0.03
1.94&0.04
1.86+0.03

0.19
0.26
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.867

0.35 &0.04
0.44 +0.03
0.55 &0.03
0.61 a0.02
0.66 &0.02
0.73 &0.02
0.77 &0.02
0.79 &0.02
0.SOS&0.02
0.835&0.02
0.86 +0.02
0.88 &0.02
0.89 &0.02

ag/2s.

0.143
0.25
0.332
0.433
0.519
0.563
0.606
0.649
0.693
0.736
0.779
0.823
0.867

0.82 &0.05
1.24 &0.04
1.51 &0.04
1.76 &0.03
1.91 &0.03
1.97 &0,03
2.00 &0.03
2.05 &0.03
2.085&0.02
2.09 &0.02
2.08 &0.03
2.16 &0.03
2.185&0.02

Lead

Brockhouse et al. 
Phys. Rev. 128, 1099 (1962)

1 atoms per unit cell  3 phonon modes→

•Longitudinal Acoustic = LA

•Transverse Acoustic = TA 



Phonon dispersions of GaAs

Strauch et al., J. Phys. Cond. Mat. 2, 1457 (1990)
Points: experiment
Lines: parametrized model (12-14 parameters)

Phonon dispersion in GaAs 1465 

4.1.1. Rigid-ion model (RIM). In the rigid-ion model, short-range forces to nearest (a ,  b) 
and second-nearest neighbours ( p ,  v ,  A, 6) and Coulomb forces between the (point) 
ions are included. This notation of the force constants is due to Herman (1959). A model 
with short-range force constants out to third neighbours is presently investigated by 
Bross (1989). The model parameters obtained from a fit to our dispersion curves are 
very close to those of Kunc et a1 (1975b), see table 7. Fitting to five rather than three 
wavevector directions does not alter the numbers to any significant extent. From the 
covariance matrix the strongest correlation is between the parameters /3 and Z1. The 
originally published force constants are in cgs units; the conversion factor is e2/v = 
5117 dyn cm-' with the lattice constant of a = 5.65 A as used by Kunc et a1 (1975b). 

The dispersion along the A direction, in particular that of the LA and LO branch near 
the Xpoint, is, surprisingly enough, well reproduced by the RIM3, see figure 2. However, 
serious discrepancies occur near the L point and in particular near the W point. Some 
improvement near the W point is possible (RIMS) at the expense of worse overall 
agreement. 

4.1.2. Shell models ( ~ ( i )  to c(ii)). The shell model has originally been designed for and 
applied to the lattice dynamics of ionic crystals (Cochran 1959, Woods et a1 1960,1963). 
In the shell model the ions are assumed to be electrically and mechanically deformable. 
The respective polarisabilities nj and d j  (i = 1 ,2  for Ga and As) are related to electronic- 
shell charges Y,  and force constants k, by which a shell is bound to its core. The large 
number of parameters required for a reasonable description of the dispersion curves in 
homopolar crystals makes the application of this model to these substances questionable. 

The four shell models B(i), B(ii), c(i), and c(ii) of Dolling and Waugh (1965) differ 
from each other in that the ratio y of the diagonal to off-diagonal force constant elements 
(equal to a/@ in Herman's (1959) notation) for core-core, core-shell, and shell-shell 
force constants (with indices R, T and S, respectively) are either the same or different 
from one another (models B or c with 12 or 14 parameters, respectively), and whether 
the stronger polarisabilities n, d reside on the arsenic ion or the gallium ion (models (i) 

r h X I: r h  L x z w  a L 
10 I 

i 

8 

2 

0 

Figure 4. As figure 2, but the model calculations are with the deformation-dipole model 
DDM3. 

GaAs



Phonons in experiments: Raman and Brillouin scattering

3. Raman Spectroscopy 

In this chapter we consider the scattering of photons with energies of the 
order of 2 to 4 e V by optical phonons. When the spectrum of the radiation 
scattered by the crystal illuminated with monochromatic light of frequency 
W L is analyzed, it is found that it consists of a very strong line at the 
frequency W L, as well as of a series of much weaker lines with frequencies 
W L±wi( q), where wi( q) are optical phonon frequencies (Fig. 3.1). The strong 
line centered at W L is due to elastic scattering of photons and is known as 
Rayleigh scattering. The series of weak lines at wL±wi(q) originates from 
inelastic scattering of photons by phonons and constitutes the Raman spec-
trum. The Raman bands at frequencies WL - wi(q) are called Stokes lines, 
those at frequencies W L + Wi (q) are known as anti-Stokes lines. The inten-
sities of the anti-Stokes lines are usually considerably weaker than those of 
the Stokes lines. 

Stokes Anti -Stokes 

-W 
W L - Wj W L WL+W j 

Fig. 3.1. Stokes and anti-Stokes Raman spectrum (schematic). The strong line at WL is 
due to Rayleigh scattering 

In first-order Raman scattering only optical phonons with q 0 are 
involved. This is a consequence of momentum conservation (Sect. 3.3.1). 
Since the selection rules in infrared and Raman scattering are different, the 
two techniques provide complementary information. 

The chapter starts with a discussion of the experimental techniques 
including Raman scattering apparatus and a discussion of some important 
scattering geometries. We then give a discussion of the classical theory of 
the Raman effect on the basis of the radiation emitted by an oscillating 
dipole. The intensity of the light is proportional to 1M!2, where M = oE is 
the dipole moment induced by the electric field E of the light, and 0 is the 
electronic polarizability tensor with components oxx, Oxy, Oxz, etc. The 
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Fig. 3.2. Raman scattering apparatus (see text) 

recorded on a strip-chart recorder (16) as shown, or else stored in the mem-
ory of a multiscaler whose memory adress is swept synchronously with the 
spectrometer. 

Instrumentation of the type shown in Fig. 3.2 has been applied to the 
study of a wide variety of excitations in crystals such as optical phonons, 
color centers, magnons, electronic transitions, plasmons, etc. [3.1-11]. For 
many purposes the 900scattering geometry shown in Fig.3.2 can not be 
used, for instance, for opaque samples or for the study of polaritons. We 
therefore discuss in the following subsection some other important scattering 
geometries. 

3.1.2 Scattering Configurations 

Figure 3.3 shows two possible backscattering configurations which are used 
for opaque samples. In both arrangements the incident beam is normal to 
the surface of the sample. In Fig.3.3a the mirrors M1 and M2 direct the 
beam to the highly polished surface of the sample S. The cylindrical lens L1 
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b) 

Fig. 3.15. In crystals with NaCI-structure (a), and CsCI-structure (b) each ion is located 
at a center of inversion i, and the TO modes at q = 0 (indicated by the arrows) are not 
Raman active 

b) 

Fig. 3.16. In crystals with the diamond structure (a), and with the zinc blende structure 
(b), the TO modes at q = 0 (indicated by the arrows) are Raman active 

modes Q yields the opposite pattern of ionic displacements: iQ = -Q. We 
are therefore dealing with odd-parity or u modes similar to the Q2 and Q3 
modes of the linear XY2 molecule (Fig. 3.14). Hence, crystals with NaCI or 
CsCI structure do not exhibit a first-order Raman effect. 

Next we consider the diamond structure shown in Fig.3.16a. Carbon, 
silicon, germanium and gray tin crystillize in the diamond structure. The 
diamond structure is composed of two fcc lattices displaced from each other 
by one-quarter of a body diagonal. The structure possesses a center of in-
version symmetry i, which however, is not located at the atoms, but at the 
mid-point of each line connecting nearest-neighbour atoms. The triply de-
generate q = 0 TO mode is shown by the arrows; it can be pictured as a 
relative motion of the two interpenetrating fcc lattices against each other. 
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Application of the inversion operation i on Q clearly gives the identical 
mode: iQ = Q. The TO mode is therefore a g mode and resembles the nor-
mal oscillation of a homonuclear diatomic molecule (Fig. 3.11) and as such 
is Raman active but not infrared active. 

The cubic ZnS or zinc blende structure results from the diamond struc-
ture when Zn atoms are placed on one fcc lattice and S atoms on the other 
fcc lattice, as in Fig. 3.16b. The ZnS structure does not have inversion sym-
metry and therefore the dinstinction between g and u modes is not possible. 
The arrows in Fig. 3.16b indicate the optical mode at q = 0; it resembles the 
normal oscillation of a heteronucleus diatomic molecule (Figs. 3.11, 12) and 
as such is expected to be Raman active. Since ZnS is a polar crystal, the 
macroscopic electric field associated with the vibration removes the degen-
eracy of the optical mode yielding a doubly degenerate TO mode and a LO 
mode [Ref. 3.21, Sect. 4.2]. In ZnS WTO = 276cm- l and WLO = 351 cm- l . 

Both, the TO and LO mode are Raman active, but the intensity of the TO 
mode is much weaker than that of the LO mode (Fig. 3.17) [3.22a]. The TO 
mode is also infrared active. The line at 219cm- l observed in Fig.3.17 is 
probably due to a two-phonon process. 

Finally we consider some of the q = 0 normal modes of the calcite 
structure, CaC03 . The unit cell shown in Fig. 3.18 is an elongated rhombo-
hedron and contains two formula units, that is, two calcium ions at (1/4, 
1/4, 1/4), (3/4, 3/4, 3/4) and two planar carbonate ions at (0, 0, 0) and 
(1/2, 1/2, 1/2) [3.22b]. 
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Phonons in experiments: Reflectivity measurements of polar semiconductors 

1. LATTICE REFLECTION 9 

FIG. 2. Lattice reflection spectra of various 111-V compound semiconductors. The solid 
line is experimental; the dashed line is the calculated fit for a single classical dispersion 
oscillator. The samples of InSb, InAs, GaAs, and GaSb were measured at liquid-helium 
temperature, whereas AlSb and InP were measured at room temperature. (After Hass and 
Henvis.') 
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Fig. 2.6. Infrared reflectivity of LiF as a function of wavenumber and temperature. 
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Fig. 2.7. Experimental configuration 
for the excitation of longitudinal lat-
tice vibrations 

The thin film is evaporated on a metal substrate. Es is the component 
of the electric field of the light polarized perpendicular (German: senkrecht), 
and Ep the component polarized parallel to the plane of incidence. The latter 
can be decomposed into the two components El and E 2 . The field Es and El 
can, in principle, excite TO vibrations; however, the underlying conductive 
medium practically eliminates the absorption by TO modes because almost 
no electric field can exist adjacent and parallel to a metallic surface. On the 
other hand, the field E2 can excite the LO absorption and this absorption 
is not reduced by the conducting substrate. The experimental result for LiF 
is shown in Fig. 2.8. 
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Fig. 2.7. Experimental configuration 
for the excitation of longitudinal lat-
tice vibrations 

The thin film is evaporated on a metal substrate. Es is the component 
of the electric field of the light polarized perpendicular (German: senkrecht), 
and Ep the component polarized parallel to the plane of incidence. The latter 
can be decomposed into the two components El and E 2 . The field Es and El 
can, in principle, excite TO vibrations; however, the underlying conductive 
medium practically eliminates the absorption by TO modes because almost 
no electric field can exist adjacent and parallel to a metallic surface. On the 
other hand, the field E2 can excite the LO absorption and this absorption 
is not reduced by the conducting substrate. The experimental result for LiF 
is shown in Fig. 2.8. 
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Phonons in experiments: Diffuse and elastic X-ray and electron scattering

Beyeler et al. Phys. Rev. B 18, 4570 (1978)
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Fig. 5.1. The scattering surface for X-rays 
or Ewald's sphere. The points represent re-
ciprocal lattice points of the crystal 

law [5.22]. To satisfy the condition K = T, a point of the reciprocal lattice 
must fall on the surface of the sphere. Thus in general, when a beam of 
monochromatic X-rays falls on a perfect static crystal there will be no scat-
tered beam. When, however, the crystal is turned around, its reciprocal 
lattice turns with it, and a reciprocal lattice point will eventually touch the 
sphere and a scattered beam will appear in the direction of the vector k 
(the points PI and P2 in Fig. 5.1). 

5.2 Experimental Technique 

Figure 5.2 shows the experimental set-up used for the observation of diffuse 
X-ray scattering. The X-rays generated by a suitable source (usually MoKQ 

radiation) are monochromatized by Bragg reflection using a singly bent or 
doubly bent LiF crystal. The monochromatic X-ray beam passes through 
a slit and is scattered by the sample. The scattered radiation is either de-
tected by a NaJ(Tl) scintillation counter followed by an amplifier and a 
single-channel pulse height analyzer, or by a plane film. Excessive black-
ening from the direct beam is prevented by the presence of a beam stop 
placed before the film. If a plane film is used, the region of reciprocal space 

x- RAY SOURCE 

POINT FOCUSSING 
MONOCHROMATOR SAMPLE 

BEAM 
STOP 

FILM 

Fig. 5.2. Monochromatic Laue set-up for diffuse X-ray scattering 
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a) 

b) 

Fig. 5.3. (a) Experimental diffuse X-ray scattering in ,8-Agl. (b) Computed thermal 
diffuse scattering intensity in the geometry of Fig. S.3a. The trace refers to a direction in 
q-space along which thermal scattering has been studied in more detail [5 .14] 
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restoring electronic occupations according to a Fermi−Dirac
function before the onset of electron−phonon scattering.
From the phonon distribution function nqν(t), we calculate

the momentum-resolved effective vibrational temperature of
the lattice T̃q = Nph

−1 ∑ν Tqν, where Nph = 12 is the number of
phonon branches of BP and Tqν = ℏωqν {kB ln [1 + nqν(t)]}−1.
In Figure 4a−f, we report T̃q at different time steps of the
coupled electron−phonon dynamics for crystal momenta
within the X-Γ-A plane of the BZ (shaded blue in Figure
1(e), corresponding to the plane probed in the UEDS
experiments). Before excitation (t < 0), the constant
temperature T̃q = 100 K in the BZ reflects thermal equilibrium.
At t = 0.1 ps, red features in Figure 4(b) indicate the
enhancement in the phonon population around Γ (zone
center) and along the Γ-A high-symmetry line. This anisotropy
becomes more pronounced at later times, as shown in Figures
4c and 4d for t = 0.5 and 2.5 ps, respectively. As anticipated
above, the origin of this behavior is related to the anisotropy of
the valence and conduction bands.
Because of the absence of local minima in the conduction

band along the armchair direction (i.e., Γ−X and Z−Q), the
photoexcited electrons are constrained to occupy states with
crystal momenta along the zigzag direction, i.e., where the
available local minima are located (arrows in Figure 1d). This
scenario is illustrated by highly anisotropic initial electronic
occupations f nk0 in the conduction band, reported in Figure 1f.
Because of momentum conservation, carrier relaxation involves
phonons with momenta q along the Γ−A direction, which are
responsible for transitions from the local conduction band

minima along Γ−A to the conduction band pocket around the
minimum at the Z-point. Conversely, the observed phonon
excitations around Γ are responsible for transitions from
higher-lying states in the Z-pocket to the conduction band
edge at Z and for transitions within the individual pockets at
the local minima. Based on this picture, the anisotropic
increase of T̃q in the BZ reflects the phase-space constraints in
the electron−phonon interactions, and thus in the relaxation
path of photoexcited electrons and holes.
For t = 10 ps (Figure 4e), the anisotropy of T̃q in the BZ is

significantly reduced. On these time scales, phonon−phonon
scattering, accounted for via Γpp in eq 2, counteracts the effects
of electron−phonon scattering by driving the lattice toward
thermal equilibrium. For t = 40 ps (Figure 4f), thermal
equilibrium is re-established at the temperature Tph

fin = 300 K.
To gain further insight into the anisotropic lattice dynamics,

Figure 4g displays the time dependence of T̃q around the X, Γ,
and A regions (obtained by averaging T̃q over the rectangles in
Figure 4(a)) throughout the first 50 ps of the dynamics. For
momenta around Γ and A, the temperature reaches a
maximum at 1.7 and 2.3 ps, respectively, whereas no maximum
is observed around X. These time scales indicate the time
required for the electrons to transfer energy to the lattice via
electron−phonon scattering. The good agreement with the
experimental time constant of 1.7 ps extracted from the rise of
the UEDS intensity at A (Figure 2b) suggests that transient
changes of the UEDS intensities for time scales smaller than 2
ps primarily reflect the energy transfer from the electrons to
the lattice driven by electron−phonon coupling.

Figure 3. (a−c) Momentum-resolved electron diffraction signals, I(Q, t) − I(Q, t ≤ t0), at pump−probe delays of 2, 10, and 50 ps. 2-fold
symmetrized data,49 raw data shown in Supporting Information. The Bragg reflections (blue dots) are negative due to the Debye−Waller effect.
The diffuse background (red) qualitatively evolves as a function of pump−probe delay. Selected Brillouin zones are shown in inset for the (004)
and the (4̅00) reflections on the 50 ps map. All data are normalized to a common number. (d−f) Simulated nonequilibrium scattering signals at
pump−probe delays of 2, 10, and 50 ps. The phonon temperatures are based on the nonthermal model described in the text and shown in Figure 4
(a). All data are normalized to a common number.
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and A regions (obtained by averaging T̃q over the rectangles in
Figure 4(a)) throughout the first 50 ps of the dynamics. For
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maximum at 1.7 and 2.3 ps, respectively, whereas no maximum
is observed around X. These time scales indicate the time
required for the electrons to transfer energy to the lattice via
electron−phonon scattering. The good agreement with the
experimental time constant of 1.7 ps extracted from the rise of
the UEDS intensity at A (Figure 2b) suggests that transient
changes of the UEDS intensities for time scales smaller than 2
ps primarily reflect the energy transfer from the electrons to
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Part 3

Towards ab-initio calculations of phonons



Back to theory: Phonon calculations in practice

Directly available from 
the secular equation [D(q) − ω2

q] uκ
q = 0

Quantities of interest 
for the lattice dynamics

• thermal conductivity 
• electron-phonon interactions
• phonon lifetimes   
• influence of phonon in spectroscopy 

τqν

• phonon frequency  

• phonon eigenvector 
ωqν

uκ
qν

D(q) = ∑
καp

Φκαp,κ′ α′ p′ 

MκMκ′ 

eiq(Rp−Rp′ )Φκαp,κ′ α′ p′ 
=

∂2U
∂uκαp∂uκ′ α′ p′ 

We need the second-derivatives of the potential energy surface 

3.2 Models for Calculating Phonon Dispersion Curves of Semiconductors 115

k1 k2

Core 1 Core 2

Shell 1 Shell 2

Fig. 3.5. Typical interactions be-
tween two deformable atoms in the
shell model

In the shell model the interactions between the two atoms inside the unit
cell of Si are represented schematically by springs, as shown in Fig. 3.5. One
important feature introduced by the shell model is that long-range Coulomb
interaction between atoms can be included. This is achieved by assigning
charges to the shells so that dipole moments are produced when the shells
are displaced relative to the ions. By using the interaction between the in-
duced dipoles to simulate the long-range interaction, the short-range interac-
tion can be limited to the nearest neighbors. With the shell model Cochran
[3.13] was able to fit the phonon dispersion in Ge with five adjustable param-
eters. Dolling and Cowley [3.14] were able to fit the phonon dispersion curves
of Si using an 11-parameter shell model. In this model the short-range interac-
tions have been extended to the next-nearest neighbors. Similar 11-parameter
shell models have been successfully used to fit the phonon dispersion curves
even in III–V compounds. With 14-parameters the agreement between the-
ory and experiment is quite good. The main criticism of the shell model is
that the valence electron distributions in the diamond- and zinc-blende-type
semiconductors are quite different from spherical shells. As a result, the pa-
rameters determined from the shell model have no obvious physical meaning
and have limited applications beyond fitting the phonon dispersion curves.
Phillips [3.15] has pointed out that the most serious problems of the shell
model appear when applying it to covalent solids. The shell model artificially
divides the valence charges between the two atoms involved in the cova-
lent bond. In reality the valence electrons are “time-shared” between the two
atoms in that they all spend part of their time on each atom.

3.2.3 Bond Models

It is well known that valence electrons in diamond- and zinc-blende-type semi-
conductors form highly directed bonds. These valence electrons are important
for explaining cohesion in these semiconductors so they must also play an im-
portant role in determining the vibrational frequencies. The vibrational prop-
erties of molecules formed from covalent bonds have been extensively stud-
ied by chemists. These vibrational modes are usually analyzed in terms of va-
lence force fields for stretching the bonds and for changing the angles between
bonds (bond bending). The force constants can be determined in a straightfor-
ward manner from these valence force fields since the displacements of the
ions are related to the bond coordinates. One advantage of this approach is

Before ab-initio methods: Phenomenological models
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Fig. 3.11. Phonon dispersion curves of diamond. The solid lines were calculated with the
ABCM of Weber while the circles represent experimental points. (From [3.5])

In addition, there are features in the optical phonon branches which cannot
be reproduced by a four-parameter ABCM. To obtain a satisfactory fit to the
experimental data in diamond, Weber introduced, in an ad hoc manner, an
additional adjustable parameter in the bond-bending term. A comparison be-
tween the experimental phonon dispersion curves in diamond and the results
calculated from this five-parameter ACBM is shown in Fig. 3.11. A minor but
interesting feature which is not obvious in this figure is that the maximum en-
ergy of the optical phonon branch occurs along the [100] direction instead of
at ° as in Si and Ge. A more recent comparison between experimental lattice
dynamical results and a first-principles calculation can be found in [3.28].

3.3 Electron–Phonon Interactions

In Sect. 2.1 we pointed out that, within the Born–Oppenheimer approxi-
mation, we can decompose the Hamiltonian of a crystal into three terms:
Hion(Rj), He(ri, Rj0), and He!ion(ri, ‰Rj). The first two terms deal separately
with the motions of the ions and the electrons. In Chap. 2 and in Sect. 3.2
we discussed how to solve those two Hamiltonians to obtain, respectively, the
electronic band structure and the phonon dispersion curves. We will now con-
sider the third term, which describes the interaction between the electron and
the ionic motion, i.e., the electron–phonon interaction. Within the spirit of
the Born–Oppenheimer approximation we will assume that the electrons can

Yu, Cardona, Fundamentals of Semiconductors, Springer 
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Phonon calculations from first principles

Potential energy surface from Density 
functional theory (formally exact theory)

U(R) = Eel[n] +
1
2 ∑

IJ

ZIZJ

|RI − RJ |

electronic energy nuclear Coulomb energy

Φκαp,κ′ α′ p′ 
=

∂2U
∂uκαp∂uκ′ α′ p′ 

How to calculate the second derivatives? 

Option 2: Density functional perturbation theory

 Does not requires supercell. 
More difficult to converge 

Very stable algorithm 
High computational cost
Requires many DFT calculations for large supercell 

Option 1: Finite differences

Φκαp,κ′ α′ p′ 
= −

∂Fκαp

∂uκ′ α′ p′ 

∂F
∂u

=
F(u + Δu) − F(u)

Δu

F(u + Δu)F(u)

Δu



Phonon calculations from first principles: DFPT vs finite differences

40 H. Shang et al. / Computer Physics Communications 215 (2017) 26–46

Fig. 16. Vibrational band structure of graphene computed at the LDA level using
both DFPT (solid blue line) and finite-difference (red open circles). All calculations
have been performed using a 11⇥11⇥1 k-grid sampling for the primitive Brillouin
zone, tight settings for the integration, and a ‘‘tier 1’’ basis set.

Fig. 17. Vibrational band structure of silicon in the diamond structure computed
at the LDA level using both DFPT (solid blue line) and finite-difference (red open
circles). All calculations have beenperformedusing 7⇥7⇥7kpoints in theprimitive
Brillouin zone, tight settings for the integration, a ‘‘tier 1’’ basis set, and the LDA
functional.

Fig. 18. H(C2H4)nH molecules: CPU time of one full DFPT cycle required to
compute all perturbations/responses associated with the 3(6n + 2) (3 is for three
cartesian directions, 6n + 2 is the number of atoms.) degrees of freedom on 32
CPU cores (see text). Following the flowchart in Fig. 4, also the timings required for
the computation of the individual response properties (density n(1) , electrostatic
potential V (1)

es,tot , Hamiltonian matrix H(1) , density matrix P (1)) are given. Here we
use light settings for the integration, a ‘‘tier 1’’ basis set, and the LDA functional.

systems (N ⌧ 1000), it would thus be beneficial to switch to a
more advanced formalism for this computational step [16,17].

To understand the timings shown in Fig. 19 for the periodic
linear chain, it is important to realize that such periodic
calculations do not directly scale with the number of atoms N , as
it was the case in the finite system, in which an N ⇥ N Hessian
was computed. Rather, the calculations are inherently performed
in a supercell (see Fig. 3) that features Nsc atoms in total. As
discussed in Section 2.3, only an N ⇥ Nsc subsection of the Hessian
needs to be determined. Accordingly, the scaling is thus best
rationalized as function of the effective number of atoms Neff =
p
N · Nsc , as shown in Fig. 19 and Table 3. In this representation, the

scaling and the respective exponents closely follow the behavior
discussed for the finite systems already with one exception: Due
to the fact that a sparse matrix formalism is used in the periodic
implementation (see Section 3.3 and Ref. [74]), a more favorable
scaling for the construction of the density matrix response P (1) is
found.

As also shown in the lower panel of Fig. 19 and Table 3, the scal-
ing does however not follow these intuitive expectations if plotted
with respect to the number of atoms N present in the primitive
unit cell, since Neff , Nsc , and N are not necessarily linearly re-
lated. For the case of the linear chain, the number of periodic im-
agesNsc�N with atomic orbitals that reach into the unit cell should
be a constant that is independent of the chain length viz. number
of atoms N present in the unit cell. Accordingly the ratio Nsc/N de-
creases from a value of 9 in the primitive C2H4 unit cell (6 atoms)
to a value ofNsc/N = 3, if a (C2H4)4 unit cell with 24 atoms is used.
In this regime, in which Neff is approximately proportional to

p
N ,

we find a very favorable overall scaling ofO(N1.3), whereby neither
of the involved steps scales worse than O(N1.7).

For larger system sizes (N > 24), however, the scaling deterio-
rates. The reason for this behavior is the rather primitive and sim-
ple strategy that we have employed in the generation of the DFPT
supercells to facilitate the treatment of integrals using the min-
imum image convention, as discussed in Section 3.2. Effectively,
these supercells are constructed using fully intact, translated unit
cells — even if a considerable part of the periodic atomic images
contained in this translated unit cell do not overlap with the orig-
inal unit cell. For the case of the linear chain, the minimal possible
ratioNsc/N = 3 is thus reached in theN = 24 case and retained for
all larger systems N > 24. In this limit, Neff becomes proportional
to N , so that we effectively recover the scaling exponents found
for Neff and for finite molecular systems (cf. Table 3).

In summary, we find an overall scaling behavior that is always
clearly smaller than O(N3) for the investigated system sizes both
in the molecular and the periodic case. For the periodic case, we
find a particularly favorable scaling regime of O(N1.3) for small to
medium sized unit cells N 6 24. As discussed in more detail in
the outlook, this regime can be potentially improved and extended
to larger unit cell sizes. Please note that the scaling relations
discussed above for the linear chain are qualitatively also found
in the case of 2D and 3D materials. Given that the utilized atomic
orbitals are spatially confined within a cut-off radius [55], similar
relations between Nsc and N are effectively found in the case
of graphene and silicon. Although the prefactors depend on the
shape and dimensionality of the unit cell, the relation Neff /

p
N

also approximately holds in these cases. In this context it is very
gratifying to see that even quite extended systems (moleculeswith
more than 100 atoms and periodic solids withmore than 50 atoms
in the unit cell) are in principle treatable within the relatively
moderate CPU and memory resources offered by a single state-of-
the-art workstation.

Eventually, let us note that a parallelization over cores viz.
nodes is already part of the presented implementation, given
that the discussed real-space DFPT formalism closely follows the
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Fig. 16. Vibrational band structure of graphene computed at the LDA level using
both DFPT (solid blue line) and finite-difference (red open circles). All calculations
have been performed using a 11⇥11⇥1 k-grid sampling for the primitive Brillouin
zone, tight settings for the integration, and a ‘‘tier 1’’ basis set.

Fig. 17. Vibrational band structure of silicon in the diamond structure computed
at the LDA level using both DFPT (solid blue line) and finite-difference (red open
circles). All calculations have beenperformedusing 7⇥7⇥7kpoints in theprimitive
Brillouin zone, tight settings for the integration, a ‘‘tier 1’’ basis set, and the LDA
functional.

Fig. 18. H(C2H4)nH molecules: CPU time of one full DFPT cycle required to
compute all perturbations/responses associated with the 3(6n + 2) (3 is for three
cartesian directions, 6n + 2 is the number of atoms.) degrees of freedom on 32
CPU cores (see text). Following the flowchart in Fig. 4, also the timings required for
the computation of the individual response properties (density n(1) , electrostatic
potential V (1)

es,tot , Hamiltonian matrix H(1) , density matrix P (1)) are given. Here we
use light settings for the integration, a ‘‘tier 1’’ basis set, and the LDA functional.
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to N , so that we effectively recover the scaling exponents found
for Neff and for finite molecular systems (cf. Table 3).

In summary, we find an overall scaling behavior that is always
clearly smaller than O(N3) for the investigated system sizes both
in the molecular and the periodic case. For the periodic case, we
find a particularly favorable scaling regime of O(N1.3) for small to
medium sized unit cells N 6 24. As discussed in more detail in
the outlook, this regime can be potentially improved and extended
to larger unit cell sizes. Please note that the scaling relations
discussed above for the linear chain are qualitatively also found
in the case of 2D and 3D materials. Given that the utilized atomic
orbitals are spatially confined within a cut-off radius [55], similar
relations between Nsc and N are effectively found in the case
of graphene and silicon. Although the prefactors depend on the
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also approximately holds in these cases. In this context it is very
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more than 100 atoms and periodic solids withmore than 50 atoms
in the unit cell) are in principle treatable within the relatively
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the-art workstation.

Eventually, let us note that a parallelization over cores viz.
nodes is already part of the presented implementation, given
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Phonons in polar semiconductors and long-range electric fields

q ⋅ D = 0  and  q × E = 0 ⟹ E = q(q ⋅ E)2
E = −

4πe
Ω ∑

I

q (q ⋅ Z⋆
I uI)

q ⋅ ϵ∞ ⋅ q

Lattice vibrations are coupled to macroscopic 
electric fields in polar semiconductors 

Polar materials: materials with 
finite Born effective charges Z⋆

κ = −
∂P
∂Rκ

FI = M··uI = − ∑
J

ΦIJ uJ−e∑
I

Z⋆
I E

Electric fields must be included in 
the lattice equation of motion

Replace  into  E FI

FI = M··uI = − ∑
J [ΦIJ−

4πe2
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(Z⋆
I ⋅ q)(q ⋅ Z⋆

J )
q ⋅ ϵ∞ ⋅ q ] uJ

Maxwell equation in solids:

D = E + 4πPel + 4πPion = ϵ∞E+
4πe
Ω ∑

I

Z⋆
IuI

Lattice contribution 
to the polarization
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Fig. 3.4. Comparison between the displacement of atoms in an ionic crystal during a long-
wavelength longitudinal optical vibration and in an infinite parallel plate capacitor. F rep-
resents the restoring force which results from displacements of the charges shown

ing from the displacement of the ions increases the frequencies of the long-
wavelength LO phonons above those of the corresponding TO phonons. In
Sect. 6.4.4 we shall show explicitly that there is a longitudinal electric field
which depends on the atomic displacements in a LO phonon but not in a TO
phonon. This longitudinal electric field results in an additional interaction be-
tween LO phonons and electrons (Sect. 3.3.5).

In Si the two atoms in the unit cell are identical so the bonding is purely
covalent and the two atoms do not carry charge. As a result there is no addi-
tional restoring force associated with LO phonons and the zone-center optical
phonons are degenerate.2

Vibrational modes in a crystal can be symmetrized according to the space
group symmetry of the crystal just like the electronic states. A phonon mode
is defined by the displacements of the atoms inside the unit cell. Thus the
symmetry of the phonon must belong to the direct product of the representa-
tion of a vector and the respresentation generated by a permutation of the
positions of equivalent atoms in the unit cell. The symmetry of the long-
wavelength phonons in Si and GaAs has already been considered in Sect.
2.3.2a. An example of how to determine the symmetries of long-wavelength
phonons in another cubic crystal, Cu2O with six atoms per primitive unit cell,
can be found in Problem 3.1. The corresponding phonons in a non-cubic crys-
tal structure, such as the wurtzite structure, can be found in Problem 3.7b.

2 Note, however, that if more than two atoms of the same kind are present within each
primitive cell, infrared active modes and LO–TO splittings are possible. See the case of
selenium and tellurium [3.8]
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Phenomena associated to polar semiconductors (and to )

• LO-TO splitting

• Lyddane-Sachs-Teller relations     

• Absorption of infrared light (Rehstrahlen bands)

• Modern theory of polarization in ferroelectrics

• Fröhlich electron-phonon coupling

• Polarons 
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Fig. 3.3. Phonon dispersion along high symmetry directions in the wurtzite structure semi-
conductor GaN [3.7]. The experimental points have been obtained by Raman scattering
(open circles) and by high resolution inelastic x-ray scattering (closed circles). The con-
tinuous curves are obtained by an ab initio calculation

phonons near the zone center. Exactly at the zone center, the TO and LO phonons
in the zinc-blende crystals must also be degenerate because of the cubic sym-
metry of the zinc-blende structure. This degeneracy and dispersion of the zone-
center optical phonons in zinc-blende crystals will be taken up again in Sect.
6.4 when we study the interaction between the TO phonons and infrared radi-
ation. At wave vectors near but not exactly at the zone center, the LO phonon
frequency in GaAs and other zinc-blende crystals is higher than that of the TO
phonons. The reason lies in the partially ionic nature of the bonding in zinc-
blende crystals. For example, in GaAs the As atoms contribute more electrons
to the bond than the Ga atoms. As a result, the electrons in the covalent bond
spend, on average, somewhat more time near the As atoms than near the Ga
atoms, so the As atoms are slightly negatively charged while the Ga atoms are
slightly positively charged. Let us assume that a long-wavelength TO phonon
propagating along the [111] direction is excited. The positive and negative ions
lie on separate planes perpendicular to the [111] axis. In a TO mode the planes
of positive and negative ions essentially slide pass each other. The situation is
similar to sliding the two plates of a parallel-plate capacitor relative to each
other while keeping their separation constant. The energy of the capacitor is not
changed by such motion. On the other hand, the energy of the charged capaci-
tor is increased when the two plates are pulled apart because there is an addi-
tional restoring force due to the Coulomb attraction between the positively and
negatively charged plates. Similarly, an additional Coulombic restoring force is
present in long-wavelength LO phonon modes but not in the TO phonon modes.

The analogy between the optical phonons and the displacements of the
capacitor plates is shown in Fig. 3.4. This additional restoring force (F) aris-

GaN
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electron-plasmon coupling matrix elements. For the sake of
numerical stability, it is desirable to circumvent the explicit
evaluation of the derivative term in Eq. (3). As illustrated in
the supplemental material of Ref. [13], for |q| < qc, where
qc = kF[(1 + ωpl/εF)1/2 − 1] is the critical momentum that
marks the onset of Landau damping and εF is the Fermi energy,
the derivative term in Eq. (3) can be expressed as

[
∂ε

∂ω

∣∣∣∣
ω

pl
q

]−1

= −ω
pl
q

2
[εD(q,0)−1 − εI(q,0)−1], (9)

where εI is the dielectric function of the undoped (insulating)
system. This expression for the dielectric function relies on
the assumptions that the energy of interband electron-hole
transitions is much larger than the plasmon energy, and that
plasmons and phonons may be treated independently, that is,
possible phenomena arising from plasmon-phonon coupling,
such as plasmon-phonon polaritons, are neglected. Noting
that plasmons may only be excited in a narrow region of
crystal momenta close to q = 0, we further introduce the
approximation 〈ψmk+q|eiq·r|ψnk〉 = δnm, and we obtain an
explicit expression for the electron-plasmon coupling matrix
elements:

∣∣ge-pl
mn (k,q)

∣∣2 = 2πδnmω
pl
q

(BZ

[εD(q,0)−1 − εI(q,0)−1]
|q|2

,

where εD is given by Eqs. (7) and (8). This expression may
be further simplified by noting that, for q < qc, it is a good
approximation to consider εI(q,0) $ ε∞, where ε∞ is the high-
frequency dielectric constant, which can be obtained from first-
principles calculations of the RPA dielectric function in the
pristine system. The final expression for the electron-plasmon
matrix elements can be rewritten as

∣∣ge-pl
mn (k,q)

∣∣2 = δnm

v(q)ωpl
q

2(BZ

[
1

ε∞ − εHEG(q) + 1
− 1

ε∞

]
,

(10)

where εHEG(q) = 1 − v(q)χHEG(q,0) is the static Lindhard
dielectric function [29]. The advantage of this procedure is
that the matrix elements ge-pl are expressed in terms of quan-
tities available from first-principles calculations of undoped
compounds, whereas explicit calculations in the presence of
doping are avoided.

We determine the electronic and lattice-dynamical proper-
ties of TiO2 from density-functional theory (DFT) and density-
functional perturbation theory (DFPT) calculations within the
generalized gradient approximation [48] as implemented in the
QUANTUM ESPRESSO package [49]. Only valence electrons are
treated explicitly, including the semicore 3s and 3p states of
Ti, whereas core electrons are accounted for through Troullier-
Martins norm-conserving pseudopotentials.1 Convergence is
ensured by using a 200 Ry kinetic energy cutoff and a 6 × 6 × 6
Monkhorst-Pack mesh. The DFT single-particle eigenvalues,
the phonon dynamical matrices, and the electron-phonon
matrix elements are first obtained on a homogeneous 4 × 4 × 4

1Available at https://github.com/mmdg-oxford/papers/tree/master/
Verdi-NCOMMS-2017/pseudo

Brillouin-zone grid. To compute the electron-phonon self-
energy, the electronic and phononic bands as well as the
electron-phonon matrix elements are then interpolated on a
dense random q-point mesh with 168 914 points with a denser
sampling of the region close to * according to a Cauchy
distribution of width 0.01. The interpolation is performed as
in Ref. [17] using maximally localized Wannier functions
within the EPW code [47] through an internal call to the
WANNIER90 library [50]. The electron-plasmon self-energy has
been implemented in the EPW code [47] by combining Eqs. (1)
and (10) and by taking advantage of the Wannier interpolation
of the electronic energies, and it has been computed using the
same random grid. We describe doping within the rigid-band
approximation, whereby extrinsic carriers are accounted for by
means of a rigid shift of the Fermi energy. Charge neutrality is
maintained through the addition of a homogeneous positively
charged background.

IV. HYBRID PLASMON-PHONON SATELLITES
IN PHOTOEMISSION

In the following, we employ the formalism presented in
Secs. II and III to investigate the formation of plasmon and
phonon satellites in anatase TiO2. The atomistic model for the
unit cell of TiO2 is shown in Fig. 2(a), whereas the Brillouin
zone and the high-symmetry points are illustrated in Fig. 2(b).

The electron and phonon band structures calculated within
DFT and DFPT are displayed in Figs. 2(c) and 2(d), re-
spectively. The low-energy conduction bands derive from the
strongly localized Ti 3d states. The conduction-band bottom

FIG. 2. (a) Atomistic model of the unit cell of anatase TiO2. (b)
Brillouin zone and high-symmetry lines. (c) Calculated electronic
band structure along the directions parallel (*X) and perpendicular
(*Z) to the basal plane of the Brillouin zone. (d) Phonon dispersions
computed along high-symmetry lines in the Brillouin zone.
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qc = kF[(1 + ωpl/εF)1/2 − 1] is the critical momentum that
marks the onset of Landau damping and εF is the Fermi energy,
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transitions is much larger than the plasmon energy, and that
plasmons and phonons may be treated independently, that is,
possible phenomena arising from plasmon-phonon coupling,
such as plasmon-phonon polaritons, are neglected. Noting
that plasmons may only be excited in a narrow region of
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principles calculations of the RPA dielectric function in the
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where εHEG(q) = 1 − v(q)χHEG(q,0) is the static Lindhard
dielectric function [29]. The advantage of this procedure is
that the matrix elements ge-pl are expressed in terms of quan-
tities available from first-principles calculations of undoped
compounds, whereas explicit calculations in the presence of
doping are avoided.

We determine the electronic and lattice-dynamical proper-
ties of TiO2 from density-functional theory (DFT) and density-
functional perturbation theory (DFPT) calculations within the
generalized gradient approximation [48] as implemented in the
QUANTUM ESPRESSO package [49]. Only valence electrons are
treated explicitly, including the semicore 3s and 3p states of
Ti, whereas core electrons are accounted for through Troullier-
Martins norm-conserving pseudopotentials.1 Convergence is
ensured by using a 200 Ry kinetic energy cutoff and a 6 × 6 × 6
Monkhorst-Pack mesh. The DFT single-particle eigenvalues,
the phonon dynamical matrices, and the electron-phonon
matrix elements are first obtained on a homogeneous 4 × 4 × 4

1Available at https://github.com/mmdg-oxford/papers/tree/master/
Verdi-NCOMMS-2017/pseudo

Brillouin-zone grid. To compute the electron-phonon self-
energy, the electronic and phononic bands as well as the
electron-phonon matrix elements are then interpolated on a
dense random q-point mesh with 168 914 points with a denser
sampling of the region close to * according to a Cauchy
distribution of width 0.01. The interpolation is performed as
in Ref. [17] using maximally localized Wannier functions
within the EPW code [47] through an internal call to the
WANNIER90 library [50]. The electron-plasmon self-energy has
been implemented in the EPW code [47] by combining Eqs. (1)
and (10) and by taking advantage of the Wannier interpolation
of the electronic energies, and it has been computed using the
same random grid. We describe doping within the rigid-band
approximation, whereby extrinsic carriers are accounted for by
means of a rigid shift of the Fermi energy. Charge neutrality is
maintained through the addition of a homogeneous positively
charged background.

IV. HYBRID PLASMON-PHONON SATELLITES
IN PHOTOEMISSION

In the following, we employ the formalism presented in
Secs. II and III to investigate the formation of plasmon and
phonon satellites in anatase TiO2. The atomistic model for the
unit cell of TiO2 is shown in Fig. 2(a), whereas the Brillouin
zone and the high-symmetry points are illustrated in Fig. 2(b).

The electron and phonon band structures calculated within
DFT and DFPT are displayed in Figs. 2(c) and 2(d), re-
spectively. The low-energy conduction bands derive from the
strongly localized Ti 3d states. The conduction-band bottom

FIG. 2. (a) Atomistic model of the unit cell of anatase TiO2. (b)
Brillouin zone and high-symmetry lines. (c) Calculated electronic
band structure along the directions parallel (*X) and perpendicular
(*Z) to the basal plane of the Brillouin zone. (d) Phonon dispersions
computed along high-symmetry lines in the Brillouin zone.

165113-4

TiO2



Assumption: timescales of ionic motions 
much slower than electronic timescales 
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Phenomena beyond the adiabatic approximation: 

• Phonon "damping" due to electron-phonon scattering 
• Non-adiabatic renormalization of the phonon energies 

Limits of the approximations involved

2 Harmonic approximation
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Ĥ = Ĥ({r̂i, R̂I})(94)

E = E({r̂i, R̂I})(95)

�n = �n({r̂i, R̂I})(96)
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Phenomena beyond the harmonic approximation: 

• Phonon-phonon scattering 
• Thermal expansion
• Thermal conductivity 
• Non-equilibrium dynamics of the lattice 
• Ferroelectricity, piezoelectricity 



Beyond phonons: Breakdown of the harmonic approximation

2

FIG. 1. Potential energy surface, potential-well depth, and pair distribution function of cubic perovskites.
a Schematic illustration of the potential energy U of cubic perovskites as a function of nuclei displacements �⌧ . The local
maxima or saddle points for �⌧ = 0 corresponds to the high-symmetry structure with the atoms fixed at their Wycko↵
positions. The local minima correspond to locally disordered structures. b Average B-X-B bond angle plotted as a function
of the potential-well depth (�U) calculated for locally disordered cubic SrTiO3, CsSnI3, CsPbBr3, and CsPbI3 using 2⇥2⇥2
supercells. c-f Locally disordered structures of SrTiO3 (c), CsSnI3 (d), CsPbBr3 (e), and CsPbI3 (f). More computational
details are available in Methods. g,h Pair distribution function (PDF) of disordered cubic SrTiO3 (g) and CsPbI3 (h). Vertical
dashed lines represent pair distribution functions of the high-symmetry structures.

anharmonicity via the special displacement method (A-
SDM)36, that allows the unified treatment of anharmonic
electron-phonon coupling. Our study calls for revisit-
ing open questions related to electron-phonon and an-
harmonic properties of halide and oxide perovskites.

II. THEORY

A. Lattice dynamics.

We start the description of lattice dynamics with the
harmonic approximation and take the expansion of a

multi-well PES up to second order in atomic displace-
ments to write:

U
{⌧} = U0 +

1

2

X

i,i0

Ci,i0 �⌧i �⌧i0 . (1)

U0 is the potential energy with the atoms clamped either
at their high-symmetry or locally disordered configura-
tion. This statistically disordered initial configuration
can be obtained using a similar procedure (see Meth-
ods) to the one described in Ref.14. Atomic displace-
ments away from a PES extremum are represented by�⌧i

where i is a composite index for the atom, coordinate,
and cell. The interatomic force constants (IFCs), defined
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FIG. 3. Temperature-dependent anharmonic phonons and di↵use scattering maps of cubic perovskites. a,b
Temperature-dependent anharmonic phonons (black lines) of cubic SrTiO3 at 300 K (a) and CsPbBr3 at 500 K (b) calculated
within A-SDM using 2⇥2⇥2 supercells. Color maps represent phonon spectral functions of the disordered structures at 0 K.
c-f Computed and measured di↵use scattering maps at 300 K of cubic SrTiO3 in the (Qx, Qy, 0) (c and e) and (Qx, Qy, 1/2)
(d and f) reciprocal planes. Calculations are performed using the phonons of the disordered network. X-ray scattering data are
from Ref.47. g-k Computed and measured di↵use scattering maps at 500 K of cubic CsPbBr3 in (Qx, Qy, 1/2) reciprocal plane.
Calculations are performed using the A-SDM phonons and high-symmetry network to probe ultraslow (< 2.5 meV) (g) and
low-energy (2.5–10 meV) (h) phonon dynamics. Neutron scattering data are from Ref.25 and refer to the energy windows of <
2.0 meV (i) and 2.0–10 meV (k). Di↵use scattering maps are obtained within the Laval-Born-James48,49 theory (see Methods).
The scattering wavevector Q is expressed in reciprocal lattice units (r.l.u.). Various schemes used to compute phonons and
di↵use scattering are discussed in Supplementary Table S2.

Interestingly, this observation suggests an indirect rela-
tionship between anharmonicity and the band gap in per-
ovskite systems. In fact, the connection between ✓̄BXB

with the band gap is related to the changes in the over-
lap between the X and B atomic states45. Our values
for the Pb-based compounds show that spin-orbit cou-
pling (SOC) induces a giant gap closing of 1.1–1.2 eV, in

excellent agreement with Ref.51. We find that SOC has
also a strong influence on the e↵ective mass enhancement
due to disorder (Supplementary Table S3). For instance,
excluding SOC, disorder leads to electron and hole mass
enhancements � (see Methods) between 0.4–1.2. Notably,
when SOC is taken into account, the disordered networks
yield � of 1.3–2.3 for CsPbBr3 and 3.3–4.7 for CsPbI3.

anharmonic effects become dominant• Anharmonic effects can become important in "soft" crystals 
• Structural disorder can alter the vibrational spectrum 
• Does it make sense to talk about phonons? 



Phonon softening in B-doped diamond

obtain an unprecedented agreement between the theory and
experiment, and we resolve the discrepancy between earlier
theoretical works and measured phonon dispersions. Our
results demonstrate a breakdown of the adiabatic Born-
Oppenheimer approximation in the phonon dispersion rela-
tions of boron-doped diamond, revealing that these effects
may be sizable also in three-dimensional bulk compounds.
The B-doped diamond samples were prepared by micro-

wave plasma-enhanced chemical vapor deposition from a
hydrogen-rich gas phase with added diborane (B2H6). The
samples were grown homoepitaxially on type Ib synthetic
crystals with (001)-oriented surfaces at thicknesses of
25! 5 μm [31]. The boron concentration was determined
fromsecondary ionmass spectroscopy (SIMS)of 11B−, 12C−,
and 11B12C− ions. For a B-doping concentration of
1.4×1021 cm−3, the samples exhibit superconducting behav-
ior with critical temperature Tc ¼ 2.8 K. IXS spectra were
measured at beam line ID28 at the European Synchrotron
Radiation Facility (ESRF) with an energy resolution of
3.2 meV. The samples were aligned with the beam directed
parallel to the surface and passing through the substrate or the
B-doped diamond film, for measurements of pristine dia-
mond and B-doped diamond, respectively. The scattering
vector Q was varied from ð2.06; 0; 0Þ2π=a (close to Γ)
to ð3;−0.12; 0Þ2π=a (close to X), with a ¼ 3.67 Å. The

small deviations in the ð0; k; 0Þ direction are given in
Supplemental Table I [32]. The measured IXS spectra are
shown in Figs. 1(c)–1(e) as heat maps and in Supplemental
Fig. 1 as individual scans [32]. For the undoped case, our
measurements are in excellent agreement with previous
experimental data [33].
Nonadiabatic phonon dispersions were computed from

first principles within the many-body theory of electron-
phonon coupling. Nonadiabatic effects were accounted for
via the phonon self-energy ΠNA

qν [17]:

ℏΠNA
qν ðωÞ ¼ 2

X

mn

Z
dk
ΩBZ

gbmn;νðk;qÞg%mn;νðk;qÞ

×
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ϵmkþq − ϵnk − ℏðωþ iηÞ
−
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ϵmkþq − ϵnk

"
;

ð1Þ

where ϵnk and fnk denote single-particle energies
and Fermi-Dirac occupation factors, respectively, η
is a positive infinitesimal, and ΩBZ is the Brillouin
zone volume. The screened electron-phonon matrix
elements gmn;νðk;qÞ were obtained as gmn;νðk;qÞ ¼
ðℏ=2MωqνÞ1=2hψmkþqj∂qνVjψnki, where ψnk denote
Kohn-Sham single-particle eigenstates, M the C mass,

FIG. 1. (a) Density-functional theory band structure of diamond for a B concentration of 1.4 × 1021 cm−3. (b) Adiabatic phonon
dispersions of pristine (blue lines) and B-doped diamond (dashed black lines) for momenta along L-Γ-X, as obtained from density-
functional perturbation theory. (c)–(e) Measured IXS spectra of pristine and B-doped diamond. The critical momentum for the onset of
the KA, qc ¼ 2kF, is indicated by vertical dashed lines; see also (a). (f)–(h) Nonadiabatic spectral function, obtained from Eqs. (1) and
(2), for the LO phonon of (c) pristine and (d),(e) B-doped diamond along Γ-X. The phonon branch considered here is marked by the red
line in panel (b). (i)–(k) Phonon energies obtained from Eq. (3) in the adiabatic approximation (ΠNA

qν ¼ 0) and from the fully
nonadiabatic theory (present theory). Nonadiabatic phonon dispersions of undoped diamond are reported for comparison. All doping
concentrations are in units of cm−3.
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functional perturbation theory. (c)–(e) Measured IXS spectra of pristine and B-doped diamond. The critical momentum for the onset of
the KA, qc ¼ 2kF, is indicated by vertical dashed lines; see also (a). (f)–(h) Nonadiabatic spectral function, obtained from Eqs. (1) and
(2), for the LO phonon of (c) pristine and (d),(e) B-doped diamond along Γ-X. The phonon branch considered here is marked by the red
line in panel (b). (i)–(k) Phonon energies obtained from Eq. (3) in the adiabatic approximation (ΠNA

qν ¼ 0) and from the fully
nonadiabatic theory (present theory). Nonadiabatic phonon dispersions of undoped diamond are reported for comparison. All doping
concentrations are in units of cm−3.
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obtain an unprecedented agreement between the theory and
experiment, and we resolve the discrepancy between earlier
theoretical works and measured phonon dispersions. Our
results demonstrate a breakdown of the adiabatic Born-
Oppenheimer approximation in the phonon dispersion rela-
tions of boron-doped diamond, revealing that these effects
may be sizable also in three-dimensional bulk compounds.
The B-doped diamond samples were prepared by micro-

wave plasma-enhanced chemical vapor deposition from a
hydrogen-rich gas phase with added diborane (B2H6). The
samples were grown homoepitaxially on type Ib synthetic
crystals with (001)-oriented surfaces at thicknesses of
25! 5 μm [31]. The boron concentration was determined
fromsecondary ionmass spectroscopy (SIMS)of 11B−, 12C−,
and 11B12C− ions. For a B-doping concentration of
1.4×1021 cm−3, the samples exhibit superconducting behav-
ior with critical temperature Tc ¼ 2.8 K. IXS spectra were
measured at beam line ID28 at the European Synchrotron
Radiation Facility (ESRF) with an energy resolution of
3.2 meV. The samples were aligned with the beam directed
parallel to the surface and passing through the substrate or the
B-doped diamond film, for measurements of pristine dia-
mond and B-doped diamond, respectively. The scattering
vector Q was varied from ð2.06; 0; 0Þ2π=a (close to Γ)
to ð3;−0.12; 0Þ2π=a (close to X), with a ¼ 3.67 Å. The

small deviations in the ð0; k; 0Þ direction are given in
Supplemental Table I [32]. The measured IXS spectra are
shown in Figs. 1(c)–1(e) as heat maps and in Supplemental
Fig. 1 as individual scans [32]. For the undoped case, our
measurements are in excellent agreement with previous
experimental data [33].
Nonadiabatic phonon dispersions were computed from

first principles within the many-body theory of electron-
phonon coupling. Nonadiabatic effects were accounted for
via the phonon self-energy ΠNA

qν [17]:
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where ϵnk and fnk denote single-particle energies
and Fermi-Dirac occupation factors, respectively, η
is a positive infinitesimal, and ΩBZ is the Brillouin
zone volume. The screened electron-phonon matrix
elements gmn;νðk;qÞ were obtained as gmn;νðk;qÞ ¼
ðℏ=2MωqνÞ1=2hψmkþqj∂qνVjψnki, where ψnk denote
Kohn-Sham single-particle eigenstates, M the C mass,

FIG. 1. (a) Density-functional theory band structure of diamond for a B concentration of 1.4 × 1021 cm−3. (b) Adiabatic phonon
dispersions of pristine (blue lines) and B-doped diamond (dashed black lines) for momenta along L-Γ-X, as obtained from density-
functional perturbation theory. (c)–(e) Measured IXS spectra of pristine and B-doped diamond. The critical momentum for the onset of
the KA, qc ¼ 2kF, is indicated by vertical dashed lines; see also (a). (f)–(h) Nonadiabatic spectral function, obtained from Eqs. (1) and
(2), for the LO phonon of (c) pristine and (d),(e) B-doped diamond along Γ-X. The phonon branch considered here is marked by the red
line in panel (b). (i)–(k) Phonon energies obtained from Eq. (3) in the adiabatic approximation (ΠNA

qν ¼ 0) and from the fully
nonadiabatic theory (present theory). Nonadiabatic phonon dispersions of undoped diamond are reported for comparison. All doping
concentrations are in units of cm−3.
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Theory: many-body electron-
phonon coupling

diamond (undoped) B-doped diamond

B

characterized by X-ray diffraction, micro-Raman spectroscopy,
electrical resistivity, magnetic susceptibility and calorimetry
measurements. Consistent with an expanded lattice deduced from
the X-ray spectrum given in Fig. 2a, Raman spectra of our samples
(Fig. 2b) are very similar to those observed for the most heavily
boron-doped CVD diamond films11. (From the weak zone-centre
phonon line at ,1,300 cm21 and the general form of the spectra11,
our samples should have a carrier concentration n $ 2 £ 1021 cm23.
For normal diamond, a zone-centre phonon line is observed at
1,332 cm23.) Quantitative estimates of the boron content in our
samples were made using NMR and inductively coupled mass
spectrometry. Within experimental uncertainty, both methods
yielded the same value of 2.8 ^ 0.5% for the total B content.
Inductively coupled mass spectrometry on a second sample also
gave the same B content. Good agreement between these two
techniques, one of which is volume sensitive (NMR) and the
other of which probes only a surface layer of ,1,000 Å, suggests
that B atoms are distributed rather uniformly in the sample. Neither
technique, however, is sensitive to the local environment of the B
atoms. Assuming that all the B atoms are incorporated into the
diamond lattice, the upper limit of the charge carrier concentration
is 4.9 £ 1021 cm23, a value somewhat larger than the maximum
previously reported. This estimate decreases to 4.6 £ 1021 cm23,
assuming the sample contains 2% B4C.

The temperature (T)-dependent resistivity (r) of one of these
B-doped samples is plotted in Fig. 3a. Measurements of current-
voltage characteristics at various temperatures confirmed an ohmic
response. In the range 230–300K, ›r/›T . 0 as expected for a
metal, but below 230K the resistivity increases weakly with decreas-
ing temperature. Near 4 K, r(T) starts to fall rapidly and reaches an
immeasurably small value below 2.3 K as shown in the inset of
Fig. 3a. The resistive variation below 4K is typical of an inhomo-
geneous superconductor, in this case with the inhomogeneity
probably arising from a non-uniform distribution of boron in the
diamond lattice. As also indicated in the inset of Fig. 3a, the
application of hydrostatic pressure produces a linear decrease in

the resistive mid-point transition temperature T c without any
additional significant broadening of the transition. The relatively
slow decrease of T c with pressure P (›Tc=›P¼26:42 £
1022 KGPa21; ›lnTc=›P¼ 2:79£ 1022 GPa21) contrasts with
positive ›Tc=›P¼ 0:05KGPa21 reported12 for elemental boron
for P . 180GPa, ruling out the possibility that the zero-resistance
state in B-doped diamond is due to free boron. As expected for an
inhomogeneous superconductor, applying a magnetic field slightly
broadens the transition and shifts it to lower temperatures (Fig. 3b).
The resistive mid-point T c decreases at a rate ›Hc2=›Tc ¼
21:7TK21; from which we estimate the T ¼ 0 upper critical field
H c2(0) ¼ 3.4 T using the standard relationship13 for a dirty type-II
superconductor H c2(0) ¼ 20.69 (dH c2/dTjTc)T c. As is evident in
the inset of Fig. 3b, this estimate is a lower limit because the onset of
the resistive transition is still near 1.7 K in a field of 4 T. With
H c2(0) ¼ 3.4 T and the relation yGL ¼ ½F0=2pHc2ð0Þ%1=2 (where
F0 ¼ hc/2e is the quantum ofmagnetic flux), the Ginzburg–Landau
coherence length yGL ¼ 100 Å.
Resistance measurements are unable to determine if supercon-

ductivity arises from the crystal bulk, surface, or filaments of zero-
resistance material; however, magnetic susceptibility measurements
allow more definitive conclusions. As shown in Fig. 4, there is a
strong diamagnetic response in the a.c. magnetic susceptibility of
these boron-doped diamond samples below 2.3 K where the resist-

Figure 3 Electrical resistivity and upper critical field curves for B-doped diamond.
a, Temperature dependence of the electrical resistivity of B-doped diamond at normal and
representative high pressures. The insets show details of the resistivity behaviour below

5 K and the pressure-induced shift DT c of the midpoint of the resistive transition.

b, Temperature dependence of the upper critical field for B-doped diamond. The resistive
mid-point is used to define H c2. The inset shows the evolution of the resistivity near T c at

different magnetic fields 0–4 T.

Figure 2 X-ray diffraction and Raman spectra of B-doped diamond. a, X-ray diffraction
pattern of B-doped diamond. The strongest peaks of B4C at 16–178 and graphite near

12–138 are absent in this pattern from diamond, but are visible in spectra (not shown) of

material taken from the boundary between B4C and diamond. We estimate that unreacted

B4C in the polycrystalline diamond does not exceed 1–2%. The diffraction pattern gives a

cubic lattice parameter of 3.5755 ^ 0.0005 Å, which is larger than 3.5664 Å for

undoped diamond and within the range of lattice parameters 3.575–3.5767 Å for

maximally B-doped diamond24,25. b, Raman spectra of diamond, synthesized in the
system graphite–B4C (lower curve) and CVD films11 with boron concentrations of

3.4 £ 1017 cm23 (upper curve) and 1.5 £ 1021 cm23 (middle curve).
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Beyond phonons: Breakdown of the adiabatic approximation



Phonon visualization

1. https://henriquemiranda.github.io/phononwebsite/phonon.html 

2. https://interactivephonon.materialscloud.io/

https://henriquemiranda.github.io/phononwebsite/phonon.html
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Summary: introduction to phonons

Phonons in experiments

Ab-initio calculations of phonons in solids

Theory of phonons in crystalline solids
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Fzo. 2. The (110) plane of the reciprocal lattice and several
typical neutron groups for copper obtained in "constant-Q"
experiments such as the one shown for group 35.The groups are
labeled with the branch designation and the value of the reduced
wave vector g.

branches are constructed from the known symmetry
about 8'. The straight lines drawn from the points j.
represent the velocities of sound for the various branches
calculated from the elastic constants of Overton and
Gaffney" (see Table III). The points nearest I" on all

except the LOg7T) branch agree very well with the
velocity of sound values. The points on the T~ branch
are significantly high.
In I'ig. 4 the low-wave-vector region of the LOg7T)

branch is shown together with a typical neutron group
measured with the McMaster spectrometer. (After the
original study, five groups on the low-[ part: of this
branch were remeasured with the vertical collimation
increased by about a factor of 3. It was found that for
/&0 3th. e original frequencies were lowered by about
0.015&&10" cps; the values of Table II have been
corrected accordingly, but the points plotted in Fig. 4
represent the original uncorrected values. The groups
taken with the higher vertical resolution were also
about 20'Po narrower. The higher energy resolution and
the increased vertical collimation used in the experi-
ments at McMaster University easily account for the
frequencies in Table II being slightly lower than the
corresponding frequencies in Table I.)
The T} branch is of particular interest for several

reasons: (i) It is very nearly a straight line up to at
least ] =0 5 (Th.er.e is evidence for this in I'ig. 1 where
it is seen that the neutron groups for t =0.2 and 0.5
have almost equal widths which implies that the slope
of the dispersion curve is almost identical for the two
values of ].) (ii) The slope of this almost straight line is
about 5% greater than the velocity of sound for this
branch which is determined by the shear elastic constantC'= (c)t—c)s)/2. (This does not necessarily imply that
either the elastic constants" or the neutron-scattering
results are incorrect since the elastic constant measure-
ments correspond to very much smaller velues of [ than
any of the neutron results. ) (iii) The ratios of the
nickel to the copper frequencies are highest for the low-]
part of this branch. (iv) The low-] part of this branch
in palladium'7 has been found to have an anomalous S
shape. (v) A Kohn anomaly" might possibly appear in
this branch at )=0.45, corresponding to transitions
across the "belly" of the Fermi surface. "
The low-] part of the Ti branch thus appears to be

FIG. 3. The dispersion
curves for copper in the
four major symmetry direc-
tions at 296'K. The dia-
gram is labeled with the
group theoretical notation
of Koster (Ref. 21) and the
straight lines through the
points I' give the initial
slopes of the dispersion
curves as calculated from
the elastic constants (Table
III). The solid and dashed
curves are the result of an
analysis in terms of general
forces to 4th-nearest neigh-
bors (model M1 of Table
IV).
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frequencies in Table II being slightly lower than the
corresponding frequencies in Table I.)
The T} branch is of particular interest for several

reasons: (i) It is very nearly a straight line up to at
least ] =0 5 (Th.er.e is evidence for this in I'ig. 1 where
it is seen that the neutron groups for t =0.2 and 0.5
have almost equal widths which implies that the slope
of the dispersion curve is almost identical for the two
values of ].) (ii) The slope of this almost straight line is
about 5% greater than the velocity of sound for this
branch which is determined by the shear elastic constantC'= (c)t—c)s)/2. (This does not necessarily imply that
either the elastic constants" or the neutron-scattering
results are incorrect since the elastic constant measure-
ments correspond to very much smaller velues of [ than
any of the neutron results. ) (iii) The ratios of the
nickel to the copper frequencies are highest for the low-]
part of this branch. (iv) The low-] part of this branch
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Fig. 16. Vibrational band structure of graphene computed at the LDA level using
both DFPT (solid blue line) and finite-difference (red open circles). All calculations
have been performed using a 11⇥11⇥1 k-grid sampling for the primitive Brillouin
zone, tight settings for the integration, and a ‘‘tier 1’’ basis set.

Fig. 17. Vibrational band structure of silicon in the diamond structure computed
at the LDA level using both DFPT (solid blue line) and finite-difference (red open
circles). All calculations have beenperformedusing 7⇥7⇥7kpoints in theprimitive
Brillouin zone, tight settings for the integration, a ‘‘tier 1’’ basis set, and the LDA
functional.

Fig. 18. H(C2H4)nH molecules: CPU time of one full DFPT cycle required to
compute all perturbations/responses associated with the 3(6n + 2) (3 is for three
cartesian directions, 6n + 2 is the number of atoms.) degrees of freedom on 32
CPU cores (see text). Following the flowchart in Fig. 4, also the timings required for
the computation of the individual response properties (density n(1) , electrostatic
potential V (1)

es,tot , Hamiltonian matrix H(1) , density matrix P (1)) are given. Here we
use light settings for the integration, a ‘‘tier 1’’ basis set, and the LDA functional.

systems (N ⌧ 1000), it would thus be beneficial to switch to a
more advanced formalism for this computational step [16,17].

To understand the timings shown in Fig. 19 for the periodic
linear chain, it is important to realize that such periodic
calculations do not directly scale with the number of atoms N , as
it was the case in the finite system, in which an N ⇥ N Hessian
was computed. Rather, the calculations are inherently performed
in a supercell (see Fig. 3) that features Nsc atoms in total. As
discussed in Section 2.3, only an N ⇥ Nsc subsection of the Hessian
needs to be determined. Accordingly, the scaling is thus best
rationalized as function of the effective number of atoms Neff =
p
N · Nsc , as shown in Fig. 19 and Table 3. In this representation, the

scaling and the respective exponents closely follow the behavior
discussed for the finite systems already with one exception: Due
to the fact that a sparse matrix formalism is used in the periodic
implementation (see Section 3.3 and Ref. [74]), a more favorable
scaling for the construction of the density matrix response P (1) is
found.

As also shown in the lower panel of Fig. 19 and Table 3, the scal-
ing does however not follow these intuitive expectations if plotted
with respect to the number of atoms N present in the primitive
unit cell, since Neff , Nsc , and N are not necessarily linearly re-
lated. For the case of the linear chain, the number of periodic im-
agesNsc�N with atomic orbitals that reach into the unit cell should
be a constant that is independent of the chain length viz. number
of atoms N present in the unit cell. Accordingly the ratio Nsc/N de-
creases from a value of 9 in the primitive C2H4 unit cell (6 atoms)
to a value ofNsc/N = 3, if a (C2H4)4 unit cell with 24 atoms is used.
In this regime, in which Neff is approximately proportional to

p
N ,

we find a very favorable overall scaling ofO(N1.3), whereby neither
of the involved steps scales worse than O(N1.7).

For larger system sizes (N > 24), however, the scaling deterio-
rates. The reason for this behavior is the rather primitive and sim-
ple strategy that we have employed in the generation of the DFPT
supercells to facilitate the treatment of integrals using the min-
imum image convention, as discussed in Section 3.2. Effectively,
these supercells are constructed using fully intact, translated unit
cells — even if a considerable part of the periodic atomic images
contained in this translated unit cell do not overlap with the orig-
inal unit cell. For the case of the linear chain, the minimal possible
ratioNsc/N = 3 is thus reached in theN = 24 case and retained for
all larger systems N > 24. In this limit, Neff becomes proportional
to N , so that we effectively recover the scaling exponents found
for Neff and for finite molecular systems (cf. Table 3).

In summary, we find an overall scaling behavior that is always
clearly smaller than O(N3) for the investigated system sizes both
in the molecular and the periodic case. For the periodic case, we
find a particularly favorable scaling regime of O(N1.3) for small to
medium sized unit cells N 6 24. As discussed in more detail in
the outlook, this regime can be potentially improved and extended
to larger unit cell sizes. Please note that the scaling relations
discussed above for the linear chain are qualitatively also found
in the case of 2D and 3D materials. Given that the utilized atomic
orbitals are spatially confined within a cut-off radius [55], similar
relations between Nsc and N are effectively found in the case
of graphene and silicon. Although the prefactors depend on the
shape and dimensionality of the unit cell, the relation Neff /

p
N

also approximately holds in these cases. In this context it is very
gratifying to see that even quite extended systems (moleculeswith
more than 100 atoms and periodic solids withmore than 50 atoms
in the unit cell) are in principle treatable within the relatively
moderate CPU and memory resources offered by a single state-of-
the-art workstation.

Eventually, let us note that a parallelization over cores viz.
nodes is already part of the presented implementation, given
that the discussed real-space DFPT formalism closely follows the


