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E C O N O M I C S

Globally unequal effect of extreme heat on  
economic growth
Christopher W. Callahan1,2* and Justin S. Mankin2,3,4

Increased extreme heat is among the clearest impacts of global warming, but the economic effects of heat waves 
are poorly understood. Using subnational economic data, extreme heat metrics measuring the temperature of 
the hottest several days in each year, and an ensemble of climate models, we quantify the effect of extreme heat 
intensity on economic growth globally. We find that human-caused increases in heat waves have depressed eco-
nomic output most in the poor tropical regions least culpable for warming. Cumulative 1992–2013 losses from 
anthropogenic extreme heat likely fall between $5 trillion and $29.3 trillion globally. Losses amount to 6.7% of 
Gross Domestic Product per capita per year for regions in the bottom income decile, but only 1.5% for regions in 
the top income decile. Our results have the potential to inform adaptation investments and demonstrate how 
global inequality is both a cause and consequence of the unequal burden of climate change.

INTRODUCTION
Increases in extreme heat from anthropogenic global warming (1, 2) 
pose alarming risks to human well-being (3, 4). These risks are 
particularly acute in the poorest and warmest regions on Earth, located 
in the tropics, where changes in the tails of the temperature distri-
bution have emerged first (5–7). Because of their warmth, tropical 
regions are at risk to cross physiological temperature thresholds for 
human morbidity and mortality (3, 8). Moreover, lower incomes make 
tropical economies less able to adapt to increases in extreme heat 
(9). Even modest increases in mean temperatures can cause large 
increases in extremes (10–13), so increased heat extremes due to 
warming will stress adaptive capacities in the low-income regions 
that have contributed least to climate change (14, 15).

There is a long history of studying, documenting, and predicting 
extreme heat events given the risks they pose to people (1, 2, 13) and 
their nonlinear response to forcing (10, 16). However, despite the 
centrality of extreme heat to the human experience of the climate 
system—as well as to present and future climate impacts—there has 
been little quantification of its macroeconomic costs. Without knowing 
the scope of economic losses from heat waves, it is difficult to con-
ceive risk management and preparedness strategies that are com-
mensurate with their costs. Part of this gap emerges from data realities: 
Extreme heat occurs at fine spatiotemporal scales, imposing strict 
requirements on the resolution and extent of meteorological and 
socioeconomic data. To overcome these data limitations, climate- 
economy studies tend to focus on small regions of high-quality data 
(17, 18) or relate global average temperatures to economic losses 
using functions that assume local risks are captured by mean changes 
(19). Crucially, however, these loss functions have not been well con-
strained by empirical estimates of the effects of extreme events (20).

Empirical research has shown that extreme temperatures reduce 
labor productivity (21), damage crops (22, 23), and increase mortal-
ity (9), among other effects. Because this research is often sector or 
region specific (24–26), a theoretical and empirical gap still remains 

between the nonlinearities identified at the local and sectoral level 
and the global economic assessments required to evaluate differing 
climate policies. Several empirical climate-economy studies have 
quantified the global economic effects of changes in average tem-
perature (27–32) and temperature variability (33) in an attempt to 
close this gap. However, the physical processes driving average and 
extreme temperatures are fundamentally distinct (34, 35). Extreme 
heat events are driven by atmospheric blocking events (36, 37) and 
land-atmosphere feedbacks, such as soil drying, that can amplify the 
anticyclonic circulation patterns required for multiday heat accumu-
lation (38, 39). These processes take place on characteristic daily- to-
weekly time scales and have length scales associated with the synoptic 
or finer. While related, these processes are not the same as those 
that determine climatological quantities such as annual mean tem-
perature. Furthermore, because anthropogenic warming is projected 
to warm the hottest days of the year more than annual mean tem-
peratures due to land-atmosphere feedbacks (10, 40, 41), assessing 
the unique economic effects of the hottest few days of the year is 
necessary to more fully quantify the costs of global warming.

The goal of our work is to directly quantify the global macroeco-
nomic effects of extreme heat, to identify the risks associated with 
intensifying heat waves in a warming world, and to close a key gap 
in climate-economic research. As noted above, the requirement of 
high-resolution economic and disaster data challenges this effort. 
Data limitations are most acute in the world’s poorest and warmest 
regions, which has skewed climate impacts research toward high-income 
areas (17, 18). Data limitations are particularly important in the con-
text of extreme heat because heat waves are often subnational in scale 
(42), complicating the country-level approach used in many empirical 
climate-economy studies (30, 31).

Here, we empirically estimate the effect of extreme heat intensity 
on observed economic growth using data from a global sample of 
subnational regions. We measure extreme heat using the tempera-
ture of the hottest 5-day period in each year (“Tx5d”), although we 
assess several other metrics and find little difference in their effects. 
Tx5d and related metrics that measure the intensity of the hottest 
period of each year have been used in recent work to characterize 
changes in extreme heat (1, 11, 43–45) and have the benefit of cap-
turing damaging multiday periods of extreme heat (23) while avoid-
ing the arbitrary thresholds used in other heat wave metrics (46, 47). 
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Tx5d does not explicitly measure the frequency of extreme heat nor 
variations in its duration, so our identification strategy centers on 
measuring the effect of the intensity of the most extreme heat wave 
in each year. Other metrics can be used to assess these other charac-
teristics (13, 46, 47) but can involve specifying relatively arbitrary 
temperature thresholds or bins, often at the cost of transparency 
and simplicity.

Our empirical model includes the effects of both Tx5d and annual 
average temperature, their interaction to allow the effect of extremes 
to vary with average temperature, and temperature variability (see 
Materials and Methods). This strategy allows us to identify the plau-
sibly causal effect of extreme heat intensity while allowing different 
regions to respond differently on the basis of their annual average 
temperatures. It also allows us to consider how these three moments 
of the temperature distribution independently and jointly shape 
economic costs. We then combine these empirical results with his-
torical climate model simulations to assess the economic effects of 
anthropogenic changes in extreme heat intensity to date (fig. S1).

RESULTS
Economic effects of extreme heat
Extreme heat significantly decreases economic growth in warm regions, 
weakly affects growth in temperate regions, and increases growth in 
cold regions (Fig. 1). For example, in Brazil, where the average tem-
perature is a warm 23.8°C, an SD increase in Tx5d intensity de-
presses growth by 0.63 percentage points (p.p.). In contrast, in 
Norway, where the temperature averages 4°C, an additional SD in 
Tx5d intensity enhances growth by 0.62 p.p. (Fig. 1A). These results 
align with previous work, as the annual mean temperature at which 
extreme heat becomes harmful is ~14°C, similar to the temperature 
optima shown in studies of annual mean temperature (27, 28).

The effects of extreme heat must be inferred for regions for which 
economic data is unavailable (hatching in Fig. 1B), which are pri-
marily warm and low-income regions (Fig. 1A, histogram). Under-
standing the economic response to climate change is most useful 
when it is globally generalizable (20), motivating recent studies to 
extrapolate global climate-economy response functions from limited 
data (9, 31). Here, we follow this practice by inferring the effect of 
extreme heat for all regions based on their average temperatures, 
even where economic data are unavailable (see the Supplementary 
Materials). We note that the sample on which we base our estimate 
covers ~66% of the world’s population, spans regions with average 
temperatures that exceed 30°C, and encompasses tropical regions in 
countries such as Brazil, Indonesia, and India, suggesting that our 
model likely provides a reliable basis from which to infer the effect 
of extreme heat in both cool and warm regions.

Extrapolation of our results to regions without economic data 
emphasizes the latitudinal structure of the effect of extreme heat 
(Fig. 1B). Tropical regions lose income when extreme heat increases, 
mid-latitude regions in the United States and southern Europe lie in 
a weakly affected transition zone, and high-latitude regions gain 
economically as their baseline temperatures are too cold for optimal 
growth. Critically, warm tropical regions both tend to have lower 
incomes (Fig. 1A, top bar plot) and suffer the most from increased 
extreme temperatures. These low-income tropical regions are also the 
regions for which the least data are available (histograms in Fig. 1A), 
so this extrapolation procedure is a key limitation of our analysis. 
Gathering additional economic data in the regions most prone to 

climate impacts given their geography and income is an important 
focus for better attribution of climate impacts and therefore manage-
ment of future climate risks.

The effect of extreme heat on growth is robust to more restrictive 
standard error clustering and the addition of region-specific growth 
trends to control for time-varying unobservable factors (see Materials 
and Methods and table S1). Including region-specific trends is a 
useful way of controlling for time-varying cofounders but may 
lead to overfitting (48), especially given that some regions have 
fewer than 10 years of data (33), so we do not include trends in our 
main model. We quantify regression uncertainty via bootstrapping 
(see Materials and Methods), which also ensures that individual re-
gions are not disproportionately driving the result. A placebo test, 
where we randomize extreme heat exposure and reestimate the model, 

Fig. 1. Contemporaneous effect of extreme heat intensity on economic growth. 
(A) Marginal effects of extreme heat on economic growth in percentage points per 
SD of Tx5d (p.p. per SD) across a range of temperatures. Solid red line shows average 
estimates across 1000 bootstrap iterations, and shading shows 95% confidence 
intervals (see Materials and Methods). Vertical lines show the average temperatures 
for regions within selected countries. Top bar plot shows the average regional 
Gross Domestic Product per capita (GDPpc) in each 1°C temperature bin relative to 
the global mean regional GDPpc. Bottom histogram shows the distribution of tem-
peratures in the estimation sample (blue) and all observations (obs) (gray). (B) Marginal 
effects for each region based on their average temperatures; hatching denotes 
regions where economic data are unavailable. Marginal effects are scaled by the 
average within-region SD of Tx5d (see Materials and Methods).
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demonstrates that spurious trends across time or space are not driving 
our results (fig. S2). Including a squared precipitation term, as has 
been used in other recent studies (27, 30), does not alter our results 
(table S1).

Our results are very similar when using other metrics of extreme 
heat, such as the intensity of the hottest 3-, 7-, or 15-day periods, 
although the peak 5-day period yields the strongest response (fig. 
S3). Using the temperature of the hottest day or the hottest month 
yields weaker and more uncertain responses (fig. S3), as these metrics 
either do not capture multiple days of exposure (e.g., hottest day) or 
average temperatures over an excessively long period (e.g., hottest 
month). The 5-day time period associated with the peak effect of 
extreme heat is physically consistent with synoptic time scales; heat 
waves are generally driven by large-scale high-pressure systems (37), 
which evolve on the daily-to-weekly time scales associated with 
continental- scale atmospheric circulation.

Our use of annual mean temperature as the interaction variable 
with Tx5d implies that heterogeneity in the effect of extreme heat 
is driven only by variation in underlying average temperatures. 
We interpret this heterogeneity as being driven primarily by cli-
matological temperature as opposed to interannual variation in 
annual average temperature, because within-region variation in 
annual average temperature is an order of magnitude smaller than 
across- region variation (the overall SD of annual average temper-
ature across our sample is 7.7°C, but the average within-region SD 
is only 0.52°C). This interpretation is supported by a model in which 
we interact Tx5d with long-term regional average temperature 
rather than annual mean temperature and find very similar results 
(table S2).

Temperature covaries with other variables that may drive hetero-
geneity in the effect of extreme heat: Warmer regions also generally 
have lower income (Fig. 1A), and warmer years may also be drier, so 
income and drought may be additional moderators of the effect of 
extremes. To test these hypotheses, we estimate additional models 
with average income and the Palmer Drought Severity Index as the 
interaction terms (table S2). Neither of these variables have signifi-
cant interactions with Tx5d, and when the annual mean temperature 
interaction is added alongside these variables, only the temperature 
interaction is significant (table S2). These results support the inter-
pretation that temperature is the primary moderator of the effect of 
extreme heat, consistent with earlier work that has found differences 
in the effect of warming to be due to differences in temperature ex-
posure, not differences in income (27, 30).

Our findings reinforce the fact that people are poorly adapted 
to extreme heat in the present day, even in regions inured to being 
warm. Many adaptations have been undertaken to cope with extremely 
hot conditions independent of climate change. In high-income re-
gions, this often takes the form of air conditioning for indoor spaces 
(49) alongside a broader shift to service-dominated economies (50). 
In low-income regions, adaptations are primarily behavioral (51), in-
cluding resting in the shade, drinking more water, and shifting to 
nonoutdoor labor when possible (52). However, there are physiologi-
cal thresholds for extreme heat exposure in people (3) and agriculture 
(22) that challenge the efficacy of behavioral adaptations. Our results 
demonstrate that current adaptations have not been successful in 
eliminating the negative effects of extreme heat and emphasize the need 
for further such adaptation investments alongside climate mitigation.

Our empirical model controls for mean temperatures to assess 
how growth is differentially affected by average temperatures and 

extremes. Previous studies have argued that mean temperatures should 
capture the effect of extremes (27). However, the geophysical pro-
cesses driving average temperatures are different from those driving 
extremes (34, 35). Furthermore, because temperature distributions 
are often non-Gaussian and can have long tails (53), the relation-
ship between average and extreme temperatures is complex and 
warrants further study (54). Annual average temperatures explain 
~40% of the variation in raw Tx5d values in our sample (fig. S4), but 
this occurs in large part because regions that are warmer, on average, 
have both greater annual temperatures and greater Tx5d values. 
When expressed as deviations from regional means, which is con-
sistent with our estimation with the fixed effects model (i.e., purging 
time-invariant regional characteristics; see Materials and Methods), 
annual average temperature anomalies explain less than 13% of 
the variation in Tx5d anomalies (fig. S4). Hence, there is substantial 
variation in extreme temperatures that might harm growth not 
captured by models that only consider annual average tempera-
ture. The value of incorporating Tx5d relative to a model that 
only includes annual average temperature is supported by a likeli-
hood ratio test, which indicates that the model that includes 
Tx5d has greater explanatory power than the model that does not 
(P < 0.0001).

Our results show significant independent effects of both average 
and extreme temperatures. Increases in average temperatures, for 
example, have weakly positive effects in cold regions and increasingly 
harmful effects in warmer regions (fig. S5). This pattern is consistent 
with recent work on the economic impacts of increasing average 
temperatures (27, 30, 31). However, we find that the squared mean 
temperature term is no longer statistically significant, while the in-
teraction between mean temperature and Tx5d is significant (table S1). 
This result implies that increases in mean temperatures are harmful 
in warmer locations, and this additional harm arises because of inter-
actions between warmer mean temperatures and increased extreme 
heat intensity in the warmest part of the year.

Following recent work, our model also includes the effect of daily- 
scale temperature variability (see Materials and Methods) (33). We 
find a strong negative effect of temperature variability on growth 
(fig. S5), consistent with Kotz et al. (33). One key question is whether 
increases in variability are intrinsically damaging or only damaging 
insofar as they induce greater temperature extremes. Our finding of 
a negative effect of variability (−2.01 p.p. per SD) in a model that 
includes Tx5d implies that variability is indeed intrinsically damaging. 
However, when we remove the Tx5d terms from the model, the variability 
effect increases in magnitude to −2.21 p.p. per SD. That difference 
demonstrates that when extreme heat is not explicitly considered, it 
is possible to find an effect of temperature variability that is 10% too 
large because years with greater variability also imply more extreme 
temperatures in the hottest parts of the year.

The spatial patterns of economic damages from both average tem-
perature and variability are similar: Effects are negative everywhere 
but largest in warm and low-variability tropical regions, which am-
plifies the unequal effects of global warming. In contrast, extreme 
heat has a distinct spatial pattern. Extreme heat causes large damages 
in low-latitude regions and transitions to modest damages and lastly 
benefits as latitude increases (fig. S5). The fact that extreme heat ex-
hibits an effect that reverses with latitude, while average tempera-
tures and variability do not, means that analyzing temperature 
extremes is necessary to fully account for the global inequities in the 
burden of temperature impacts.
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Anthropogenic increases in extreme heat
These empirical findings imply that human-caused warming has 
affected economic production through changes in extreme heat. Es-
timating how much anthropogenic extreme heat has affected global 
economic production requires three things: (i) the effect of extreme 
heat on economic growth; (ii) anthropogenic changes in extreme heat; 
and (iii) continuous Gross Domestic Product per capita (GDPpc) 
data (see Materials and Methods). Our empirical model provides 
the first of these. To estimate the second, we use historical and natural 
climate model experiments from the sixth phase of the Coupled Model 
Intercomparison Project (CMIP6) (table S3) (55, 56) to calculate 
“counterfactual” Tx5d. To ensure the availability of continuous 
GDPpc data to meet the third criterion, we use a statistical model to 
infer regional GDPpc time series over 1992–2013 where they are not 
currently available (see Materials and Methods).

Anthropogenic warming has increased the frequency and inten-
sity of extreme heat events globally, but the spatial pattern is hetero-
geneous, increasing most strongly in the tropics (Fig. 2). Globally, 
regional Tx5d values average 0.77°C more than they would have 
without warming over 1992–2013, with increases of more than 1°C 
in much of the tropics but less than 0.5  in the United States and 
Europe (Fig. 2A). The probability of extreme Tx5d values (the 90th 
percentile in each region calculated from the counterfactual time 
series) has also substantially increased, with probabilities rising by 
13 p.p. across regions, on average, and even more intensely across 
South America, Africa, and the Middle East (Fig. 2B). In contrast, 
the probabilities of 90th percentile Tx5d values have risen less than 
5 p.p. or even decreased in much of the midlatitudes. The spatial 
pattern of anthropogenic extreme heat thus coincides with both the 
stronger economic effect of extreme heat in the tropics and the lower 
incomes there, making tropical regions particularly vulnerable to 
losses from human-caused heat extremes.

Economic recovery from extreme heat
Quantifying the total economic output change attributable to an-
thropogenic extreme heat requires knowledge of whether regions 
recover from extreme heat and how long this recovery takes. If 
extreme heat affects income levels, but not growth, then economies 
will “catch up” following a heat wave, recovering to their previous 
income trajectory. Destroyed crops may be resown in the time after 
a heat wave, for example, and investment may flow into damaged 

areas (57). If, instead, extreme heat affects the underlying ability of 
the economy to grow, then damages could compound over the long 
run (58), permanently altering a region’s income trajectory. Permanent 
growth effects can generate large uncertainties when projected into 
the future (48), which means empirically testing the persistence of 
the effect of extreme heat is a critical task in climate damage calcula-
tions. Hence, we estimate a distributed lag version of our empirical 
model, which allows us to track the persistence of the impacts of a heat 
wave in the years after it occurs (see the Supplementary Materials).

The effect of extreme heat intensifies in the first year after the 
event and can persist for an additional year, before becoming indis-
tinguishable from zero in the second or third year after the event 
(Fig. 3A and fig. S6). In cold regions (e.g., annual average tempera-
tures of 5°C), the positive effect of extreme heat converges to zero in 
the second year after the event and even becomes negative after that, 
although these negative effects are not statistically significant (Fig. 3A, 
blue lines). In warm regions (e.g., 25°C), the cumulative effect of 
extreme heat nearly doubles in the year following the event but con-
verges to zero in the two years after that (Fig. 3A, red lines), suggesting 
a delayed rebound effect. Specifying an autoregressive distributed 
lag model with up to four autoregressive terms, following recent work 
(32, 57), yields very similar results (fig. S7).

These dynamics are characteristic of a prolonged, multiyear level 
effect, as regions that were harmed can rebuild damaged capital or 
resume previous productivity in the time after the heat wave (Fig. 3B). 
However, the delay of several years means that regions lose or gain 
multiple years of income in response to a heat wave (Fig. 3C). Even 
if regions return to their original income trajectory after a heat wave, 
there remains a gap between their actual income and the income they 
would have experienced without the heat wave (Fig. 3C). Therefore, 
while individual heat extremes do not permanently affect economic 
growth, repeated extreme heat events might generate tangible long-
term income changes.

Global economic effects of anthropogenic extreme heat
To assess the economic impacts of anthropogenic changes in ex-
treme heat, we apply the distributed lag model coefficients (Fig. 3A) 
to observed and counterfactual Tx5d values. We also use observed 
and counterfactual average temperatures in this calculation, mean-
ing that we incorporate both changes in extreme heat and in the 
underlying average temperatures that shape the marginal effect of 

Fig. 2. Anthropogenic changes in extreme heat. (A) Ensemble mean change in each region’s average Tx5d value between the observed and counterfactual climates 
estimated using CMIP6 climate models. (B) Ensemble mean change in the probability of each region’s counterfactual 90th percentile Tx5d value between the observed 
and counterfactual climates. Increases in both quantities imply that the values are higher in the observed climates than in the counterfactual climate. Ensemble mean 
values are calculated by first averaging over individual realizations within models and then averaging across models. Values are calculated over 1992–2013 to overlap 
with the period over which the damages calculations are performed.
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extreme heat (see the Supplementary Materials). The result is a time 
series of the change in economic growth in each subnational region 
due to anthropogenic changes in Tx5d over 1992–2013. These time 
series can be calculated for all regions, even those without GDPpc 
data, since they only depend on the region’s observed and counter-
factual Tx5d and average temperature values.

These growth changes allow us to calculate time series of counter-
factual regional GDPpc (29). Problematically, there are many sub-
national regions, especially in Africa and Southeast Asia, where 
regional GDPpc data are missing (hatched regions in Fig. 1B). To 
address this data gap, we use a simple statistical model to downscale 
country-level GDPpc to generate continuous time series of regional 
GDPpc (see Materials and Methods). We predict regional GDPpc 
using country-level GDPpc and regional nighttime luminosity, two 
predictors that have been previously shown to effectively predict local 
economic output (59–61). Our model skillfully reproduces regional 
GDPpc in our sample (R2 = 0.895; fig. S8). K-fold cross-validation 
tests demonstrate that country-level GDPpc and regional nighttime 
luminosity have low out-of-sample prediction error and outperform 
models that include additional predictors such as regional area, 
population, or crop yields (fig. S9).

We then apply the growth change values calculated from the cli-
mate model simulations to generate counterfactual regional GDPpc. 
The difference between observed and counterfactual GDPpc rep-
resents the effect of anthropogenic extreme heat (see Materials and 
Methods). To quantify uncertainty in this procedure, we perform a 
Monte Carlo analysis, resampling uncertainty from the econometric 
model, the climate models, variability from the statistical model 
used to predict regional GDPpc, and residual uncertainty in regional 
GDPpc (see Materials and Methods).

Anthropogenic changes to extreme heat thus far have primarily 
harmed tropical regions (Fig. 4A). GDPpc is >5% per year lower than 
it would have been without anthropogenic effects on extreme heat in 
tropical countries such as Brazil, Venezuela, and Mali. In high-latitude 
nations such as Canada and Finland, anthropogenic extreme heat 
changes have depressed GDPpc by ~1% per year. While the damages we 
find here are smaller than previous estimates using average temperature 

alone (29), they are economically significant: cumulative losses over 
1992–2013 total $39 billion (2010-equivalent dollars) in the average 
region in Brazil, more than half of the 2010 GDP in the average 
Brazilian region, and $6.5 billion in the average Indonesian region, 
>44% of the 2010 GDP in the average Indonesian region (Fig. 4B). 
Many high-income countries such as the United States have lost 
relatively little in relative terms but tens of billions in absolute terms 
due to their large economies. These effects are smaller than those 
found by Diffenbaugh and Burke (29) from annual mean tempera-
ture but are comparable to those found by Miller et al. (23) projecting 
future losses from heat waves (although Miller et al. focus primarily 
on agricultural output).

These region-level losses aggregate into a clear global picture: 
Cumulative global losses due to extreme heat average more than 
$16 trillion in 2013 (Fig. 4C). On the basis of our uncertainty analy-
sis and Intergovernmental Panel on Climate Change uncertainty ter-
minology (62), it is virtually certain that the cumulative global effects of 
extreme heat fall between losses of $65 trillion and gains of $16 trillion, 
very likely that they fall between losses of $43 trillion and gains of 
$1.1 trillion, and likely that they fall between losses of $29.3 trillion 
and $5 trillion (Fig. 4C).

Despite the clear signal of extreme heat in global income, the 
global picture belies substantial inequalities in the magnitude of 
damages at the regional level (Fig. 4, D and E). Regions with greater 
income per capita are more likely to experience benefits or limited 
damages from human-caused changes in heat extremes, while regions 
with lower income per capita experience greater relative damages 
(Fig. 4D). For example, regions in the lowest income decile have 
experienced losses of 6.7% of GDPpc per year, compared to 1.5% in 
the top income decile. Moreover, while our Monte Carlo analysis 
(see Materials and Methods) highlights substantial uncertainty in 
the total global effect of extreme heat (Fig. 4C), uncertainty in indi-
vidual regions is often low (Fig. 4D). In more than half of regions, 
primarily located in the tropics, more than 90% of Monte Carlo 
simulations result in economic losses rather than benefits. In the lower 
five income deciles, even the 99% range does not encompass zero 
(Fig. 4D). Thus, even in regions where uncertainty about observed 

Fig. 3. Evolution of the growth response to extreme heat intensity. (A) Distributed lag coefficients for two example regions, one with an annual average temperature 
of 25°C (red) and one with an annual average temperature of 5°C (blue). Dots show averages, and bars show 95% confidence intervals from bootstrap resampling (see 
Materials and Methods). (B) Simulated response of annual GDPpc growth in a constant 3% growth baseline scenario (dashed line) and a heat wave scenario in a warm 
region (solid line). (C) Simulated response of annual GDPpc expressed as income change in a constant 3% growth baseline scenario (dashed line) and a heat wave scenario 
in a warm region (solid line). Shaded red area denotes the difference between the baseline and heat wave scenarios, representing the income lost due to the heat wave. 
Annotations in (B) and (C) represent the initial constant-growth period (1), the period in which growth declines because of the heat wave (2), the period in which growth 
rebounds and increases relative to the initial period (3), and the period in which growth stabilizes back to its initial rate (4).
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economic output is high, we can be virtually certain that this output 
has been reduced by anthropogenic increases in extreme heat.

Poorer regions have higher baseline temperatures and lower 
temperature variability, so those regions both experience the signal 
of extreme heat from warming first (5–7) and suffer most when ex-
treme heat increases. Previous work has tied climate change to in-
creased global economic inequality (29), and our results strengthen 
these findings. However, the inequality of climate change extends to 
its causes, not just its effects. Rich countries that experience limited 
damages are also large emitters of fossil fuel carbon dioxide (CO2), 
making them primarily responsible for increases in global tempera-
tures and associated heat extremes (Fig. 4E). Given the strong rela-
tionship between cumulative CO2 emissions and changes in  local 
temperature extremes (63), high-emitting nations can be considered 
directly responsible for a large fraction of warming-induced heat 
extremes and, by extension, the income losses suffered by individual 
regions (64).

The spatial pattern of the damages we find is clearly different from 
the original pattern of the marginal effect of extremes (cf. Figs. 4A 
and 1B): High-latitude regions benefit from extreme heat in our 
empirical setting but have suffered losses by anthropogenic forced 

changes in extreme heat to date. The discrepancy occurs because our 
damages calculation incorporates changes in mean temperatures 
along with extremes, so climate change has modified the marginal 
effect of extremes alongside their magnitude and frequency. Warm-
er annual mean temperatures make extremes more harmful (Fig. 1), 
so anthropogenic increases in average temperatures make extreme 
heat become damaging even where it originally appeared beneficial. 
Alternatively, if we hold average temperatures constant at their ob-
served values, then damages are substantially reduced in magnitude 
(2 to 4% GDPpc losses in tropical regions), and the spatial pattern 
more closely resembles the pattern of marginal effects in Fig. 1B (fig. S10).

Here, we focus primarily on the historical effects of extreme heat 
since its economic effect is unknown. Although climate change has 
myriad other impacts, specifically quantifying the effects of increased 
intensity in the hottest 5 days of the year allows decision-makers to 
weigh the benefits of adaptations focused on those few days. However, 
we also calculate damages from changes in average temperatures 
and variability to compare them to those from changes in extremes 
(see the Supplementary Materials). Historical changes in average 
temperatures have caused uniform losses globally, with greater mag-
nitudes than the losses from extreme heat (fig. S11). This is because 

Fig. 4. Unequal economic effects of anthropogenic changes to extreme heat intensity. (A) Average annual change in regional GDPpc due to anthropogenic changes 
in Tx5d intensity over 1992–2013. (B) Cumulative 1992–2013 change in regional GDP in 2010 U.S. dollars due to anthropogenic changes in Tx5d intensity. (C) Cumulative 
global GDP change due to anthropogenic changes in extreme heat. Black line denotes the mean across 10,000 Monte Carlo simulations, and gray shading denotes the 
Intergovernmental Panel on Climate Change likely (66%), very likely (90%), and virtually certain (99%) ranges. (D) Average annual change in regional GDPpc due to an-
thropogenic extreme heat, binned by regional income deciles. Uncertainty visualization is the same as (C). (E) Relationship between each country’s 2010 GDPpc percentile 
and the regional-average effect of anthropogenic changes to extreme heat in that country. Colors denote each country’s fossil fuel CO2 (FF-CO2) emissions anomaly (dif-
ference between its log cumulative FF-CO2 emissions and global mean log cumulative FF-CO2 emissions). Color bar units are the log of gigatons of carbon (GtC). Black line 
is the least-squares regression line with the 95% confidence intervals shaded.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 06, 2022



Callahan and Mankin, Sci. Adv. 8, eadd3726 (2022)     28 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 12

the effects of average temperatures appear to persist (fig. S12), rather 
than being recovered similar to the effects of extreme heat, consistent 
with previous findings (27, 30). Human-caused changes in tempera-
ture variability are heterogeneous (65), and the effects of variability 
are recovered after 4 years (fig. S12). Hence, damages from anthro-
pogenic changes in variability are spatially complex and smaller 
than the damages from extreme or average temperatures (fig. S11). 
When combined, damages associated with all three variables appear 
primarily driven by changes in average temperatures (fig. S11). How-
ever, changes in extreme heat intensity account for almost 10% of 
the overall damages despite being based on <2% of days in the year, 
indicating that the hottest few days of the year have an outsize influ-
ence on the economic effects of warming.

DISCUSSION
Our work yields three key results: (i) Increased extreme heat intensity 
significantly decreases economic growth in relatively warm tropical 
regions and weakly affects it in relatively cool midlatitude regions; 
(ii) anthropogenic climate change has increased the frequency and 
intensity of these economically consequential heat extremes; and, there-
fore, (iii) the effects of climate change on extreme heat have ampli-
fied underlying inequality, disproportionately harming low-income, 
low-emitting regions, with major emitters shouldering primary 
responsibility for billions of dollars of losses in the tropics. These re-
sults show that the local and sectoral nonlinear effects of extreme heat 
integrate into a coherent and global macroeconomic response, help-
ing to close a key gap in climate-economic research. They also empha-
size that, while related, the costs of temperature extremes are distinct 
from the costs of average temperatures and temperature variability. 
Hence, the true economic costs of temperature changes depend on which 
moment of the temperature distribution an analysis considers.

These results complement and extend existing work that shows 
the negative economic effects of heat exposure. Miller et al. (23) showed 
that consecutive hot days exceeding location-specific thresholds 
weakly reduce growth in country-level overall GDP and strongly 
reduce growth in country-level agricultural GDP and that these 
effects are stronger in warmer years. Our work is consistent with 
theirs, showing negative effects of multiday periods of extreme heat 
on economic growth. However, two distinctions between our work 
and theirs are worth noting. First, we identify a stronger signal in 
overall GDP growth because we account for the subnational spatial 
scale of extreme heat, rather than aggregating to the country scale. 
Second, while the index designed by Miller et al. (23) usefully cap-
tures cumulative short-term exposure to extreme heat, it relies on 
user-defined location-specific thresholds and produces discontinu-
ities directly above and below those thresholds. Our work extends 
theirs by showing a strong effect of extreme heat with a widely used 
and transparent index of heat intensity.

A complementary approach to measuring extreme heat is to count 
days falling into a set of temperature bins, which also reveals nega-
tive effects of extreme heat (21, 25, 30). However, existing implement-
ations of the binning approach specify absolute temperature bins, 
which do not account for variation in what counts as “extreme.” A 
day that is mild by the standards of Nigeria may be extreme by the 
standards of Norway. Acclimation to the local temperature distri-
bution has been shown to manifest in, for example, the temperature- 
mortality relationship (9) but is not considered by most implementations 
of the binning approach. Using the temperature of the hottest heat 

wave in each region provides a more flexible way to measure the 
effect of temperatures that are extreme relative to the local climate.

Last, the spatial pattern of damages we find is similar to other studies 
that have focused on annual mean temperature, such as Burke et al. 
(27) and Diffenbaugh and Burke (29). These studies have generally 
found net benefits at high latitudes from mean warming instead of 
weaker losses, as we find here with extremes (Fig. 4A). However, a 
consistent result across studies is that tropical regions will suffer most 
because of their high baseline temperatures. Thus, an important in-
sight from our work that extends previous analyses is that some of 
the economic damages arising from changes in average temperatures 
are actually due to increases in the intensity of the hottest few days 
in each year.

Our results are subject to two key caveats. First, we focus on 
extreme heat intensity as opposed to the potentially distinct effects 
of extreme heat frequency or duration. Second, there are considerable 
data limitations in the world’s hottest and lowest income regions.

First, Tx5d measures the temperature of the hottest 5-day heat 
wave in each year but does not explicitly incorporate information 
about additional, less hot periods of extreme heat or interannual varia-
tions in heat wave duration. Measuring the integrated effect of all 
periods of extreme heat within a given year would require a temperature 
threshold for what counts as extreme. While emerging work has begun 
to examine the effect of crossing location-specific thresholds in the con-
text of extreme temperature (23) and rainfall (50), the choice of threshold 
is generally arbitrary and poorly constrained in the context of macro-
economic growth, so we focus on the peak intensity of extreme heat 
due to its simplicity and clarity. Multiple periods of extreme heat 
may have compounding and nonlinear effects (23), so incorporat-
ing additional periods would likely enhance the effect of extreme 
heat. Hence, our results should be viewed as conservative. In addi-
tion, Tx5d and similar metrics measuring the hottest several-day period 
in each year have been widely used in the physical science literature 
on extreme heat (1, 11, 43–45), making them an appropriate metric 
for use in integrating physical climate projections of anthropogenic 
extreme heat with econometric estimates of its macroeconomic effect.

Second, our analysis is limited by missing data in many of the 
world’s poorest and hottest regions, such as Africa (Fig. 1A). Sub-
national economic data are limited in these regions, but using sub-
national data to measure the effect of extreme heat is an important 
contribution of our analysis, since heat waves occur at subnational 
spatial scales (42). As a result, our estimates of the effect of extreme 
heat in very hot regions go beyond the support of the data. However, 
our estimation sample covers 66% of the world’s population, includes 
regions with annual temperatures up to 30.3°C, close to the maxi-
mum annual mean temperature of 31.7°C, and encompasses hot 
regions in countries such as Brazil, Indonesia, and India (Fig. 1A). 
The key assumption underlying our extrapolation procedure is that 
the underlying average temperature controls the marginal effect of 
extreme heat globally. This assumption is supported both by multi-
ple functional forms testing alternative metrics of heterogeneity and by 
existing work demonstrating the role of underlying baseline tem-
peratures in shaping the effect of rising temperatures (9, 27, 66). As 
additional data in regions such as Africa and Southeast Asia become 
available, they will allow us to further constrain the mechanisms 
that shape the economic effect of extreme heat globally.

Data limitations also make calculating accumulated economic 
damages difficult, which motivated our work to generate continu-
ous, globally representative subnational income data (see Materials 
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and Methods). While these results are subject to further refinement 
as the science of measuring local well-being improves (67), our use 
of nighttime luminosity data is consistent with an emerging literature 
that uses these data to infer local economic production (59–61). In 
addition, our uncertainty propagation analysis (see Materials and 
Methods) allows us to responsibly account for the uncertainties in-
troduced by each of these limitations. More broadly, allowing data 
limitations to prevent an analysis of economic damages from extreme 
heat in the world’s hottest and poorest regions would be a disservice 
to the people in these regions, who are simultaneously most vulnerable 
to climate change, least culpable for it, and least well-represented by 
existing data (17, 18).

Despite these caveats, our findings have important adaptation im-
plications: Targeting resources at heat resilience and early-warning 
capabilities for only a few days per year may yield disproportionate 
economic benefits. These targeted benefits were not apparent in 
previous studies that have focused on annual mean temperatures. 
On one hand, many important infrastructural adaptations, such as 
air conditioning and expanded green spaces, could deliver major bene-
fits but would be installed year-round instead of being tailored to 
the few hottest days in each year (68). On the other hand, contingent 
and temporary adaptations such as converting public spaces into 
cooling centers, deploying public evaporative cooling systems, and 
expanding emergency service availability could yield disproportionate 
benefits relative to their cost if deployed specifically during the hot-
test few days of the year. In addition, expanded implementation of 
heat early warning systems such as was implemented in France after 
the 2003 heat wave (69) could allow people to take measures such as 
reducing nonessential electricity usage to avoid blackouts and avoiding 
outdoor activities when possible.

That warming has already increased the frequency and intensity 
of heat extremes is well known, but our results demonstrate the eco-
nomic costs of these events and their unequal global distribution. Our 
work therefore increases the urgency of both climate mitigation ef-
forts and investments focused on increasing the adaptive capacity of 
the poorest parts of the world for the hottest days of the year.

MATERIALS AND METHODS
Our analytical approach has five key steps (fig. S1): (i) estimate the 
effect of extreme heat on growth using empirical regression methods 
at the subnational level; (ii) use climate model simulations to calcu-
late counterfactual extreme heat time series for each region; (iii) use 
the empirical results along with the counterfactual heat wave data to 
calculate subnational economic growth changes due to anthropogenic 
changes in extreme heat; (iv) use country-level income data and 
regional nighttime luminosity data to generate continuous regional 
GDPpc time series; and (v) calculate regional income losses or benefits 
attributable to anthropogenic changes in extreme heat.

This approach allows us to estimate uncertainty introduced in 
each step of the analysis. When estimating individual parameters in 
the regression analysis and regional GDPpc prediction procedure, 
we bootstrap (uniform sampling with replacement) to estimate sampling 
uncertainty in the parameters. We also sample the residual uncertainty 
in regional GDPpc time series alongside parametric uncertainty in 
the statistical model used to predict regional GDPpc. We use multiple 
climate models, several with multiple realizations, to sample uncer-
tainty in anthropogenic changes to extreme heat. Last, when calcu-
lating regional losses or benefits, we use a Monte Carlo approach 

that samples from each of these individual uncertainty distributions 
to propagate each source of uncertainty through the analysis. Details 
are provided in the individual sections below.

Data
Historical climate data come from the ERA5 reanalysis (70), from 
which we calculate annual mean temperature, temperature variability, 
the annual cycle, extreme heat (see the “Extreme temperature metric” 
section), and accumulated precipitation. We spatially average these 
data to the first subnational administrative level (or “region,” such 
as states in the United States), weighting by population using year 
2000 population data from the Gridded Population of the World (71). 
Population weighting is used to ensure that the climate data are ag-
gregated in a way that reflects human exposure to climate hazards (27).

We merge our data with 1979–2016 regional GDPpc data assem-
bled by Kalkuhl and Wenz (31) and provided by Kotz et al. (33). 
These data are a sample of opportunity derived primarily from na-
tional accounts data and yearbooks (31) and therefore reflect global 
inequities in institutional capacity, but they substantially advance 
our ability to track the subnational effects of climate extremes and 
are thus an important tool for our analysis. We correct for inflation 
by normalizing all data to 2010 price levels using the U.S. GDP de-
flator. Economic growth in a year is defined as the fractional difference 
in GDPpc relative to the previous year. The sample contains data 
from 1368 regions, each with between 4 and 38 years of data, for a 
total of 26,918 observations. Country-level GDPpc data are drawn 
from the World Bank World Development Indicators (72).

Climate models come from the CMIP6 (55). We use daily maximum 
temperature (“tasmax_day”), daily average temperature (“tas_day”), 
and monthly average temperature (“tas_Amon”) data from the 
“historical,” “historical-nat” (hereafter “natural”), and “ssp245” ex-
periments (56, 73) for all available realizations of eight models, for a 
total of 80 simulations (table S3). The natural experiments end in 
2020, while the historical simulations end in 2014. Following the 
Detection and Attribution Model Intercomparison Project experi-
mental protocol (56), we splice each historical simulation with the 
first 5 years of the corresponding ssp245 simulation to extend the 
historical simulations to 2020. This allows us to use a centered run-
ning mean through 2013 to smooth the data (see the Supplementary 
Materials). Model output is regridded to a common 1°-by-1° grid be-
fore analysis using bilinear interpolation from the “xarray” package in 
Python (74). Last, fossil fuel CO2 emissions data come from the Com-
munity Emissions Data System (75), and year 2000 gridded crop yields 
for maize, wheat, rice, and soybeans come from EarthStat (76).

Extreme temperature metric
There are many ways to measure extreme heat, and a wide array of 
heat wave metrics has been proposed (47), each with benefits and 
drawbacks. Many studies calculate extreme heat relative to climato-
logical baselines based on percentile-based thresholds that can vary 
on the basis of the location and time of year (1, 46, 47). However, 
while critical thresholds for extreme heat are well known for sectors 
such as agriculture in the United States (22, 66), they are not neces-
sarily known for aggregate economic production. Thus, while threshold- 
based extreme heat indices may be useful for future research in the 
economic impacts of climate change (23, 50), the choice of thresh-
olds is generally arbitrary.

Hence, we choose to represent extreme heat with a more objec-
tive measure: the average daily maximum temperature of the hottest 
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5-day period in each year, denoted “Tx5d.” It is calculated by taking 
5-day running means of daily maximum temperature at each grid 
cell over the 1979–2016 period, temporally aggregating to the annual 
maximum, and then spatially aggregating by calculating regional 
population-weighted averages. We focus on Tx5d because it is both 
simple and geophysically meaningful, measuring the hottest multiple- 
day period experienced in a year. It is also similar to metrics used in 
climate modeling studies of record-breaking temperatures (1, 11, 44). 
Calculating the maximum temperatures across a 5-day period also 
ensures that our analysis captures uniquely damaging multiday periods 
of extreme heat (23). Moreover, using Tx5d ensures that we measure 
temperatures during the hottest parts of the year, whereas seasonally 
varying thresholds would treat relatively warm periods during winter 
or shoulder seasons as equivalent to the hottest summer heat waves.

Our empirical identification strategy (see “Econometric analysis” 
section) interacts Tx5d with annual average temperature to incor-
porate heterogeneity in the response regions have to extreme heat. 
Different regions with different climatological baseline temperatures 
may respond differently to extreme heat. For example, warm regions 
may invest in technologies such as air conditioning due to their 
greater exposure to high temperatures (9). On the other hand, higher 
climatological temperatures mean that extreme heat may be more 
likely to cross physiological thresholds that are uniquely harmful to 
humans (3, 8). Our analytical strategy therefore incorporates both 
an absolute metric of high temperature extremes and the relative 
ability of different populations in different regions to manage the 
risks of those high temperatures.

We calculate Tx5d values at grid cells and then average across 
regions. This strategy may average Tx5d values from different parts 
of the year within a single region. On the basis of analysis presented 
in detail in the Supplementary Material, this does not pose a prob-
lem for our analysis (fig. S13).

Last, although we focus on the simple and transparent Tx5d 
metric in our main analysis, we conduct a supplementary analysis 
where we recalculate extreme heat as deviations from location- and 
month-specific indices. This strategy allows us to simultaneously 
incorporate the intensity, frequency, and duration of extreme heat 
in one index, although comes with substantial costs in terms of 
complexity and arbitrary researcher choices. We find similar results 
as in our main analysis (see the Supplementary Materials), providing 
confidence that Tx5d is capturing the most impactful and damaging 
instances of extreme heat historically (fig. S14).

Econometric analysis
We use panel regression with fixed effects to model economic growth 
as a function of extreme high temperatures, temperature variability, 
and mean temperature, along with region-specific time-invariant 
characteristics and common global time-varying factors. This strategy 
separates extreme heat from other factors that might affect economic 
growth, allowing us to isolate the causal effect of heat intensity on 
the hottest days of the year. We estimate the following model for 
growth g in region i and year t with ordinary least squares

   g  it   =    1    T  it   +    2    T it  
2   +    1   T  x  it   +    2   T   x  it     *   T  it   +    1    V  it   +    2     V  it     *   A  i   +  

                     P  it   +    i   +    t   +  ϵ  it                   (1)

Here, T refers to annual mean temperature, Tx refers to Tx5d, V 
refers to temperature variability, A refers to the average annual cycle 
of temperature, and P refers to annual accumulated precipitation. 

Variability in each year is defined as the average within- month SD 
of daily mean temperatures, with the data drawn from Kotz et al. 
(33). The annual cycle is defined as the climatological average within- 
year difference of the maximum and minimum monthly temperature, 
following Kotz et al. (33). Kotz et al. (33) showed that regions with 
larger annual cycles (i.e., greater seasonality) are less harmed by 
temperature variability, since they may be acclimated to greater swings 
in temperature. Regions with modest annual cycles are also regions 
with high temperatures (i.e., the tropics), so the damages associated 
with both extremes and variability fall disproportionately on low- 
income tropical regions (fig. S5). Other terms include , which is a 
region fixed effect that controls for time-invariant regional differ-
ences such as geography, and , which is a year fixed effect that 
controls for common global shocks and global trends in extreme 
temperatures. The identifying assumption for the coefficients of 
interest is that after controlling for these spatial and temporal aver-
ages, Tx5d is plausibly exogenous with respect to the other factors 
that affect economic growth. Interacting Tx5d with annual average 
temperature allows the effect of extremes to vary on the basis of the 
underlying climate in a region. Last, our inclusion of average tem-
peratures and temperature variability ensures that the effect of ex-
tremes we identify is independent of other parts of the temperature 
distribution (e.g., greater variability inducing more frequent crossing 
of extreme temperature thresholds).

To estimate sampling uncertainty in the regression coefficients, 
we estimate the parameters in Eq. 1 1000 times using a bootstrap 
resampling procedure, sampling with replacement from a uniform 
distribution of regions. Sampling by region—that is, keeping all years 
from a given region together to account for within-region auto-
correlation in growth—is analogous to clustering standard errors 
by region (28). We also test parametric standard errors clustered by 
country, which accounts for simultaneous spatial and temporal cor-
relation in growth, shown in table S1.

Year fixed effects may not sufficiently control for time-varying 
unobserved cofounders since these may be heterogeneous and not 
globally constant. Hence, we estimate an additional model where 
we add region-specific linear trends in growth to remove smoothly 
varying unobserved factors independently for each region, a com-
mon technique in the empirical climate-economy literature (27, 57). 
The results from this regression yield even stronger effects for Tx5d, 
indicating that our main results should be viewed as conservative 
(table S1). Last, to examine whether the effects of extreme tempera-
tures persist over time, we estimate a distributed lag version of the 
regression equation (see the Supplementary Materials).

Calculating regional growth changes from anthropogenic 
changes to extreme heat
To isolate the contribution of anthropogenic warming to extreme 
temperatures, we calculate population-weighted Tx5d at the regional 
scale from the CMIP6 historical and natural simulations. Counter-
factual Tx5d values are calculated as the observed Tx5d time series 
minus the smoothed difference between the historical and natural 
simulations (see the Supplementary Materials).

We then apply the coefficients from the distributed lag regres-
sion model to the observed and counterfactual Tx5d time series. The 
difference between them represents the additional growth that would 
have occurred in the absence of human-induced changes in Tx5d. 
The result of this calculation is a region-scale time series of the change in 
economic growth, denoted g (eq. S6). Because this calculation only 
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requires climate data (i.e., the region’s average temperature and 
Tx5d), we are able to calculate this growth difference for all regions, 
even where observed growth data are not available. The hatching in 
Fig. 1B shows where these data are not available.

Predicting continuous regional income time series
Because many regions in our dataset do not contain continuous GDPpc 
data, we develop a simple and parsimonious statistical model for 
predicting regional GDPpc data in areas where it is not currently 
available. We emphasize that we do not apply our empirical regres-
sion approach to this constructed data, but only use it in the calcu-
lation of accumulated economic damages from warming.

The predictand of interest is regional GDPpc in each year. The 
two key predictors we use are country-level GDPpc and regional 
average nighttime luminosity (“nightlights”). Country-level GDPpc 
is useful for predicting global variation in regional income; regions 
in high-income countries likely have higher incomes than regions 
in low-income countries. We find that country GDPpc alone ex-
plains some 87% of variation in regional GDPpc in our sample (be-
cause these data are in per capita terms, regional population does 
not appear to provide additional explanatory value). Nightlights are 
an additional useful predictor for explaining within-country varia-
tion in income; regions with higher luminosity at night are likely 
regions with more economic activity (59–61). All of the following 
analysis is performed over 1992–2013, which is the longest time 
period over which the nightlights data are available.

Our main statistical model predicts log regional GDPpc in coun-
try c, region r, and year t using country-level GDPpc, regional average 
nightlights NL, and their interaction. The interaction term is in-
cluded because nightlights tend to saturate at high income levels, so 
their explanatory power lessens as income increases (61). We esti-
mate the following regression model using ordinary least squares

  lnGDPp  c  ctr   =    0   +    1   lnGDPp  c  ct   +    2   N  L  ctr   +   
                                               3   lnGDPp   c  ct     *  N  L  ctr   +  ϵ  ctr      (2)

All three parameters of interest (1, 2, and 3) are statistically sig-
nificant (P < 0.05) and are shown in table S4. The predicted values from 
this equation are shown in fig. S8. Uzbekistan and Kenya appear to be 
outliers, potentially due to errors in the country-level GDPpc data (77). 
When these countries are included, the predicted data explain ~87% 
of variation in the observed data; when they are dropped, the predicted 
data explain ~90% of variation in the observed data (fig. S8).

To estimate and propagate sampling uncertainty in the parame-
ters for this downscaling procedure, we bootstrap the Eq. 2 regres-
sion 1000 times, sampling from a uniform distribution of countries 
with replacement and using all years from a given country to pre-
serve country-level autocorrelation in income. In addition, for each 
iteration, we add a realization of random noise from a Gaussian dis-
tribution with mean zero and variance equal to the variance of the 
residuals from the statistical model. The result is 1000 realizations 
of GDPpc for each region-year pair that sample both parametric 
and residual uncertainty in this downscaling procedure. These reali-
zations are sampled as part of our wider Monte Carlo uncertainty 
analysis, discussed below.

We test the out-of-sample predictive power of this approach with 
a 10-fold cross-validation analysis. We split the data into 10 mutually 
exclusive training and testing datasets, splitting by country to preserve 
within-country correlations. We estimate the regression of interest 

for each training dataset and calculate the root mean squared 
prediction error for the testing dataset. The regressions tested include 
our main regression (Eq. 2) and alternative models with several sets 
of predictors: country-level GDPpc, regional yields of the four major 
crops (maize, wheat, rice, and soybeans) summed across crops and 
spatially averaged across regions, regional nightlights, regional area, 
and regional population. We test models that include each of these 
predictors alone, the combination of country- level GDPpc and each 
predictor independently, and a saturated model with all predictors. 
When nightlights and country-level GDPpc are included in the same 
model, they are interacted as described above.

All models that include country-level GDPpc have high out-of-
sample predictive power, with prediction errors of less than 7% of 
the average regional log GDPpc (fig. S9). The model with the smallest 
out-of-sample prediction error includes only country-level GDPpc 
and regional nightlights, which is why we use it as our main predic-
tion model. The low errors in this out-of-sample prediction procedure 
support our choice to infer GDPpc for regions where country-level 
data are available, but regional data are not.

To the best of our knowledge, our analysis is the first to produce 
a global sample of continuous GDPpc data at the regional level with 
an explicit treatment of parametric and residual uncertainty. Lessmann 
and Seidel (61) performed a similar analysis but did not use out-of-
sample cross-validation to inform their choice of statistical model 
and did not generate multiple realizations to sample uncertainty. 
We make these data available to the community, independent of the 
replication data for the rest of our analysis, at the following location: 
github.com/ccallahan45/Global_Subnational_Income/

Damages from historical climate change
The climate model analysis yields a time series of the change in growth 
due to anthropogenic changes in Tx5d for each region (g). We then 
add this growth change to the downscaled GDPpc time series for 
each region and reintegrate each region’s growth to calculate counter-
factual GDPpc (29). The effect of anthropogenic changes in extreme 
temperatures is calculated as the difference between the observed 
and counterfactual time series.

Uncertainty in damages is calculated using a Monte Carlo anal-
ysis (N = 10,000) to incorporate and propagate uncertainty at each 
step of the causal chain. The individual steps of the analysis yield un-
certainty distributions using multiple climate realizations or boot-
strapping (in the case of the econometric regression and income 
downscaling). Each Monte Carlo iteration calculates damages after 
sampling, with replacement, one value from each of these distributions: 
one of the 80 climate model realizations, one of the 1000 bootstrapped 
econometric regression coefficients, and one of the 1000 regional GDPpc 
time series realizations. When selecting the climate model realizations, 
we adjust the sampling probabilities so that models with more 
realizations are reduced in probability, to make each model equally 
likely to be sampled. The other samples are from uniform distributions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.add3726
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