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Zusammenfassung

In einer klassischen Betrachtung eines Festkörpers existieren zwei Phasen der Polar-
isierung: die ferroelektrische Phase und die paraelektrische Phase. Nach der Landau
Theorie lassen sich die Phasen durch unterschiedliche Potentiale beschreiben: die
paraelektrische Phase kann durch eine Parabel dargestellt werden, während die fer-
roelektrische Phase durch ein

”
double-well“ Potential abgebildet werden kann.

Werden die Phasen der Polarisierung aus quantenmechanischer Sicht betrachtet,
existiert aber noch eine dritte, weniger bekannte Phase: die quantenparaelektrische.
Bei dieser wird der Übergang vom para- zum ferroelektrischen Zustand aufgrund von
Quantenfluktuationen zwischen den Polarisierungszuständen unterdrückt. Es tritt ein

”
double-well“ Potential auf und es ergibt sich eine Delokalisierung der Aufenthalts-
wahrscheinlichkeit des Grundzustands aufgrund von Tunnelwahrscheinlichkeiten. Im
Vergleich dazu ergibt sich im

”
double-well“ Potential der ferroelektrischen Phase eine

Lokalisierung der Aufenthaltswahrscheinlichkeit des Grundzustands in einem der bei-
den Minima des Potentials.
Eine der bekanntesten quantenparaelektrischen Kristallstrukturen ist der Perowskit-
kristall Strontiumtitanat (SrTiO3). Bei Raumtemperatur befindet sich der Kristall
in einer kubischen Struktur. Dabei nehmen die Strontiumionen die Eckplätze ein,
während sich das Titanion in der Mitte der Einheitszelle befindet. Wie bei allen
Perowskiten bilden die Sauerstoffionen eine oktaedrische Form um das zentrale Ion.
Ausgehend von dieser Struktur wird in dieser Arbeit mit einer Methode, entwickelt
von T. Esswein und N. Spaldin [1], gearbeitet, welche es ermöglicht, den quanten-
paraelektrischen Charakter unter anderem von SrTiO3 zu berechnen. Die Methode
basiert auf Dichtefunktionaltheorie und der Verwendung der Einteilchen Schrödinger-
Gleichung.
Der Hauptfokus dieser Arbeit liegt auf Doppelperowskiten, welche sich aus zwei ein-
fachen Perowskitstrukturen zusammensetzen. Viele Eigenschaften von einfachen Pe-
rowskiten lassen sich auf Doppelperowskite übertragen, wie ihre Anwendung im Pho-
tovoltaikbereich. In dieser Arbeit wird der Frage nachgegangen, ob sich das Phänomen
der Quantenparaelektrizität auch in Doppelperowskiten wiederfindet.
Dafür wurde die Methode, mit welcher der quantenparaelektrischen Charakter von
Strontiumtitanat untersucht werden konnte, auf 77 Doppelperowskite mit derselben
elektronischen Konfiguration wie SrTiO3 angewandt. Das Ergebnis führte auf zwei
mögliche Kandidaten für quantenparaelektrische Doppelperowskite. Zudem wurden
Hinweise auf einen geometrischen Ursprung von Quantenparaelektrizität gefunden.
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Abstract

In a classical view of a solid, there exist two phases of polarization: the ferroelectric
phase and the paraelectric phase. These phases can be described by different poten-
tials, using Landau theory. The paraelectric phase can be described using a parabolic
potential, whereas the ferroelectric phase can be depicted as a double-well potential.
If these phases of polarization are viewed from a quantum mechanical point of view,
there exists a third, less known phase: the quantum paraelectric one. In this phase
the material is on the verge of transitioning to a ferroelectric state, however this tran-
sition is suppressed by quantum fluctuations between the polarized states. If this
phase is described using a double-well potential, a delocalization of the probability
density of the ground state across the whole potential would arise. In contrast, the
probability density of a ferroelectric phase would result in a clear localization in one
of the minima.
One of the best known quantum paraelectric materials is strontium titanate. At
room temperature this perovskite has a cubic structure, where the strontium ions
take the corner spaces, while the oxygen ions form an octahedral shape around the
central titanium ion. Based on this structure, this thesis applies a method suggested
by T. Esswein and N. Spaldin [1], which makes it possible to calculate the quantum
paraelectric character of e.g. strontium titanate. This method is based on density
functional theory and the one-particle Schrödinger equation.
The main focus of the thesis is on double perovskites, which consist of two simple
perovskite structures combined. Many applications can be transferred from simple
to double perovskites, like their use in photovoltaic technology. This thesis investi-
gates whether the phenomenon of quantum paraelectricity can be found in double
perovskites.
For this purpose 77 double perovskites of the same electronic configuration as stron-
tium titanate were examined using the same method as for strontium titanate. The
results identified two potential candidates for quantum paraelectric materials. Addi-
tionally, indications of a geometric origin of quantum paraelectricity were found.
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Chapter 1

Introduction

In recent years perovskites have become more and more important: they are one of the
most versatile families of crystals with a very large collection of properties. Among
other things, they show metallic, insulating and semiconducting behaviour, but also
superconducting, ferromagnetic or ferroelectric phases can be found [2]. Perovskites
are central to many areas of current research. One example is their application in
solar cells: they already achieve efficiencies of over 25%, despite having only been re-
searched for about a decade. Laboratory-made small solar cells are able to match the
efficiency of monocrystalline silicon solar cells, which currently dominate the global
photovoltaic technology market [3].
The structure of all perovskites is the same: they consist of molecules of the structure
ABX3, where A and B are cations and X is an anion. The B-cation of the structure is
located in the center of the unit cell, while the X-anions are arranged in an octahedral
shape around the central cation. The A-cation is located on the edges of the unit cell.
The general perovskite structure is illustrated by the example of strontium titanate
in fig. 1.1.
While this composition is found in all perovskites, the perovskite structures can differ
in the degree of tilting of the octahedron and therefore a distortion of the structure,
which can result in different stability behaviors of the compounds. These stability
behaviors can be described by geometric factors. For a simple perovskite of the ABX3

Figure 1.1: Left: Strontium titanate (SrTiO3) with oxygen anions (red) in an oc-
tahedral form around the titanium cation (green). The strontium cations (blue) are
located at the edges of the cubic cell. Here the bonds of the structure are shown.
Right: Oxygen octahedra (blue) with titanium ion (green) in the middle in strontium
titanate. [4]
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2 CHAPTER 1. INTRODUCTION

Figure 1.2: Stability region of perovskites (blue), which is dependent on the tolerance
factor as well as the octahedral factor. It is constrained by several limitations, like
the chemical limits (CL1, CL2), octahedral limits (OL), stretch limits (SL), secondary
stretch limits (SSL1, SSL2), and tilt limits (TL1, TL2). With this region it is possible
to predict the stability of a random perovskite. [2] (fig. 1.E)

structure they are given by the tolerance factor ts and the octahedral factor µ, which
are dependent on the ionic radii of the ions [2]. Together, these two factors define
a region in parameter space, in which perovskite structures are stable, as illustrated
in fig. 1.2. The dashed lines in fig. 1.2 indicate various limitations, such as chemi-
cal limits (CL1, CL2), octahedral limits (OL), stretch limits (SL), secondary stretch
limits (SSL1, SSL2), and tilt limits (TL1, TL2). The octahedral factor provides de-
tail on the ration of the size of the octahedral anions surrounding the central cation.
The tolerance factor gives information about in which structural phase a perovskite
is present. For an idealized cubic perovskite the tolerance factor should equal one.
However, distortions in the structure lead to a different tolerance factor [5]. If the
tolerance factor is smaller than one, the three different-sized ions are ”packed” in such
a way that they do not occupy the entire space, leaving gaps. This occurs because the
A-site ions are too small to occupy the full space. The octahedron can rotate slightly,
leading to deviations from the cubic structure. These factors are useful tools when
researching perovskites.
Besides simple perovskite structures, there also exist double perovskites, composed of
two simple perovskites. They have a crystal structure of the form AA’BB’X6, where
A and A’ are alkaline earth and/or rare earth metals and B and B’ are transition
metals [6]. An example for a double perovskite is Sr2LaNbO6, depicted in fig. 1.3,
with the central niobium ion (yellow), lanthanum ions (purple) at the corners of the
structure, strontium ions (green), and the oxygen ions (red) arranged octahedrally
around the corner atoms and the central atom. As with simple perovskite structures,
a tolerance factor and an octahedral factor can be determined for double perovskites.
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Figure 1.3: Double Perovskite Structure of Sr2LaNbO6 with lanthanum ions (purple),
strontium ions (green), niobium ion (yellow), and oxygen ions (red). [4]

However, since there now exist two different cations, B and B’, there are two octa-
hedral parameters to be taken into account: the average octahedral factor µ̄ and the
octahedral mismatch ∆µ, which, similar to simple perovskite structures, characterize
the stability together with the tolerance factor t.
The reason why double perovskites are highly interesting structures can be illustrated
in analogy to simple perovskite structures on the example of solar cell research: while
simple perovskite solar cells are attractive due to their low-cost production and high
efficiency, they face challenges such as material toxicity, device hysteresis, and stabil-
ity issues [7]. Double perovskites present a promising solution: they can be fabricated
from lead-free materials like halides and oxides, thereby enhancing their environmental
friendliness. Moreover, combining two perovskite structures into a double perovskite
often results in improved stability, optoelectronic properties, and thermal conductiv-
ity [8].
Perovskites are therefore an extremely interesting group of compounds. Besides their
applications in solar cells, they also offer other remarkable properties. A particu-
larly intriguing example is strontium titanate. This material is classified as quantum
paraelectric, meaning that it is near the transition to a ferroelectric state but does
not become ferroelectric at low temperatures due to quantum mechanical fluctuations
between two opposite polarization states. This unique property makes strontium ti-
tanate an important subject of study in solid state physics and materials science.

Many characteristics of simple perovskite structures, like the application in the photo-
voltaic sector, can thus be transferred to and partially optimized in double perovskites.
But what about the phenomenon of quantum paraelectricity?
This thesis investigates whether quantum paraelectricity can occur in double per-
ovskites. To address this question, a method proposed by T. Esswein and N. Spaldin
[1] was used to identify the quantum paraelectric character of strontium titanate.
First the numerical code is verified by comparison with the values for strontium ti-
tanate from [1]. This method was then applied to a bulk of 77 double perovskites
of the same electronic configuration as strontium titanate and the results were evalu-
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ated. Additionally, the question, whether there exists a geometric origin of quantum
paraelectricity in double perovskites, was pursued.



Chapter 2

Density Functional Theory (DFT)

2.1 Basics of the Density Functional Theory

Density Functional Theory is a way of solving the non-relativistic, time-independent
Schrödinger equation. It is the most commonly used method to investigate ground
state properties of any material. DFT calculations form the basis of this thesis.
A brief overview of the most important principles of DFT is given in this chapter.
The derivations in this chapter follow ”Materials Modeling using Density Functional
Theory” by Feliciano Giustino [9].

2.1.1 Many Body Hamiltonian

Every type of matter, whether solid or molecule, can be broken down to the fact that
it can be composed of a finite number of electrons and nuclei. This system can be
described by a many-body wave function Ψs, which depends on the positions R⃗I of
the nuclei and their spins ΣI , as well as the positions r⃗i and spins σi of the electrons.
The s in the index of the wave function describes the corresponding energy eigenstate.
I = 1, ..., Nn and i = 1, ..., N applies, where Nn is the total number of nuclei and N is
the total number of electrons. In the following, however, the electronic and nucleon
spin is neglected. The general wave function would still depend on the time, but
since the interest is usually on the stationary state when calculating the ground state
properties of a system, the wave function can be reduced to Ψs(r, R).
The wave function obeys the time-independent Schrödinger equation

ĤΨs = EsΨs ,

with the energy levels Es of the system. The Hamilton operator of the system is
composed of the kinetic energy of the electron T̂e, the kinetic energy of the nucleons
T̂n, as well as the potential energy resulting from the Coulomb interaction between
the electrons V̂ee, the Coulomb interaction between the nucleons themselves V̂nn and
the Coulomb interaction between the electrons and the nucleons V̂en. This results in
[9]

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂en . (2.1)

5



6 CHAPTER 2. DENSITY FUNCTIONAL THEORY (DFT)

Hartree Atomic Units

To simplify the expressions for the operators, the Hartree Atomic Units are used for
the following equations. These are defined via

ℏ = me = e2 =
1

4πϵ0
= 1 ,

where ℏ is the reduced Planck constant, me the electron mass, e the electron charge
and ϵ0 the vacuum permittivity. This has the advantage that the Coulomb interaction
between a particle at location r⃗ and another particle at location r⃗ ′ is reduced in SI
units as follows

e2

4πϵ0|r⃗ − r⃗ ′|
7→ 1

|r⃗ − r⃗ ′|
The individual operators from eq. (2.1) for a system of N electrons and Nn nucleons
can now be written as

Ĥ = −
N∑
i

∇2
i

2︸ ︷︷ ︸
T̂e

−
Nn∑
I

∇2
I

2MI︸ ︷︷ ︸
T̂n

+
1

2

N∑
i ̸=j

1

|ˆ⃗ri − ˆ⃗rj|︸ ︷︷ ︸
V̂ee

+
1

2

Nn∑
I ̸=J

ZIZJ

| ˆ⃗RI −
ˆ⃗
RJ |︸ ︷︷ ︸

V̂nn

−
N∑
i

Nn∑
I

ZI

|ˆ⃗ri −
ˆ⃗
RI |︸ ︷︷ ︸

V̂en

,

with i, j as an index referring to the electrons and I, J to the nuclei. Thus MI is the
mass of the I-th ion, ∇I and ∇i are respectively the gradient for the nuclei at R⃗I and
the electron at r⃗i. ZI is the atomic number of the I-th ion.
With this Hamiltonian, the stationary Schrödinger equation 2.1.1 can be solved ex-
actly for simple systems, such as a free electron in a vacuum or the hydrogen atom.
If the system contains more components, such as molecules or crystalline solids, the
solution can only be approximated by numerical simulations.

2.1.2 Hohenberg Kohn Theorems

One of the most important foundations for density functional theory was presented by
Hohenberg and Kohn in 1964 in the form of two theorems. The first theorem states
that [10]

The external potential V̂en is a unique functional of the ground state
electron density n(r⃗).

This theorem implies that for any given external potential V̂en there can exist
exactly one electron density n(r⃗) and, on the other hand, for a given density n(r⃗)
there can exist only one external potential V̂en. Accordingly, two systems with the
same number of electrons but two different external potentials also have different
electron densities.
For V̂en the ”clamped nuclei approximation” was applied: in this approximation the
nuclear motion is neglected, since it can be assumed that the nucleus is mostly confined
to a limited space and oscillates around an equilibrium position. Additionally, the
masses of the nuclei are much bigger in comparison to those of the electrons, leading
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to much slower movement. This means that the nuclei can be regarded approximately
as rigid, making the positions of the nucleons a fixed parameter. Because of this, V̂en
takes the form of an external potential, depending only on one electronic position
operator.
The significance of this discovery lies in the fact that this theorem brings the density
into a direct correlation with the many-electron ground state energy, which in turn
allows any quantity that depends on the functional of the ground state wave function
to be expressed in terms of a functional of the density. For example, the ground state
energy E can be written as follows [11]

E[n] = F [n] +

∫
dr⃗ Ven(r⃗)n(r⃗) , (2.3)

with the density functional F [n] = ⟨Ψs|T̂ + V̂ee|Ψs⟩, where T̂ is the kinetic energy
operator for the electrons and V̂ee is the Coulomb energy operator for two electrons.
Both operators, T̂ and V̂ee, are independent of the nuclear coordinates and only depend
on the number of electrons N in the system. Therefore, F [n] is an universal functional
of the density. The second theorem states that [10]

The total energy E[n] is minimized at the N-electron ground state
density n(r⃗).

This theorem connects the ground state energy to the electronic ground state
density n(r⃗) in such a way, that the functional E[n] alone is sufficient to determine
the ground state density [10].

2.1.3 Kohn Sham Equations

While the Hohenberg-Kohn theorems state that the ground-state energy uniquely
dependent on the functional for the electron density and that the total energy is
minimized at the ground-state density, they do not provide guidance on how to build
such a functional. Equation (2.3) shows that the kinetic as well as the Coulomb energy
operator for two electrons only depend implicitly on the density n. This lead Kohn
and Sham 1965 to the hypothesis to split the terms, which are only implicitly density-
dependent, into the kinetic energy and Coulomb energy of independent electrons, and
adding an extra term, the exchange and correlation energy, which accounts for the
difference [12]. This resulted in

E = F [n] =

∫
dr⃗n(r⃗)Vn(r⃗)︸ ︷︷ ︸

External Potential

−
∑
i

∫
dr⃗Φ∗

i (r⃗)
∇⃗2

2
Φi(r⃗)︸ ︷︷ ︸

Kinetic Energy

+
1

2

∫ ∫
dr⃗dr⃗ ′n(r⃗)n(r⃗

′)

|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree Energy

+ Exc[n]︸ ︷︷ ︸
Exchange-Correlation energy

,

with the orthonormal wavefunctions Φi. This equation divides the terms into the
known contributions (total energy in the independent electrons approximation) and
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the unknown component (exchange-correlation energy). The Hartree energy is a clas-
sical mean field contribution.
Thus, if the exchange-correlation energy and the electron density is known, it is pos-
sible to calculate the ground state energy.
The ”Hohenberg-Kohn” variation principle (Hohenberg and Kohn, 1964) states that
the ground state density n0 is exactly the function that minimizes the total energy.
This can be expressed as

δF [n]

δn

∣∣∣∣
n0

= 0 .

This results in [12] [
− 1

2
∇⃗2 + Vtot(r⃗)

]
Φi(r⃗) = ϵiΦi(r⃗) (2.4)

with orthonormal wave functions Φi and

Vtot(r⃗) = Vn(r⃗) + VH(r⃗) + Vxc(r⃗) .

Here, Vtot(r⃗) is the total potential, which is composed of the nuclear component Vn(r⃗)
and the Hartree potential VH(r⃗). The exchange-correlation potential is defined via

Vxc(r⃗) =
δExc[n]

δn
(r⃗) . (2.5)

The nuclear potential is given by

Vn(r⃗) = −
∑
I

ZI

|r⃗ − R⃗I |

and the Hartree potential can be derived by solving the Poisson equation

∇⃗2VH(r⃗) = −4πn(r⃗) . (2.6)

The Hartree energy than can be calculated by

EH =
1

2

∫
dr⃗ n(r⃗)VH(r⃗) .

The density n(r⃗) can be determined through

n(r⃗) =
∑
i

|Φi(r⃗)|2 . (2.7)

This set of equations, from eq. 2.4 to 2.7, is known as the Kohn-Sham equations.
However, they can’t be solved exactly, which is the reason why an approximation
has to be found. If a good approximation for the exchange correlation energy can be
found, the Kohn-Sham theory is extremely useful for ground state DFT.
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Local Density Approximation

One way to approximate the exchange correlation functional is the Local Density
Approximation (LDA). This approximation uses the homogeneous electron gas (HEG)
as a model to describe the exchange and correlation energy in regions where the density
varies slowly. In the HEG model, it is assumed that the electrons do not interact with
each other. The potential created by the nuclei is assumed to be constant and the N
electrons are confined to a fixed volume V . The approximation now works in such a
way that the electron density n(r⃗) in a solid is divided into regions, whereby the width
is reduced to infinitesimally small volume elements. As a result, each infinitesimally
small volume element dr⃗ can be approximated with the local homogeneous electron
density n(r⃗), for which the exchange energy EX and the correlation energy EC can
be calculated through [9]

EX = −3

4

(
3

π

) 1
3

n
4
3V

EC = nV ·

{
0.0311 ln(rs)− 0.0480 + 0.002rs ln(rs)− 0.0116rs, if rs < 1,

−0.1423√
1+1.0529rs+0.3334rs

, if rs ≥ 1.

Here, n is the electron density with n = N
V
, where N is the number of particles and

V is the volume.
As there is no analytical expression for the correlation energy, it was solved using
stochastic methods. In this case, rs is the Wigner-Seitz radius, which is defined via

V

N
=

4π

3
r3s =

1

n
.

Once the exchange and correlation energies have been calculated for all subregions
they are summed up, which results in EHEG

xc [n(r⃗)]. The exchange correlation energy
of the entire system can then be calculated via

Exc =

∫
V

dExs =

∫
V

EHEG
xc [n(r⃗)]

V
dr⃗ . (2.8)

With eq. (2.8) all summands of the Kohn-Sham equations are now determined. The
LDA is one of the most frequently used approximations for modern first-principles
calculations.

2.2 Implementation of DFT

In a real crystal structure, there exist on average ≈ 1020 atoms in a cubic millimeter,
which makes numerical calculations extremely difficult. At such a large scale, however,
there are periodicities in the crystal that can be cleverly exploited. In order to be able
to carry out calculations for real systems, various approximations and symmetries are
now used to solve the problems self-consistently. This chapter introduces the Bloch
theorem, pseudopotentials and self-consistent field calculations.
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2.2.1 Bloch Theorem

If the nuclei are in a periodic arrangement, the potential V acting on the electrons
must also be periodic. In this case, V (r⃗ + L⃗) = V (r⃗) applies, where L⃗ is a lattice
vector, describing the translational periodicity. Therefore the density n(r⃗) must also

be periodic with n(r⃗+ L⃗) = n(r⃗). Since the wave function is related to the density via
n(r⃗) = |Φ(r⃗)|2, the magnitude of the wave function is periodic as well, but its phase
does not have to be periodic. If such a periodic potential is present, Bloch’s theorem
states that the wave functions can be expressed as [10]

Ψk(r⃗) = eik⃗·r⃗uk(r⃗)

where uk(r⃗ + L⃗) = uk(r⃗) is a periodic function that has the same periodicity as the

crystal structure. eik⃗·r⃗ is an arbitrary phase factor, describing a plane wave with wave
vector k⃗.
In order to represent the wave functions, a suitable basis set must be selected. Since
this is a periodic problem, uk is described by a three-dimensional Fourier series with

uk(r⃗) =
∑
G

cGke
iG⃗·r⃗ ,

where cGk are complex Fourier coefficients [13]. G⃗ is a reciprocal lattice vector for

which, by definition, eiG⃗·L⃗ = 1 applies. Each of the basis functions eiG⃗·r⃗ represents a
plane wave that propagates perpendicular to the reciprocal lattice vector. There are
an infinite number of G⃗ that fulfill this condition, but the coefficients cGk decrease
more and more as |G|2 becomes larger. It therefore makes sense to define a cutoff
energy, which ensures that only plane waves with energies smaller than the cutoff are
included. This cutoff energy constrains the number of needed values for G⃗ through
the condition ℏ2

2m
|G⃗|2 < Ecutoff. The respective cutoff energy for a structure can be

determined using convergence tests, for which the cutoff energy is changed until the
total energy of the system converges.

2.2.2 Pseudopotentials

Pseudopotentials are effective potentials that reproduce all electron wave functions
beyond a cutoff radius [14]. This has the big advantage that it reduces the number
of plane-wave basis sets, thus speeding up the calculation [15]. It also reduces the
number of electrons and can include relativistic effects [13]. In the construction,
the wave function to be simplified is divided into a core region, meaning the region
closer to the nucleus, and a valence region. To obtain the pseudopotential, a wave
function is now developed in such a way, that it is smooth close to the core and the
valence zone. This can be seen in fig. 2.1 (left). With this wave function and the
Schrödinger equation, a potential can be found that reproduces the wave function.
Taking the Coulomb potential as an example, which is proportional to Z/r with the
distance r and the atomic number Z, this potential diverges for r → 0 against ∞.
The pseudopotential is now constructed in such a manner, that this divergence does
not occur, so it differs from the Coulomb potential in this region, but it matches the
potential after the cutoff radius in the region where r → ∞ applies. This is shown in
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Figure 2.1: Left: Radial wave function R(r) of the pseudo- (red dashed line) and the
all electron wave function (blue line) dependent on the distance r. In the core region
the wave function is a smooth curve, varying from the all electron wave function.
After the cutoff radius rc, both wave functions coincide. This region is called the
valence region.
Right: The pseudopotential (red dashed) and the all-electron potential (blue).
After the cutoff energy the pseudopotential and the all-electron potential co-
incide once again. Image from https://sites.psu.edu/dftap/2019/03/31/

transferability-of-cu-pseudopotentials-in-cucuo-systems/

fig. 2.1 (right).
There are different classifications for pseudopotentials: if they are labeled ”soft”, then
only a small number of Fourier components are required for an accurate representation
of the potential, otherwise they are considered ”hard”. There also exist ”ultrasoft”
pseudopotentials, which were introduced by Vanderbuilt in 1990 [13]. With these, the
pseudo wave function is made as ”soft” as possible near the core, which allows the
cutoff energy to be drastically reduced. It also provides good scattering properties
over a pre-specified energy range, resulting in better accuracy.

2.2.3 Self-Consistent Field Calculations

To calculate the total energy from the Kohn-Sham equations, the principle of self-
consistent field calculation is used. The term ’self-consistent’ in this case stems from
the fact that the solution of eq. (2.4), which results in the eigenfunctions Φi(r⃗) and
the eigenenergies ϵi, depends on the total potential Vtot = Vn + VH + Vxc. Two com-
ponents of this, VH and Vxc (see eq. (2.6) and (2.5)), depend on the density, which
in turn is dependent on the eigenfunctions Φi(r⃗) (see eq. (2.7)). This whole circle of
dependencies gives the calculation its self consistent character.
In order to obtain the energy from this chain of equations, nuclear coordinates are
first determined, with which the nuclear potential Vn can be calculated. Now a pos-
sible electron density n(r⃗) is guessed, by for example adding up the densities of the
individual atoms, taking into account their atomic position in the material. With
this density, it is now possible to find approximations for the exchange-correlation
potential Vxc as well as the Hartree potential VH . The sum of the three potentials
defines the total potential, with which a numerical solution of the Kohn-Sham equa-
tions can now be found. The result are the wave functions Φi, which can now be
used to calculate the density. If the newly calculated density matches the initial guess
within a tolerance interval, self-consistency has been achieved and it is now possible

https://sites.psu.edu/dftap/2019/03/31/transferability-of-cu-pseudopotentials-in-cucuo-systems/
https://sites.psu.edu/dftap/2019/03/31/transferability-of-cu-pseudopotentials-in-cucuo-systems/
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to calculate the total energy of the system. If the newly calculated density still does
not match the initial guess, a new guess is made for a new density, with which the
process is repeated. This is done until self-consistency is achieved [9]. The whole
procedure is shown in fig. 2.2.

2.3 Quantum ESPRESSO

Quantum ESPRESSO, founded by the Quantum ESPRESSO Foundation, is a free
software package for electronic structure calculations of molecular systems at the
nano scale [16]. With the help of this program, which is based on density functional
theory, plane waves and pseudopotentials, the total energy of a system, phonon dis-
persions, density of states or band structures can be calculated for a material. The
basic package includes ”PWscf” (Plane Wave Self-Consistent Field), which solves the
Kohn-Sham equations self-consistently. It also contains ”PHonon,” where Density
Functional Perturbation Theory is applied, allowing for the calculation of second and
third derivatives of energy based on atomic displacement. Additionally, ”PostProc”
enables data analysis and plotting. ESPRESSO is an acronym for ”opEn-Source
Package for Research in Electronic Structure, Simulation, and Optimization”.
The suite works based on input files, where the kind of the calculation has to be
defined as well as various parameters, describing the crystal structure. Examples of
these parameters include the cell parameter, the atomic positions, the k-point grid
on which the calculation runs, and many others. The pseudopotentials to be used
for the calculation are also specified here. Quantum ESPRESSO generates so-called
’output’ files containing the results of the calculation after the calculation has been
successfully completed. In this thesis the Quantum ESPRESSO ”Version 7.3”, which
was released on the 09.01.2024, was used.
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Figure 2.2: Flowchart of a self-consistent field calculation to solve the Kohn-Sham
Equations in order to obtain e.g. the ground state energy of a system. Since the
equations are all linked to each other, it is necessary to start with a guess for the
electron density and, if needed, adapt the guess until self-consistency is achieved.
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Chapter 3

Polarization in Perovskites

According to classical theory, perovskites can either display ferroelectric or para-
electric behavior, depending on the temperature. The transition from one phase to
the other can be described by Landau theory. Some perovskite structures, however,
exhibit a phase that deviates from the classical behavior. This phase is called quan-
tum paraelectricity, in which the transition from paraelectricity to ferroelectricity is
suppressed by quantum fluctuations. This chapter provides an outline of the three
different phases and the Landau theory.

3.1 Ferroelectricity (FE) and Paraelectricity (PE)

Ferroelectrics are materials with an electric dipole moment that leads to a sponta-
neous electric polarization without having an external field present [17]. However,
if an external field is present, the polarization can be inverted. For ferroelectricity
to occur, a polar axis must exist [18]. Thus the crystal structure can’t possess an
inversion center, which means that the atoms with different charges must therefore
be off-centered relative to each other.
The prefix ”ferro” (=iron) refers to ferroelectricity being the counterpart of ferromag-
netism, where, in contrast to ferroelectricity, there is not an asymmetry in charge but
an asymmetry in spin. The prefix does not imply a connection to iron. Ferroelec-
tricity was discovered in 1921 by J. Valasek, who conducted experiments on Rochelle
salt (potassium sodium tartrate) and found that the salt remained spontaneously
polarized after the external electric field was removed. This behavior, the so-called
hysteresis curve, is shown in figure 3.1.
Paraelectric materials, on the other hand, exhibit dielectric polarization when an
electric field is applied and lose this polarization when the field is removed [19]. This
nonlinear relationship between electric fields and polarization is also shown in figure
3.1.

3.1.1 Transition from a FE phase to a PE phase

Ferroelectrics exhibit a temperature-dependent anomaly in their dielectric behavior,
which is attributed to the phase transition [20]: when a ferroelectric crystal is heated,
its polarization disappears above the critical Curie temperature and the crystal be-
comes a paraelectric, which does not have permanently parallel aligned electric dipoles

15
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Figure 3.1: Polarization of a ferroelectric (paraelectric) material under the influence
of an external electric field in blue (red). For the ferroelectric material, a hysteresis
curve shows a finite polarization at zero electric field, whereas the paraelectric material
exhibits finite polarization only with a finite electric field.

[21]. Paraelectrics have a statistical dielectric constant ϵ, which can be defined by the
Curie-Weiss law as [21]

ϵ(T ) =
C

T −Θ
.

Here, C describes a material-dependent constant, T represents the temperature, and
Θ is the paraelectric Curie temperature. A high dielectric constant is therefore present
at temperatures in the immediate vicinity of the Curie temperature. This is because
even small changes in the electric field in this range lead to a significant displacement
polarization of the crystal. These changes are on the order of 105 F/m [22]. In an
idealized experiment, the dielectric constant would be infinite at the Curie tempera-
ture.
The transition of a perovskite from a paraelectric to a ferroelectric structure can be
described in such a way that the central cation undergoes a permanent small change
in its position so that it assumes an ’off-center’ position relative to the surrounding
oxygen anions [23]. As a result, the octahedral symmetry is broken and the net dipole
moment is increased in proportion to the displacement of the titanium cation.
The difference between the two polarizing states in perovskite crystal structures of
the form ABO3 is illustrated as a schematic sketch in figure 3.2: the left-hand crystal
is in a paraelectric phase, with its temperature being above the Curie temperature.
The B-ion (orange) is in the center of the crystal and there is no polarization. The
crystal structure on the right side is in a ferroelectric phase with a temperature below
the Curie temperature. The central B-ion has moved away from its central position,
which leads to a polarization of the crystal. From a microscopic point of view, the
transition to ferroelectricity can be explained by the fact that the relative size of the
A-cation prevents ideal nesting of the ions and since the distance of the B-cation to
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Paraelectric
 T > TC

Ferroelectric
 T < TC

A
B
O

Figure 3.2: Schematic sketch of cubic ABO3 perovskite structure in the symmetric
paraelectric phase (left) and the ferroelectric phase (right), in which the central atom
has moved away from its centered position, leading to polarization.

the oxygen is very large, it is likely that the B-cation leaves its centered position to
get closer to one of the oxygen ions, which leads to the symmetry breaking [23].

3.1.2 Landau Theory

The theory of the phase transition of a material from its paraelectric to its ferroelec-
tric state can be described using Landau theory. In general, there are two types of
phase transition: first-order phase transitions, where the first derivative of the po-
tential becomes discontinuous, and second-order phase transitions, where the second
derivative of the potential becomes discontinuous [24]. The latter is also known as
a continuous phase transition, as the state of the system changes continuously. For
phase transitions in ferroelectrics, the second type is considered.
During a phase transitions, the symmetry of the system changes, as well as its prop-
erties. To describe a non-symmetric system through its state variables, an additional
variable called the order parameter ψ, must be introduced, which describes the ordered
state of a system. The order parameter can take its form through e.g. polarization.
To describe the phase transition, the free energy F , which is dependent on the order
parameter as well as the temperature T , is considered. At the critical point the free
energy F(T, ψ) has a minimum. It is assumed that the order parameter takes very
small values near the transition, so F(T, ψ) can be expanded via Taylor expansion in
powers of ψ. This results in [25]

F(T, ψ) = F0 + a(T )ψ2 +
b(T )

2
ψ4 .

This expansion was only developed up to the fourth order, as ψ should be small for
T ≈ Tc with the critical Curie temperature Tc. The odd terms were neglected as the
system should obey the symmetry F(T, ψ) = F(T,−ψ). The expansion coefficients a
and b are given by a(T ) ∝ a0(T−Tc) and b ≈ b0 > 0 [26]. The change from an ordered
to a non-ordered state can be seen by the change of sign of a: if the temperature is
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Figure 3.3: Sketch of the Landau free energy F as a function of the order parameter ψ.
The double well potential (dark-blue line) represents the ferroelectric phase, whereas
the parabola (light-blue dashed line) indicates a paraelectric phase.

above the Curie temperature, a is bigger than zero. At the phase transition, where
the temperature reaches the critical temperature Tc, a is equal to zero, and at low
temperature phases with the temperature being lower than the Curie temperature, a
is smaller than zero.
The sketch of the graphical progression of the free energy is shown in figure 3.3.
The dark blue line indicates the progression of the order parameter for the low-
temperature phase. In this case, the order parameter has two minima, which results
in the double-well shape of the potential. This low-temperature phase is referred
to as ’ferroelectric’. Both minima of the potential represent a stable state of the
system, which are both oppositely polarized, when imagining the order parameter
as polarization. The light blue dashed curve indicates the behavior of the order
parameter for the high-temperature phase, where the graph has a parabolic form.
This phase is called ’paraelectric.’

3.2 Quantum Paraelectricity (QPE)

In addition to paraelectricity, which has no stable polarized state, and ferroelectricity,
which has two stable polarized states, there exists a third state: quantum paraelec-
tricity. In this case, the material is on the verge of becoming ferroelectric, but this
transition is suppressed by quantum fluctuations between the two stable polarized
states of the system, so the material remains paraelectric.

Finding the ground state energy via solution of the one particle Schrödinger
equation

As a quantum mechanical description is needed, the Schrödinger equation is used to
draw conclusions as to whether a crystal is a quantum paraelectric material.
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To do this, the crystal structure, which consists of several atoms, is described using
a one-dimensional single-particle structure. This is justified because typically only
one phonon mode exists, which causes polarization in the structure. This mode is
characterized by its frequency, for which eigenvectors of the dimension 3NA, where
NA is the number of atoms, can be calculated. But since this calculation is carried
out only at Γ point, all unit cells will be displaced in the same way. This means that
only one parameter, in this case the displacement along the eigenvectors, is relevant
to describe the polarization. This results in a Schrödinger equation of the form [1](

−ℏ2

2m

d2

dξ2
+ Ṽ (ξ)

)
Ψ̃(ξ) = EΨ̃(ξ) .

Here m describes the mass of the ions, ξ the ion displacement, Ṽ the potential, Ψ̃
the wave function and E the energy eigenvalues. However, since neither the mass
nor the displacement of a phonon are very well defined in solid state physics, the
displacement is replaced by mass-weighted coordinates, which combine the mass and
the displacement into one variable, which are defined via q =

√
mξ [1]. The mass

weighted Schrödinger equation is thus given by(
−ℏ2

2

d2

dq2
+ V (q)

)
ψ(q) = Eψ(q) . (3.1)

This derivation of this one-particle Schrödinger equation is based on a method from
T. Esswein and N. Spaldin, who used eq. 3.1 to investigate quantum paraelectricity
in perovskites [1]. The transition from Ψ̃ to ψ and Ṽ to V indicates the different wave
functions and potentials due to the transition.

Construction of a potential
A potential V now has to be constructed that represents the crystal structure as

a function of the displacement ξ. The potential has to obey the symmetry V (ξ) =
V (−ξ). The Taylor expansion of such a potential leads to

V (ξ) ≈ 0 +
d

dξ
V

∣∣∣∣
ξ=0

ξ +
1

2

d2

dξ2
V

∣∣∣∣
ξ=0︸ ︷︷ ︸

a

ξ2 + ... ≈ 1

2
aξ2 .

Since only small displacements are relevant and terms corresponding to uneven orders
of ξ must vanish, the potential can be approximated harmonically. This leads to
a = ω2m with the frequency ω and

V (ξ) =
1

2
ω2 mξ2︸︷︷︸

q2

=
1

2
ω2q2 . (3.2)

If the phonon frequencies at Γ point are calculated for a material and ω2 > 0 applies,
meaning no instabilities of the structure, then the potential is given by the harmonic
potential from eq. (3.2).
If, on the other hand, ω2 < 0 applies, indicating an unstable structure, then the
parabola, which now opens downwards, leads to a diverging ground state energy. The



20 CHAPTER 3. POLARIZATION IN PEROVSKITES

harmonic approximation is no longer sufficient. In this case the fourth-order term of
the Taylor expansion has to be taken into account, which leads to

V (q) ≈ ω2

2
q2 + cq4 + a ,

where a, c are parameters to be determined. Assume that the double well has its
minima at σ, than the first derivative results in

dV (q)

dq

∣∣∣∣
q=σ

= (ω2q + 4cq3)

∣∣∣∣
q=σ

⇔ ω2σ + 4cσ3 = 0 .

From this follows a value for c of c = − ω2

4σ2 .
In order to shift the potential, so that the minima of the potential are located at zero
energy, the condition of V (σ) = 0 is used. This leads to

− ω2

4a2
σ4 +

ω2

2
σ2 + a = 0 ⇔ a = −ω

2

4
σ2 .

When defining the potential height as V0 := −ω2

4
σ2, the potential can be written as

V (q) = V0

(
q4

σ4
− 2

q2

σ2
+ 1

)
. (3.3)

This potential is used in the method of T. Esswein and N. Spaldin [1] and can be seen
in figure 3.4, where the blue dashed line represents the half-width σ and the orange
line shows the potential height V0. σ can be determined from

σ2 = −4V0
ω2

. (3.4)

As in the Landau theory, the paraelectric phase is characterized by a parabola, which
results from the lack of instabilities in the crystal structure, shown in the presence
of only positive frequencies for the phonon-calculation at Γ-point. In contrast are
the quantum paraelectric as well as the ferroelectric phase, where these instabilities
do occur. This is the reason why both phases can be described by the double-well
potential given in eq. (3.3). In order to view the problem through a quantum mechan-
ical lense, the crystal structure is approximated as one particle, for which the ground
state energy and its probability density can be evaluated. The probability density
must be symmetrical, so there are two possibilities for its form: on the one hand, it
can be localized in the minima. On the other hand, the ground state energy could be
delocalized across both minima. This can be seen in fig. 3.5. The ferroelectric state
can be explained classically: in a double- well potential, the particle can either be in
the left or right minimum. When applying a quantum mechanical description, this
means, that the probability density (green line) is localized in one of the minima of
the double well.
For the quantum paraelectric state however, there occurs a delocalization across the
potential. This can be explained through the quantum character of the nuclei, which
means that tunneling possibilities exists, leading to a deviation from the localized
ground state.
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Figure 3.4: Double Well Potential. V0 describes the height of the double well and σ
the distance from the maximum to one of the minima

In order to now determine whether a material is quantum paraelectric, a double- well
potential, like in eq. (3.3), has to be constructed, for which the Schrödinger equation,
given by eq. (3.1), has to be solved numerically. This can be done by using the
”scipy.linalg” library 1 in python. If the results yield a delocalization of the ground
state, the material can be assumed to be a quantum paraelectric one.
The transition in perovskites of the ABO3 structure to a ferroelectric state at low

temperatures can be explained because their polar transverse optical phonon mode
softens, turning the material unstable [27]. Having a soft phonon means that its
frequency approaches zero at the critical temperature [17]. The vibrational pattern
of a polarizing phonon mode in a perovskite is depicted in fig. 3.6. The closer the
material is to the critical temperature, the more the frequencies of the vibrations
decrease, which leads to a polarization of the material. In the context of the double
well potential, this means that the structure falls in one of the polarized states of
the double well potential spontaneously, which in turn leads to a macroscopic polar-
ization. In other materials, e.g. strontium titanate, this softening does not occur at
very low temperatures. Its ferroelectric soft mode stabilizes and ferroelectric behavior
does not appear [27]. This has been explained by quantum fluctuations between the
two polarized states that prevent the formation of a macroscopic dipole, keeping the
material in a paraelectric state. This behavior is called ”quantum paraelectric”.

1https://docs.scipy.org/doc/scipy/index.html

https://docs.scipy.org/doc/scipy/index.html
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Figure 3.5: External parameters can be used to generate the transition from the
ferroelectric state (FE) to the quantum paraelectric state (QPE) through to the para-
electric state (PE). For the PE phase, the potential still has the form of a parabola.
For the QPE and the FE phase the potential is given by a double-well potential, with
the difference, that the probability density (green line) of the ground state (with the
ground state energy in orange) is clearly localized for the FE state, whereas for the
QPE state, there exists a delocalization.
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Figure 3.6: Schematic sketch of the vibrational pattern of a polarizing phonon mode
in a perovskite of the ABO3 structure. The closer the material is to the critical
temperature, the more the frequency of the vibrations decrease, leading to a polarized
structure.



Chapter 4

Computation of QPE

Strontium titanate is one of the best studied perovskites at the moment. It is a very
interesting material, because it displays quantum paraelectric behavior at low tem-
peratures. One method to investigate this property, using DFT and a one-particle
Schrödinger equation, was suggested by T. Esswein and N. Spaldin [25], who applied
this method to different single perovskites strontium titanate among others. In this
chapter this method will be introduced and the results from the calculations, verify-
ing the quantum paraelectric character of strontium titanate, will be presented and
compared to the reference values of [25].

4.1 Strontium Titanate

Strontium titanate (STO), see figure 1.1, is one of the best-researched perovskites. It
consists of a cubic structure, for which the unit cell is composed of a strontium cation,
a titanium cation and three oxygen anions. As for all perovskites, the anions form an
octahedral structure. The band structure is shown in figure 4.1. There is a band gap
between the conduction and valence bands, which means that strontium titanate is
a semiconductor. The experimentally measured indirect bandgap is 3.25 eV and the
direct bandgap is 3.75 eV [28]. However, the band structure calculated with Quantum
ESPRESSO from figure 4.1 provides a direct band gap at the Γ point of ≈ 2.2 eV.
This could be due to the fact that the experiments are usually carried out at room
temperature, while the Quantum ESPRESSO calculations take place at 0K.
The phonon dispersion of the symmetrical structure of a 2×2×1 SrTiO3-supercell is
shown in figure 4.2. At the Γ-point, modes converge at zero frequency. These are the
acoustic phonon modes, where the atoms move coherently out of their equilibrium po-
sition. The phonon modes, which have a non-zero frequency without any divergence,
are the optical phonons, where the atoms move out of phase. At the Γ point, a lot of
negative frequencies occur. These indicate the instability of the structure.
In the following, the quantum paraelectric character of strontium titanate will be
investigated.

23
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Figure 4.1: Band structure of SrTiO3 with a direct bandgap of 2.2eV, thus making
SrTiO3 a semiconductor.

4.2 Method of Esswein/Spaldin

For the replication of the quantum paraelectric character of strontium titanate, Quan-
tum ESPRESSO is used to conduct the relevant calculations to construct a double-well
potential, given by eq. 3.3. With this potential the Schrödinger equation, given by eq.
3.1, can be solved and the probability density of the ground state can be obtained.
However, since all Quantum ESPRESSO calculations take place at 0K, Landau the-
ory cannot be applied directly. A double-well potential is now assumed as the starting
point for the calculation, in which a highly symmetrical crystal structure is located at
the maximum of the potential at zero displacement. A relaxation calculation, which
results in slightly different atomic positions and cell parameters, brings the crystal
structure into a relaxed state. A self-consistent-field (SCF) calculation and a phonon
calculation are performed. This, on one hand, provides the energy of the highly sym-
metric cubic structure Esym and, on the other hand, supplies the eigenvectors that
correspond to frequencies of the phonon modes.
The phonon calculation is only carried out at the Γ point in the Brillouin zone, since
the Γ point is the most important point for a finite polarization of the crystal due
to the spatial independence of the vibration: in a harmonic approximation, the time
dependant displacement y⃗(t) of the atom l at location r⃗l can be describe through
plane waves, as a result it follows [29]

y⃗l,q,m(t) = Y⃗l,m(q)e
ir⃗l ·⃗ke−iωmt ,

where k is the wave vector of the considered phonon and ωm and Y⃗l,m its correspond-
ing frequency and eigenvector, obtained from the eigenvalue problem of the dynamical
matrix. Y⃗l,m(q) states in which direction of the atom l is shifted through a phonon
with wave vector q and frequency ωm. Therefore the displacement at Γ point is no
longer dependant on the location.
These eigenvectors are calculated through the eigenvalue problem
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Figure 4.2: Phonon dispersion for the 2× 2× 1 supercell of SrTiO3. A lot of negative
frequencies occur at Γ point, indicating a stability of the system.

Dl(q)Y⃗l,m(q) = ω2Y⃗l,m(q), where Dl(q) is the dynamical matrix.
If the solution of the dynamical matrix results in imaginary frequencies, it means that
the system is in an unstable state. Since Quantum ESPRESSO can only depict the
real parts of calculation results, the imaginary frequencies appear as negative ones in
the output, because the imaginary frequencies are mapped onto the negative axis of
the real part.
The atomic structure is now shifted along these eigenvectors that correspond to nega-
tive frequencies, meaning ω2

m < 0. The change of position of an atom l at the Γ point
can be calculated via

r⃗l → r⃗l + ξ
∑
m

ω2
m<0

Y⃗l,m(Γ) . (4.1)

In this case ξ is the weighted factor with which all atoms will be displaced. Because
there are more than one imaginary frequencies, all of of them will be considered for
the displacement.
The quantum paraelectric phase results from quantum fluctuations between the two
polarized states. Since it is now possible to specify the polarized state through a value
for ξ (see eq. (4.1)), the whole structure can be viewed as one particle, whose system
has the displacement ξ. This displacement can be interpreted as the ”particle” being
pushed towards either the left or right side of the potential. Now the structure is
relaxed again, which leads to the ”particle” falling into one of the two minima and
another SCF- and phonon calculation is carried out (again only at the Γ-point). This
results in the energy Edispl of the structure at the minimum. If the particle is now in
one of these minima, which indicates a stable state, the phonon frequencies should no
longer be negative.
The procedure, as well as the Schrödinger equation and the equation for the double-
well potential, are based on ”Ferroelectric, quantum paraelectric, or paraelectric?
Calculating the evolution from BaTiO3 to SrTiO3 to KTaO3 using a single-particle
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Figure 4.3: Calculation steps with Quantum ESPRESSO to reproduce that STO is a
quantum paraelectic material.

quantum mechanical description of the ions” by Tobias Esswein and Nicola Spaldin,
where these calculations are performed for different perovskites. The individual calcu-
lation steps are illustrated in figure 4.3. The potential barrier height can be calculated
through the energy difference of the energy of the initial structure Esym and the en-
ergy of the distorted structure Edispl. The half-width σ can be obtained from eq. 3.4.
With those two values it is possible to construct a double- well potential, using eq.
3.3. For this potential the Schrödinger equation (see eq. 3.1) can be solved, thus
determining the probability density of the ground state.

4.3 Comparison with the Results of Esswein/Spaldin

4.3.1 Computational Details

For the calculation of strontium titanate with Quantum ESPRESSO, a cubic 2×2×1
supercell with 20 atoms was generated. A lattice constant of 7.4 a0 (see A.1) was
utilized. The convergence threshold for the total energy was set to 7.35 × 10−8Ry
and the threshold for the force to 3.89× 10−6Ry/a0. In addition, an 8× 8× 8 k-point
grid (see A.2) was used and the cut-off energy was set to 60Ry (see A.3). For the
calculation, ”ultrasoft” pseudopotentials were chosen.
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4.3.2 Results of the Schrödinger Equation

The calculation of strontium titanate with Quantum ESPRESSO resulted in an energy
of Esym = −1148.0642Ry for the supercell of the highly symmetric crystal structure
at the maximum at zero displacement and an energy of Edispl = −1148.0657Ry for
the supercell of the distorted final structure at the minimum. The potential height
V0 can now be calculated via (Esym − Edispl)/4. The denominator is set to four
to obtain the value for a five-atom unit cell of strontium titanate. This results in
V0 = 0.000 383 85Ry, which converts to 5.22meV, see table 4.1. The frequency at the
Γ point was 5.6954THz. Thus, with eq. (3.4) a value for σ of 0.623 Å

√
u could be

calculated. The conversion of σ into units of Å
√
u was performed in order to compare

the calculated results with the reference values from the paper by T. Esswein and N.
Spaldin ”Ferroelectric, Quantum Paraelectric, or Paraelectric?” [25].
Since the mass of the structure must be taken into account in the conversion to Å

√
u,

the variant, proposed in the paper, was chosen using the mass of the lightest atom,
in this case that of the oxygen atom with an atomic mass of 15.999 u.
The comparison of the calculated potential with the reference potential from [1] is
shown in figure 4.4. The paper calculated a potential height of Ṽ0 = 5.74meV and
a σ value of σ̃ = 0.571 Å

√
u. This means that the deviation of the potential height

from the reference value is ≈ 9%, while the deviation of the σ value from the reference
value is also ≈ 9%. Since the difference between the two results in a very small order
of magnitude due to the high energies, the deviation is not too relevant. This also
becomes clear in figure 4.4: at the relevant points, from one minimum to the other,
the calculated potential approximately matches the reference potential. The devia-
tion could stem from possible different input parameters for the density functional
calculations.

The Schrödinger equation could now be solved numerically using this potential.

V0 in meV σ in Å
√
u E1 − E0 in meV E0 − V0 in meV

own values 5.22 0.623 9.10 1.02
values from [1] 5.74 0.571 10.02 1.12

Table 4.1: Calculated values compared to values from the paper [1]. The calculated
values deviated by 9% from the reference values. The difference could stem from using
different input parameters for the Quantum ESPRESSO calculations.

The result is shown in figure 4.5. The ground state energy is E0 = 6.24meV and
the energy of the first excited state is E1 = 15.34meV. The probability density of
the ground state (blue) is delocalized over both minima and has its maximum at zero
displacement. With the potential having the form of a double well, combined with
this delocalization, it can be concluded that strontium titanate is indeed a quantum
paraelectric material.
Comparing the difference between the two states E1 − E0 gives an energy difference
of 9.10meV, which in turn differs by ≈ 9% from the energy difference of the states
in the reference paper of 10.02meV. The difference of the potential barrier to the
ground state E0 − V0 with 1.02meV from the self-calculated solution and 1.12meV
from the reference value also deviates by the same percentage. The calculated values
compared to the values from [1] are shown in table 4.1.
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Figure 4.4: Double-well potential for SrTiO3 with the self calculated values (orange)
and the reference values (blue) from [1]. The difference between the potentials in-
creases towards the edges, but in the relevant sections, from one minimum to the
other, the potentials approximately match: the calculated potential has a potential
barrier of 5.22meV, while the reference potential has a barrier of 5.74meV. The ref-
erence σ value is 0.571 Å

√
u, while the calculated one is 0.623 Å

√
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Figure 4.5: The eigenenergies and the eigenstates of the Schrödinger equation for
SrTiO3 with the ground state (blue) and the first excited state (red). The potential
height is at 5.22meV, which is in the vicinity of the energy of the first excited state
at 6.24meV. The ground state is non-degenerate and the energy of the first excited
state is at 15.34meV. Since the probability density of the ground state is delocalized
over the potential and the potential has the form of a double well, it can be concluded
that strontium titanate is a quantum paraelectric material.
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In summary, it can be said that this method is suitable for determining whether a
crystal structure is a quantum paraelectric one, since it was possible to reproduce the
quantum paraelectric character of strontium titanate.
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Chapter 5

QPE in Double Perovskites

In addition to simple perovskite structures, there exist double perovskites, which are
composed of two individual simple perovskites. However, double perovskites are not
as well-studied as single perovskites, making them an interesting subject to study.
The quantum paraelectic character of a simple perovskite structure can be demon-
strated using the method described in chapter 4.2. This chapter addresses the question
of whether quantum paraelectricity, which has been found in the simple perovskite
strontium titanate, can also be found in double perovskites.

5.1 Procedure and Computational Details

A total of 77 double perovskite are considered, which are listed in table A.1. All of
those double-perovskites have the same electronic configuration as strontium titanate.
For each of these crystal structures, the procedure presented in chapter 4.2 was car-
ried out: a highly symmetric structure at zero displacement is first relaxed, a SCF-
and phonon calculation are carried out, the structure is shifted along the resulting
eigenvectors corresponding to negative frequencies and the structure is relaxed again.
For each double perovskite, a cubic structure with a total of 10 atoms was used to
perform the calculation. The cutoff energy was set to 60Ry (see fig. A.4, where the
convergence test of the lattice constant for Sr2CaWO6 is shown), the convergence
threshold for the energy was set to 1.0× 10−7Ry and the force convergence threshold
to 1.0 × 10−6Ry/a0. The calculation was performed on an 8 × 8 × 8 k-point mesh
(see fig. A.5 for Sr2CaWO6). The lattice constant was set to 11.17 a0 (see fig. A.6 for
Sr2CaWO6). Again ”ultrasoft” pseudopotentials were used.

5.2 Results of the Schrödinger Equation

The energies calculated with Quantum ESPRESSO for the highly symmetrical struc-
ture at zero displacement, Esym, the relaxed, distorted structure, Edispl, and the
frequency ω at the Γ-point are shown in table A.1. Table A.1 also shows the potential
barrier V0, which results from the difference between the highly symmetrical and the
relaxed structure, as well as the value of the half-width of the potential σ, which can
be obtained from eq. (3.4). For the calculation of σ, as with strontium titanate, the
mass of the lightest atom was used, which is also shown in table A.1.

31
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Some calculated potential heights have a value of zero (e.g. Ba2YVO6), some have
potential heights were so small, that they can be assumed to be zero (e.g. Cs2LiLaBr6,
whose potential height was calculated to 1× 10−8Ry) and even some negative poten-
tial heights occurred (e.g. Cs2NaScCl6 with a potential height of −1.5 × 10−7Ry).
For all those double perovskites it is not possible to construct a double well poten-
tial, which is why these materials can already be assumed to be paraelectric. The
potential of those materials, as explained in section 3.2, takes a parabolic form at zero
displacement, since the lowest-energy state of the structure is already present in its
non-polar form.
The reason for negative potential heights is, that one can imagine that the ”particle”
is initially at the minimum of the parabola and that the potential moves upwards
a little as the structure is shifted along the negative eigenvectors. This shift along
negative eigenvectors, which indicate instability of the structure, is due to numerical
inaccuracies: negative frequencies actually exist for these materials, but since they
are so small, they can be regarded as zero. However, since the calculation was exe-
cuted using an automated code, it was not possible to discern those structures. The
shift along the negative eigenvectors was carried out nonetheless and the calculation
continued from this point on. In total 13 paraelectric materials could be found.
For the remaining 64 crystal structures, the Schrödinger equation, given by eq. (3.1),
was solved numerically. The ground state energies E0, the energies of the first excited
states E1 and the potential barriers V0 are shown in table A.2. It is noticeable that
there are significant fluctuations in the potential barriers: the lowest heights are in
the range of ≈ 30meV, as with Ba2CaMoO6 (see fig. 5.1), while the largest barriers
is at ≈ 3500meV for La2CaZrO6 (see fig. 5.2). For 62 of the 64 double perovskites,
the ground state energy is clearly below the potential barrier and the probability
density is localized in one of the two minima. This is also the case for Ba2CaMoO6

and La2CaZrO6. If the energy of the first excited state is also calculated, it can be
seen that for 11 of the 62 crystal structures the ground state energy is not degenerate,
meaning that the ground state energy differs from the one of the first excited state.
These changes range from a difference from the first decimal point up to a difference
in the fifth.
In conclusion 62 materials appear to be ferroelectric, and of those 11 double per-
ovskites have a non-degenerate ground state.

5.2.1 Potential Quantum Paraelectrics

Of the 77 double perovskites examined, 2 materials were found that do not exhibit
the typical ferroelectric or paraelectric character: Cs2NaYCl6 and Rb2LiYCl6.
Cs2NaYCl6 has a potential height of 0.3317meV, so its potential height is very small,
but the potential still displays a double-well. This is depicted in fig. 5.3. The ground
state energy is 7.859meV and the associated probability density (in blue) is delocal-
ized over both minima. As with strontium titanate, the ground state is not degenerate:
the energy of the first excited state is 28.713meV. The double-well character and the
shape of the probability density indicate quantum paraelectic behavior of this double
perovskite.
The band structure is shown in figure 5.4. It can be seen that the crystal falls within
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Figure 5.1: Energy and eigenstates of the degenerate ground state (blue, red) of
Ba2CaMoO6, which has a potential barrier of ≈ 30meV. This value of the potential
heights was one of the smallest calculated.

Figure 5.2: Energy and eigenstates of the degenerate ground state (blue, red) of
La2CaZrO6, which has a potential barrier of ≈ 3500meV. This was the biggest
calculated potential barrier. Here the eigenstates had to be amplified by 100 in order
to see their shapes.
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Figure 5.3: Potential of Cs2NaYCl6 with the first two solutions of the Schrödinger
equation. The potential barrier is at 0.3317meV, which is relatively small compared
to the energy of the ground state at 7.859meV. The ground state is non-degenerate
and the energy of the first excited state is 28.713meV. The ground state solution
has a probability density (blue) that is delocalized over both minima, which together
with the double well shape indicates quantum paraelectricity.

the semiconductors due to its band gap. The direct band gap can be estimated to
be ≈ 2.6 eV at the Γ point, which is of the same order of magnitude as the band
gap determined with Quantum ESPRESSO at the Γ-point of strontium titanate with
≈ 2.2 eV.
The phonon dispersion of the highly symmetrical structure can be seen in figure 5.5.
Just like with strontium titanate, the acoustic phonon modes converge at Γ point,
whereas the optical ones do not. The negative frequencies indicate the instability of
the structure.

The second double perovskite whose solutions of the Schrödinger equation to-
gether with its potential form deviates from those of ferroelectrics or paraelectrics
is Rb2LiYCl6. Here the ground state energy is below the maximum of the double-well
potential, shown in fig. 5.6. The probability density of the ground state (blue) is
delocalized, but it is still possible to discern two maxima in the minima of the poten-
tial. The potential height is 15.8580meV, which is above the ground state energy at
9.623meV and that of the first excited state at 12.214meV.
As with Cs2NaYCl6, the band structure, illustrated in graphic 5.7 shows that
Rb2LiYCl6 is a semiconductor. Here the smallest band gap is at the Γ point with
≈ 3.5 eV. This is therefore of the same order of magnitude as the experimentally
measured band gap of strontium titanate at 3.75 eV.
The phonon dispersion of Rb2LiYCl6, shown in figure 5.8, has similarities to that

of Cs2NaYCl6: the acoustic frequencies converge at the Γ point and several negative
frequencies exist due to the instability of the highly symmetrical structure.
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Figure 5.4: Band structure of Cs2NaYCl6. It can be seen from the band gap that
Cs2NaYCl6 is a semiconductor.

Figure 5.5: Phonon dispersion of the highly symmetrical structure of Cs2NaYCl6. A
lot of negative frequencies can be found at Γ point, indicating a an instable structure.
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Figure 5.6: First two solutions of the Schrödinger equation of Rb2LiYCl6. The po-
tential barrier height is, with a value of 15.8580meV, higher than the energy of the
groundstate (9.623meV) and that of the first excited state (12.214meV). The ground
state has a probability density (blue) which is delocalized over both minima, but max-
ima can nevertheless be detected in the minima of the potential. However, with the
double well shape and the delocalization, Rb2LiYCl6 falls under the quantum para-
electrics.

Figure 5.7: Band Structure of Rb2LiYCl6. The direct band gap here is ≈ 3.5 eV at
the Γ point, making Rb2LiYCl6 a semiconductor.
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Figure 5.8: Phonon Dispersion of the highly symmetric structure of Rb2LiYCl6, dis-
playing a similar phonon dispersion like Cs2NaYCl6 with many negative frequencies,
which indicate the instability of the structure.

5.2.2 Correlations concerning the Potential Barrier Height

In order to find an explanation for the differences in the potential height discussed
in section 5.2.1, a correlation between the ionic radii of the B- and B’- ions and the
potential height V0 was first investigated. As can be seen in figure 5.9, there is no
correlation between the ionic radii of the B- and B’- ions and the potential height V0.
The ionic radii used are shown in table A.3.
After looking at the ionic radii of the B- and B’ -ion directly, now the geometric

factors, which are dependent on the ionic radii of the respective structures, mentioned
in chapter 1, are taken into account. The tolerance factor ts and the octahedral factor
µs of the simple perovskites indicate the stability of perovskites (see figure 1.2). The
tolerance factor is defined via

ts =
rA + rX√
2(rB + rX)

(5.1)

and the octahedral factor is given by

µs =
rB
rX

, (5.2)

where rA, rB, and rX are the respective ionic radii of the ion [2]. This concept can
also be applied to double perovskites of the form A2BB’X6. However, since there is a
B- and a B’-ion, two factors must be defined for the octahedral structure: the average
octahedral factor µ̄ and the octahedral mismatch ∆µ with [2]

µ̄ =
(rB + rB′)

2rX
(5.3)
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Figure 5.9: Ionic radii of the B and B’ ions as a function of the potential height V0.
No correlation can be determined.

and

∆µ =
|rB − rB′ |

2rX
. (5.4)

The generalized tolerance factor t of the double perovskites is given by [2]

t =

(
rA
rX

+ 1
)√

2(µ̄+ 1)2 +∆µ2
. (5.5)

The ionic radii from table A.3 were again used for the calculation. All results for
the geometric factors are depicted in table A.3 as well. For double perovskites, this
set of geometric factors results in a ”generalized stability region, (which is a) closed
volume in the (µ̄,t,∆µ) space.” - M. Filip and F. Giustino, ”The geometric blueprint
of perovskites” [2].
The dependence of the potential height V0 on the generalized tolerance factor t is
shown in figure 5.10. The blue dots represent the ferroelectric materials. In the
semi-logarithmic representation chosen here, a linear relationship can be recognized
between the tolerance factor of the ferroelectrics and their potential height, which is
given by V0(t) = exp{−21.1t+ 15.59}. In order to display the paraelectric materials
(in orange) in this plot, the absolute value of V0 was used on the y-axis. It is noticeable
that the paraelectrics have a higher tolerance factor compared to the ferroelectrics.
This also seems reasonable, as a lower tolerance factor indicates a greater distortion
of the structure and the deviation from the highly symmetrical cubic shape of the
ferroelectrics is decisive for their polarization.
The red dot is strontium titanate as a reference value for a quantum paraelectric
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Figure 5.10: Absolute value of the potential height V0 in semi-logarithmic represen-
tation as a function of the generalized tolerance factor t (see eq. 5.5). The orange
dots represent the paraelectric materials that have a potential height of approximately
zero. Compared to the other double perovskites, they have a comparatively high tol-
erance factor, indicating less distortions in the structure. The blue dots represent
the ferroelectric materials, between which a linear relationship can be recognized in
the semi-logarithmic representation. The red dot shows strontium titanate as a refer-
ence value for a quantum paraelectric material. The two materials that are possible
quantum paraelectrics, Cs2NaYCl6 (pink) and Rb2LiYCl6 (green), lie in the vicinity
of SrTiO3.

material. This value was calculated using equation (5.1). It is easy to see that stron-
tium titanate has a tolerance factor of approximately one due to its cubic structure.
It is also noticeable that the two possible quantum paraelectrics, Cs2NaYCl6 (pink)
and Rb2LiYCl6 (green), are close to the value of the potential height of strontium
titanate and are located in the area between the ferroelectric and paraelectric ma-
terials. Cs2NaYCl6 is closer to the paraelectrics, while Rb2LiYCl6 is very near the
to region of the ferroelectrics. This is also to be expected based on the solutions of
the Schrödinger equation: the ground state energy of Cs2NaYCl6 has a higher value
than the comparatively small potential height V0. It is therefore much closer to the
paraelectric structures than Rb2LiYCl6. Here, the ground state and the first excited
state were close to, but still below the potential barrier. The probability density of
the ground state did not have a clear maximum at zero displacement, but there were
minimal tendencies towards a localization in one of the two potential minima. This
solution is therefore much closer to those of the ferroelectrics.
In figure 5.11 the same situation as in figure 5.10 is shown again, with the differ-

ence that the ferroelectric materials are divided into those that have a non-degenerate
ground state (purple), which means that the energy of the first excited state is dif-
ferent from the ground state energy, and those that have a degenerate ground state
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Figure 5.11: Absolute value of the potential height V0 in semi-logarithmic representa-
tion as a function of the generalized tolerance factor t, as shown in fig. 5.10. However,
a distinction was made here between the ferroelectrics with degenerate ground state
(blue) and non-degenerate ground state (purple). The non-degenerate crystal struc-
tures are closer to the quantum paraelectric region.

(blue). It can be seen that the ferroelectric crystal structures with the non-degenerate
ground state can be found below the linear fit. They are therefore closer to the quan-
tum paraelectric region than the crystals with a degenerate ground state, which seems
reasonable, since the quantum paraelectrics have a degenerate ground state, as seen
in e.g. strontium titanate. These double perovskites would be interesting for an in-
vestigation of possible phase transitions from the ferroelectric to the paraelectric, but
this is beyond the scope of this work.
Figure 5.12 shows the potential heights V0 as a function of the average octahedral
factor (upper image) and the octahedral mismatch (lower image). The two factors
were calculated using equations (5.3) and (5.4). Both figures have a similar structure:
the ferroelectric materials are distributed in the upper area. These are again divided
into those that have a non-degenerate ground state (purple) and those that have a
degenerate ground state (blue). The paraelectrics (orange) are found in the lower
region with a tendency to have a smaller average octahedral factor or octahedral mis-
match. This can be explained by the fact, that having a smaller octahedral factor
indicates fewer distortions and thus a more stabilized structure. The non-degenerate
ferroelectrics are found in the lower region of the group of ferroelectrics and thus again
occupy a region closer to the quantum paraelectrics. As with the correlation plot of
the tolerance factor, Cs2NaYCl6 (pink) lies in the area between the ferroelectrics and
paraelectrics in both plots, while Rb2LiYCl6 (green) lies in the area of the ferroelec-
tric materials in both cases. Strontium titanate is not be considered as a reference
value here, as only one octahedral factor (see eq. (5.2)) is defined for single perovskite
structures.
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In figure 5.13 the same correlations are depicted in a different way. The three di-
mensional plots show the correlation of the tolerance factor t, the average octahedral
factor µ̄ and the potential height V0 (left image), as well as the correlation between
the tolerance factor t and the octahedral mismatch ∆µ and the potential height V0
(right image). The different colors in the plots indicate the different potential heights.
In order to be able to define a clear geometric shape, one would have to consider more
double perovskites.
The two dimensional correlation plots show that there is a connection between the
potential height and the tolerance factor, the average octahedral mismatch and the
octahedral mismatch: areas can be defined in the correlation plots where double per-
ovskites of the same phase can be found. With these results, a hypothesis could now
be made as to which phase a double perovskite is in, based on only DFT calculations
and the highly symmetric state, without solving the Schrödinger equation.

5.2.3 Centrosymmetric Structure

In all the structures calculated so far with Quantum ESPRESSO, a highly symmetric
structure at zero displacement was used as a starting point for the calculations. In
some cases, however, this resulted in very high potential barriers, which leads to the
conclusion that the highly symmetric structure may not be the most energetically
favorable one. If one imagines the double-well potential in three dimensions, for ex-
ample in the form of a mexican hat potential, and cuts vertically through the potential
landscape, then, depending on the cut, a different potential landscape could be the
result. One approach for generating a structure that provides a lower potential surface
could be the construction of a centrosymmetric structure. This structure would still
have the necessary symmetry, but could allow octahedral tilting, which could lead to
a lower energy barrier.
To generate this structure, the displaced, distorted structure in the minimum of the
double well is inverted. This means that its now possible to display the other mini-
mum of the double well potential through the inverted, equally distorted structure.
A way to verify, if the structure is successfully inverted is to calculate its energy,
since the double-well potential is symmetric and as a consequence the structures in
the minima should have the same energy. Now the inverted and displaced structures
are interpolated, resulting in a centrosymmetric structure at zero displacement that
is similar to the highly symmetric one, but with slight differences in the coordinates.
This can be seen in the example of Sr2LaNbO6 in graphic 5.14: on the left side,
the highly symmetric, cubic structure can be seen in three-dimensional view (a) and
along the a-axis (c). In comparison, the centrosymmetric structure can be seen on the
right side in the three dimensional way (b) as well as from the view along the a-axis
(d). From this comparison it can be seen, that the octahedra of the centrosymmetric
structure are slightly tilted.
For the centrosymmetric structure, the energy can now be calculated using an SCF
calculation, as well as the frequency of the system using a phonon calculation at the
Γ point. The energy that the particle would have at the minimum of the double-well
potential, which would result when doing the whole calculation (see procedure in fig-
ure 4.3) with the centrosymmetric structure as a starting point, is equal to the energy
that the particle has at the minimum of the double-well, when starting the calculation
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with the highly symmetric structure. The reason for that is, that since the potential
can be described by an energy gradient, this state in the minimum is already the
lowest in terms of energy. This was verified by recalculation. The centrosymmetric
double well potential can therefore be calculated via the frequency and energy of the
centrosymmetric structure and the energy of the displaced symmetric structure in the
minimum. This is depicted in figure 5.15.
For the new centrosymmetric potential the Schrödinger equation can now be solved
and the energy eigenvalues can be determined. The result of this calculation for
Sr2LaNbO6 can be seen in figure 5.16. The blue dashed line represents the potential
with the highly symmetric structure as the initial state at zero displacement. The po-
tential height is calculated from the energy difference between the symmetric structure
Esym and the distorted, displaced structure Edisp, which results in 1160.161meV. The
corresponding solutions of the Schrödinger equation are shown in blue and orange for
the degenerate ground state, which has a value of Esym

0 = Esym
1 = 11.054meV. The

probability density is localized in the minima of the potential. The new centrosym-
metric potential, which is calculated from the energy difference between the cen-
trosymmetric structure Ecentro and the distorted, displaced structure Edisp, is shown
here in red. The potential height here is only 148.393meV, so it has decreased by
1011.768meV. The energy for the ground state, which is degenerate again, has also
decreased. It is now Ecentro

0 = Ecentro
1 = 5.239meV. The eigenstates, shown in pink

and green, are again localized in the minima. All four representations of the eigen-
states have been enlarged in order to be able to recognize the different shapes.
It can therefore be stated that the construction of a centrosymmetric structure can
lead to a reduction in the potential barrier, which is demonstrated using the example
of Sr2LaNbO6. Despite the reduction of the energy barrier, Sr2LaNbO6 can still be
classified as a ferroelectric. This raises the question of whether it is possible to use
this symmetry consideration on other structures with a large potential energy barrier
to find a structure that is more energetically favorable and would in turn reduce the
potential barrier. This could perhaps lead to a quantum paraelectric state. However,
this is beyond the scope of the present work, but could be an interesting starting
point for future work.
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Figure 5.12: Top: Potential height V0 as a function of the average octahedral factor
µ̄.
Bottom: Potential height V0 as a function of the octahedral mismatch ∆µ.
In both figures, the ferroelectrics with a degenerate ground state (gs) (in blue) and
non-degenerate ground state (in purple) occupy the upper region of the plot, while
the paraelectrics (orange) can be found in the lower left region. Again, the double
perovskites with a degenerate ground state are located in the lower region of the
ferroelectrics and thus closer to the quantum paraelectrics. Cs2NaYCl6 (pink) is again
closer to the paraelectrics, while Rb2LiYCl6 (green) is in the ferroelectrics region.
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Figure 5.13: 3D representation of the correlation between the tolerance factor t, the
average octahedral factor µ̄ and the potential height V0 (left image), as well as the
correlation between the tolerance factor t, the octahedral mismatch ∆µ and the po-
tential height V0 (right image). The colors in the plot indicate the corresponding
potential heights. With more double perovskites, investigated in the future, it should
be possible to discern a defined geometric shape.

(a) (b)

(c) (d)

Figure 5.14: (a): Highly symmetric, cubic structure of Sr2LaNbO6. The strontium
ions (green) are in between of the octahedrals from the lanthanum ions (purple) and
the niobium ions (orange).
(b) Centrosymmetric structure of Sr2LaNbO6, where the tilting of the octahedra can
be seen.
(c) Highly symmetric structure of Sr2LaNbO6 along the a-axis.
(d) Centrosymmetric structure of Sr2LaNbO6 along the a-axis. [4]
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Figure 5.15: Potential of the highly symmetric structure (blue dashed line) with the
potential barrier calculated through the energy difference of the symmetric structure
(above the blue dashed line) and the distorted structure (in the minimum of the
double well) as well as the potential of the centrosymmetric structure (red dashed
line) for which the potential barrier can be extracted from the energy difference of
the centrosymmetric structure (above the red line) and the distorted structure (in the
minimum of the double well) for Sr2LaNbO6. It can be seen that the centrosymmetric
structure is energetically more favorable due to the lower potential barrier.
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Figure 5.16: Potentials of the highly symmetric structure (blue dashed line) with the
corresponding solutions (blue, orange) of the Schrödinger equation for the degenerate
ground state, as well as the potential of the centrosymmetric structure (red dashed
line) with their respective solutions (pink, green) for Sr2LaNbO6. It can be seen
that the centrosymmetric structure is energetically more favorable due to the lower
potential barrier. However in this case, the double perovskite remains in a ferroelectric
phase, as its eigenstates are still localized in the minima of the potential.



Chapter 6

Conclusion and Outlook

This thesis investigates the question of whether quantum paraelectricity can be found
in double perovskites.
First, quantum paraelectricity is investigated using the case study of strontium ti-
tanate, which has a simple perovskite structure. For this purpose, a method is utilized
that made it possible to construct a double-well potential with the help of Quantum
ESPRESSO calculations. The structure under consideration is imagined as a single
particle for quantum mechanical consideration, which is localized at the maximum
of a double-well potential. The calculation starts with a highly symmetric crystal
structure at zero polarization. After a relaxation calculation, the energy of the ini-
tial structure can be determined through of a self-consistent field (SCF) calculation,
and the frequency at the Γ point can be determined by a phonon calculation, which
results in eigenvectors corresponding to negative frequencies due to the instability of
the structure. The structure is afterwards shifted along those eigenvectors, which re-
sults in a removed position from the maximum. A further relaxation calculation leads
the structure to be displaced into one of the minima of the double-well potential.
The energy of the displaced structure can be calculated using an SCF calculation.
The double-well potential used for solving a Schrödinger equation can be constructed
through the potential barrier V0 and the half width σ. The potential barrier can be
obtained from the energy difference between the initial symmetric structure and the
displaced structure at the end. The width from the maximum of the potential to a
minimum, σ, can be calculated from V0 and the frequency of the symmetric struc-
ture at the Γ point. With this double-well potential, the one-particle one-dimensional
Schrödinger equation can be solved numerically and the energy eigenvalues obtained.
This method is based on [1], who applied this method for several single perovskites,
including strontium titanate.
For strontium titanate, a potential height of V0 = 5.22meV and a value for σ of
0.623 Å

√
u are obtained. The solution of the Schrödinger equation results in a ground

state energy of 6.24meV, which is close to the potential height. The fact that the prob-
ability density is delocalized over both minima leads to the conclusion that strontium
titanate is a quantum paraelectric material. The calculated values deviate slightly
from the reference calculation of [1], however, these values seem reasonable to make
this method suitable to determine the phase of a perovskite. The deviation might
origin from the use of slightly different parameters for the calculation.
The same method has been applied to a bulk of 77 double perovskites, which have
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the same electronic configuration as strontium titanate. The result of this calculation
show that, starting from a highly symmetric, cubic structure at zero displacement,
62 materials have a ferroelectric character, since their probability density is localized
in one of the two minima of the double well potential and the ground state energy
is well below the potential barrier. Of these 62 materials, 11 have a non-degenerate
ground state, meaning a ground state that has a lower energy value than the first
excited state. What is also noteworthy is that the potential barrier assumes values
from approximately 30meV to approximately 3500meV.
13 of the 77 materials have a potential height of approximately 0meV, which means
that no double-well potential can be constructed. Instead the materials can be de-
scribed using a parabola, which is why these materials can be classified as paraelectric.
Two of the considered materials exhibit quantum paraelectric behavior: Cs2NaYCl6
and Rb2LiYCl6. For both, a double-well potential can be calculated and a probability
density of the ground state delocalized over both minima can be found.
Using geometric factors that characterize the stability of perovskite structures, it is
possible to find regions that separate the ferroelectrics from the paraelectrics as a
function of the potential barrier. The quantum paraelectric materials are located in
between the two regions. The ferroelectric double perovskites with a non-degenerate
ground state tend to lie closer to the region of the quantum paraelectrics, who, ac-
cording to calculations, have a non-degenerate ground state. These materials could be
interesting subjects for future work. If the tolerance factor is considered as a function
of the potential height, an exponential relationship can even be established in the
area of the ferroelectric materials.
The large difference in the potential differences can indicate that the symmetric initial
structure is not the most energetically favorable. In order to find a structure that can
lower the potential height, a centrosymmetric structure is constructed that potentially
allows tilting of the octahedra. Using Sr2LaNbO6 as an example, it can be shown that
the potential barrier can indeed be lowered from 1160.161meV to 148.393meV. How-
ever, the solutions of the Schrödinger equation show that this structure remains in a
ferroelectric state even with the centrosymmetric structure. This raises the question
of whether double perovskites can be found in which the centrosymmetric structure
leads to a quantum paraelectric state. This could be of interest for future work.
In summary, in this thesis it can be reproduced that strontium titanate is a quan-
tum paraelectric material and after investigating different double perovskites, two
materials are found, Cs2NaYCl6 and Rb2LiYCl6, that also exhibited quantum para-
electric behavior. In addition, it appears that a clear geometric origin of quantum
paraelectricity exists. These results may provide valuable insights for future research
for double perovskites, whose electronic configuration differs from those of strontium
titanate.
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Appendix A

Convergence Tests and Tables

A.1 Convergence Tests for SrTiO3

Figure A.1: Convergence test for the lattice constant of SrTiO3. A lattice parameter
of 7.4 a0 was selected for the calculation.
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Figure A.2: Convergence test for the k-point grid for SrTiO3. For the calculations a
8× 8× 8 grid was chosen.

Figure A.3: Convergence test the cut-off energy of SrTiO3. For the calculations a
cut-off energy of 60Ry was used.



A.2. CONVERGENCE TESTS FOR SR2CAWO6 53

A.2 Convergence Tests for Sr2CaWO6

Figure A.4: Convergence test for the cutoff-Energy of Sr2CaWO6. The calculations
of the double Perovskites were carried out with 60Ry.
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Figure A.5: Convergence test for the k-point grid of Sr2CaWO6. An 8 × 8 × 8 grid
was selected for the calculations of the double perovskites.

Figure A.6: Convergence test for the lattice parameter of Sr2CaWO6. In Quantum
ESPRESSO it is possible to set the lattice parameter via one constant or through a
3 × 3 matrix, which was used here. The matrix for the lattice parameters is of the
form [(a, 0, b), (a, a, 0), (0, a, b)]. In the convergence tests, one of these parameters was
fixed while the other was changed. This results in a value of a of 4.026 349 769 a0
and a value of b of 4.326 349 769 a0. Combining the two values, the lattice constant
resulted in 11.17 a0.
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A.3 Results of the Schrödinger Equation for Dou-

ble Perovskites

Element Esym Edipl ω V0 V0 σ Ml

in Ry in Ry in THz in Ry in eV in Å
√
u in u

Sr3MoO6 -544.5407 -544.625 -5.9456 0.0843 1.1466 8.8457 15.999
Sr2NaReO6 -620.8728 -620.9121 -5.3258 0.0393 0.5349 6.7444 15.999
Sr2ScNbO6 -547.7637 -547.7781 -4.6868 0.0144 0.196 4.6389 15.999
Sr2TiZrO6 -553.972 -553.9816 -4.3341 0.0096 0.1305 4.0937 15.999
Sr2ScTaO6 -571.7655 -571.7794 -4.6788 0.0139 0.1895 4.5691 15.999
Sr2YNbO6 -546.2069 -546.2471 -5.638 0.0402 0.5467 6.4414 15.999
Sr2LaTaO6 -579.8533 -579.9349 -5.9157 0.0815 1.1089 8.7429 15.999
Sr2MgMoO6 -599.8228 -599.8286 -3.8795 0.0058 0.0787 3.5526 15.999
Sr3WO6 -564.4216 -564.5061 -5.9415 0.0845 1.1488 8.86 15.999
Sr2LiReO6 -540.08 -540.0876 -3.9946 0.0076 0.1029 5.9871 6.941
Sr2CaWO6 -569.2948 -569.3386 -5.6405 0.0439 0.5967 6.7264 15.999
Sr2YTaO6 -570.2112 -570.2505 -5.6136 0.0393 0.5349 6.3992 15.999
Sr2LaNbO6 -555.8487 -555.934 -5.9505 0.0853 1.1602 8.8904 15.999
Sr2CaMoO6 -549.4156 -549.4581 -5.6259 0.0425 0.578 6.6371 15.999
Sr2TiHfO6 -613.627 -613.6351 -4.2017 0.0081 0.1106 3.8872 15.999
Sr2MgWO6 -619.6985 -619.705 -3.8579 0.0065 0.0888 3.794 15.999
Rb2LiYCl6 -414.9066 -414.9077 -10.0801 0.0012 0.0159 0.9316 6.941
La2MgTiO6 -644.9725 -645.0247 -7.0366 0.0522 0.7096 5.8798 15.999
Pb2MgMoO6 -787.2222 -787.2323 -4.4602 0.0101 0.1373 4.0805 15.999
Ba2ScTaO6 -572.0352 -572.0352 -1.3341 -0.0 -0.0 NaN 15.999
Ba2MgMoO6 -600.0812 -600.0812 -0.6425 -0.0 -0.0 NaN 15.999
Ca2LaNbO6 -565.2894 -565.4781 -7.4855 0.1887 2.5669 10.5123 15.999
Rb2LiScCl6 -416.3655 -416.3655 -3.8828 -0.0 -0.0 NaN 6.941
Ba3WO6 -564.7964 -564.8482 -4.9861 0.0517 0.7035 8.262 15.999
Cs2NaScI6 -710.7331 -710.735 -4.5624 0.0019 0.0254 1.4314 22.99
Cs2LiYBr6 -515.8612 -515.8612 -11.9851 0.0 0.0 0.0051 6.941
Pb2ScTaO6 -759.1743 -759.1908 -4.7691 0.0165 0.2244 4.8781 15.999
Cs2NaLaCl6 -525.3856 -525.388 -2.9811 0.0024 0.0331 2.499 22.99
Ca3MoO6 -558.8734 -559.0003 -7.2894 0.1269 1.7253 8.8503 15.999
Ba2CaMoO6 -549.7291 -549.731 -2.8263 0.002 0.0271 2.8585 15.999
Ca3WO6 -578.752 -578.8945 -7.2821 0.1425 1.9377 9.3886 15.999
Na3YCl6 -579.985 -580.0664 -2.6993 0.0814 1.1076 15.9742 22.99
Ba2CaWO6 -569.6078 -569.61 -2.8202 0.0022 0.0301 3.0204 15.999
Cs2NaScBr6 -598.1957 -598.1957 -3.0417 -0.0 -0.0 NaN 22.99
Rb2NaScCl6 -497.2408 -497.243 -4.0145 0.0022 0.0299 1.7651 22.99
Ca2ScTaO6 -581.2487 -581.3298 -6.8975 0.0811 1.1025 7.4766 15.999
Ca2YTaO6 -579.6716 -579.8024 -7.2334 0.1308 1.779 9.0566 15.999
Cs2NaYCl6 -515.631 -515.631 -3.3188 2.4e-05 0.0003 0.2248 22.99
Cs2NaLaBr6 -606.5097 -606.5145 -2.6578 0.0049 0.0662 3.9655 22.99
Ba2NaReO6 -621.1871 -621.1894 -2.9425 0.0023 0.0308 2.9314 15.999
Cs2LiLaBr6 -525.6306 -525.6306 -12.6873 0.0 0.0 0.0022 6.941

Continued on next page
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Element Esym Edipl ω V0 V0 σ Ml in u
in Ry in Ry in THz in Ry in eV in Å

√
u in u

Ba2LaNbO6 -556.1866 -556.2027 -4.1615 0.0161 0.2188 5.521 15.999
Rb2NaLaCl6 -505.5298 -505.5442 -2.8514 0.0144 0.1958 6.359 22.99
Ba2ScNbO6 -548.0348 -548.0348 -1.6308 -0.0 -0.0 NaN 15.999
La2LiVO6 -559.7251 -559.7526 -6.2142 0.0275 0.3741 7.3391 6.941
Cs2KScBr6 -559.8601 -559.8635 -4.2344 0.0035 0.047 1.6086 39.098
K2LiScCl6 -424.0161 -424.0208 -3.8408 0.0048 0.0646 4.9358 6.941
La2LiNbO6 -532.6182 -532.6942 -7.4342 0.076 1.0332 10.1954 6.941
Ca2LiReO6 -549.5751 -549.6324 -6.5578 0.0573 0.7791 10.0369 6.941
Cs2LiYCl6 -434.749 -434.749 -10.7862 0.0 0.0 0.0 6.941
Cs2KYCl6 -477.2894 -477.2956 -3.7147 0.0062 0.0838 2.5719 35.453
Rb2NaYCl6 -495.7801 -495.787 -3.1077 0.007 0.095 4.0629 22.99
Ba2MgWO6 -619.9563 -619.9563 -0.2188 -0.0 -0.0 NaN 15.999
La2CaTiO6 -594.4772 -594.6353 -8.3242 0.1581 2.1497 8.6509 15.999
Pb2ScNbO6 -735.173 -735.192 -4.8218 0.0191 0.2595 5.1893 15.999
Ca2MgWO6 -629.1947 -629.2539 -6.6217 0.0592 0.8055 6.6572 15.999
Cs2NaScCl6 -517.0862 -517.0862 -4.3579 -0.0 -0.0 NaN 22.99
Ba2LiReO6 -540.3542 -540.3542 -0.5148 -0.0 -0.0 NaN 6.941
Na3YBr6 -661.0869 -661.1782 -2.4717 0.0914 1.2424 18.4765 22.99
Cs2LiLaCl6 -444.5069 -444.5069 -11.4075 -0.0 -0.0 NaN 6.941
Na3ScCl6 -581.455 -581.518 -3.217 0.0631 0.8578 11.7957 22.99
Ba2YVO6 -573.516 -573.516 -1.6796 0.0 0.0 0.0 15.999
Tl2NaScCl6 -680.5579 -680.5693 -4.5042 0.0114 0.1548 3.5791 22.99
Cs2KLaCl6 -487.0418 -487.0548 -3.2951 0.0131 0.1778 4.2223 35.453
Ca2MgMoO6 -609.3198 -609.3769 -6.5967 0.0571 0.7768 6.5621 15.999
Ba2LaTaO6 -580.1904 -580.2059 -4.0842 0.0155 0.2108 5.5218 15.999
Ca2ZrHfO6 -603.0427 -603.1476 -7.0896 0.1048 1.4254 8.271 15.999
Ca2LaTaO6 -589.2942 -589.4581 -7.4586 0.1639 2.2285 9.8303 15.999
Ba2YNbO6 -546.514 -546.5154 -2.6186 0.0014 0.0188 2.5743 15.999
Rb2LiLaCl6 -424.6581 -424.663 -10.7522 0.0049 0.0662 1.7842 6.941
Cs2NaYBr6 -596.7437 -596.7448 -2.9516 0.0011 0.0156 1.7344 22.99
Ca2ScNbO6 -557.2465 -557.3296 -6.9056 0.083 1.129 7.5573 15.999
Ba2YTaO6 -570.5171 -570.5183 -2.5102 0.0012 0.0165 2.516 15.999
La2CaZrO6 -574.343 -574.6046 -8.8527 0.2616 3.5575 10.4644 15.999
La2MgHfO6 -684.5031 -684.6082 -7.8721 0.105 1.4282 7.4561 15.999
Na3ScBr6 -662.5504 -662.6213 -2.849 0.0709 0.9648 14.126 22.99

Continued on next page
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Element Esym Edipl ω V0 V0 σ Ml in u
in Ry in Ry in THz in Ry in eV in Å

√
u in u

La2MgZrO6 -624.8413 -624.9575 -7.9463 0.1163 1.5815 7.7729 15.999

Table A.1: Energy values of the highly symmetrical structure Esym at zero displace-
ment, the polar, shifted structure Edispl, as well as the frequencies ω of the highly
symmetrical structure at the Γ point. In addition, the potential barrier V0 was cal-
culated via V0 = Esym − Edispl in Ry and converted into eV. The half-width of the
potential σ was calculated using eq. (3.4). Ml indicates the mass of the lightest ion
of the compound, here given by Oxygen (Ml = 15.999u), Lithium (Ml = 6.941u),
Sodium (Ml = 22.99u), Potassium (Ml = 39.098u) or Chlorine (Ml = 35.453u) [30].
This was used to convert the σ value into units of Å

√
u.

Some of the potential barriers are negative or zero. These elements can be as-
sumed to be paraelectrics, as a parabolic image must be used here to explain
the values and the image of a double well can’t be applied here. The paraelec-
tric elements are [Cs2LiLaBr6, Cs2LiYBr6, Ba2ScTaO6, Ba2MgMoO6, Rb2LiScCl6,
Cs2NaScBr6, Ba2ScNbO6, Cs2LiYCl6, Ba2MgWO6, Cs2NaScCl6, Ba2LiReO6,
Cs2LiLaCl6, Ba2YVO6] For those elements the value of V0 in Ry is zero, because either
the potential height had a value of zero, the potential height had a very small negative
value (due to numerical inaccuracies, which also lead to the NaN- values for σ in this
cases) (e.g. Cs2NaScCl6, whose potential height was calculated to −1.5 × 10−7Ry)
or the potential height was so small, that no double well could be constructed and
the potential height was set to zero (e.g. Cs2LiLaBr6, whose potential height was
calculated to 1× 10−8Ry).
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Element V0 E1 E2

in meV in meV in meV

Sr3MoO6 1146.63572 11.04485 11.04485
Sr2NaReO6 534.85427 9.88692 9.88692
Sr2ScNbO6 195.95424 8.67417 8.67417
Sr2TiZrO6 130.49744 8.00394 8.00394
Sr2ScTaO6 189.45589 8.65793 8.65793
Sr2YNbO6 546.73537 10.46573 10.46573
Sr2LaTaO6 1108.90986 10.98933 10.98933
Sr2MgMoO6 78.74373 7.13653 7.13653
Sr3WO6 1148.76752 11.03734 11.03734
Sr2LiReO6 102.87026 4.86777 4.86777
Sr2CaWO6 596.72135 10.47198 10.47198
Sr2YTaO6 534.93533 10.42003 10.42003
Sr2LaNbO6 1160.16146 11.054 11.054
Sr2CaMoO6 577.97076 10.44435 10.44435
Sr2TiHfO6 110.58582 7.75049 7.75049
Sr2MgWO6 88.81371 7.10697 7.10697
Rb2LiYCl6 15.85801 9.62336 12.21438
La2MgTiO6 709.60761 13.06284 13.06284
Pb2MgMoO6 137.3139 8.2383 8.2383
Ca2LaNbO6 2566.89718 13.90273 13.90273
Ba3WO6 703.4974 9.26063 9.26063
Cs2NaScI6 25.40412 9.51286 9.66827
Pb2ScTaO6 224.36124 8.83201 8.83201
Cs2NaLaCl6 33.0582 6.47396 6.47418
Ca3MoO6 1725.31273 13.54135 13.54135
Ba2CaMoO6 27.05856 5.12546 5.12557
Ca3WO6 1937.73045 13.52743 13.52743
Na3YCl6 1107.56958 6.00982 6.00982
Ba2CaWO6 30.07953 5.12906 5.12908
Rb2NaScCl6 29.90939 8.57862 8.59629
Ca2ScTaO6 1102.47244 12.81214 12.81214
Ca2YTaO6 1779.03844 13.43718 13.43718
Cs2NaYCl6 0.3317 7.85936 28.71312
Cs2NaLaBr6 66.17257 5.8625 5.8625
Ba2NaReO6 30.84385 5.34915 5.34918
Ba2LaNbO6 218.8376 7.71075 7.71075
Rb2NaLaCl6 195.84857 6.33548 6.33548
La2LiVO6 374.07262 7.59694 7.59694
Cs2KScBr6 47.00187 11.87893 11.88637
K2LiScCl6 64.63264 4.66516 4.66516
La2LiNbO6 1033.18547 9.09647 9.09647
Ca2LiReO6 779.13883 8.02379 8.02379

Continued on next page
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Element V0 E1 E2

in meV in meV in meV

Cs2KYCl6 83.84822 10.12985 10.12985
Rb2NaYCl6 94.96132 6.8696 6.8696
La2CaTiO6 2149.67856 15.46331 15.46331
Pb2ScNbO6 259.53886 8.93502 8.93502
Ca2MgWO6 805.54745 12.29636 12.29636
Na3YBr6 1242.39577 5.50171 5.50171
Na3ScCl6 857.78355 7.16395 7.16395
Tl2NaScCl6 154.81383 9.96717 9.96717
Cs2KLaCl6 177.81184 9.07043 9.07043
Ca2MgMoO6 776.78358 12.24929 12.24929
Ba2LaTaO6 210.84474 7.56691 7.56691
Ca2ZrHfO6 1425.35929 13.17017 13.17017
Ca2LaTaO6 2228.50498 13.85431 13.85431
Ba2YNbO6 18.83818 4.70191 4.70451
Rb2LiLaCl6 66.18685 12.83413 12.83451
Cs2NaYBr6 15.6109 6.11275 6.24771
Ca2ScNbO6 1129.04861 12.82732 12.82732
Ba2YTaO6 16.53556 4.48884 4.49445
La2CaZrO6 3557.53737 16.4389 16.4389
La2MgHfO6 1428.17299 14.62338 14.62338
Na3ScBr6 964.81637 6.34399 6.34399
La2MgZrO6 1581.46512 14.76157 14.76157

Table A.2: Potential barrier V0 for the respective elements, as well as the ground state
energy E0 and that of the first excited state E1 for all materials that have a potential
barrier greater than zero. It is noticeable that the ground state is non-degenerate for
13 of the 64 elements.
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A.4 Ionic Radii and Geometric Factors

Element A B B’ X rA rB rB′ rX µ̄ ∆µ t
in Å in Å in Å in Å

Ba2CaMoO6 Ba Ca Mo O 1.61 1.0 0.59 1.4 0.56786 0.14643 0.96545
Ba2CaWO6 Ba Ca W O 1.61 1.0 0.6 1.4 0.57143 0.14286 0.96348
Ba2LaNbO6 Ba La Nb O 1.61 1.032 0.64 1.4 0.59714 0.14 0.94824
Ba2LaTaO6 Ba La Ta O 1.61 1.032 0.64 1.4 0.59714 0.14 0.94824
Ba2LiReO6 Ba Li Re O 1.61 0.76 0.53 1.4 0.46071 0.08214 1.03914
Ba2MgMoO6 Ba Mg Mo O 1.61 0.72 0.59 1.4 0.46786 0.04643 1.0352
Ba2MgWO6 Ba Mg W O 1.61 0.72 0.6 1.4 0.47143 0.04286 1.03276
Ba2NaReO6 Ba Na Re O 1.61 1.02 0.53 1.4 0.55357 0.175 0.97242
Ba2ScNbO6 Ba Sc Nb O 1.61 0.745 0.64 1.4 0.49464 0.0375 1.01683
Ba2ScTaO6 Ba Sc Ta O 1.61 0.745 0.64 1.4 0.49464 0.0375 1.01683
Ba2YNbO6 Ba Y Nb O 1.61 0.9 0.64 1.4 0.55 0.09286 0.97907
Ba2YTaO6 Ba Y Ta O 1.61 0.9 0.64 1.4 0.55 0.09286 0.97907
Ba2YVO6 Ba Y V O 1.61 0.9 0.54 1.4 0.51429 0.12857 1.00036
Ba3WO6 Ba Ba W O 1.61 1.35 0.6 1.4 0.69643 0.26786 0.8852
Ca2LaNbO6 Ca La Nb O 1.34 1.032 0.64 1.4 0.59714 0.14 0.86318
Ca2LaTaO6 Ca La Ta O 1.34 1.032 0.64 1.4 0.59714 0.14 0.86318
Ca2LiReO6 Ca Li Re O 1.34 0.76 0.53 1.4 0.46071 0.08214 0.94592
Ca2MgMoO6 Ca Mg Mo O 1.34 0.72 0.59 1.4 0.46786 0.04643 0.94234
Ca2MgWO6 Ca Mg W O 1.34 0.72 0.6 1.4 0.47143 0.04286 0.94012
Ca2ScNbO6 Ca Sc Nb O 1.34 0.745 0.64 1.4 0.49464 0.0375 0.92562
Ca2ScTaO6 Ca Sc Ta O 1.34 0.745 0.64 1.4 0.49464 0.0375 0.92562
Ca2YTaO6 Ca Y Ta O 1.34 0.9 0.64 1.4 0.55 0.09286 0.89125
Ca2ZrHfO6 Ca Zr Hf O 1.34 0.72 0.71 1.4 0.51071 0.00357 0.91606
Ca3MoO6 Ca Ca Mo O 1.34 1.0 0.59 1.4 0.56786 0.14643 0.87885
Ca3WO6 Ca Ca W O 1.34 1.0 0.6 1.4 0.57143 0.14286 0.87705
Cs2KLaCl6 Cs K La Cl 1.88 1.38 1.032 1.81 0.6663 0.09613 0.86369
Cs2KScBr6 Cs K Sc Br 1.88 1.38 0.745 1.96 0.54209 0.16199 0.89344
Cs2KYCl6 Cs K Y Cl 1.88 1.38 0.9 1.81 0.62983 0.1326 0.88157
Cs2LiLaBr6 Cs Li La Br 1.88 0.76 1.032 1.96 0.45714 0.06939 0.94966
Cs2LiLaCl6 Cs Li La Cl 1.88 0.76 1.032 1.81 0.49503 0.07514 0.96302
Cs2LiYBr6 Cs Li Y Br 1.88 0.76 0.9 1.96 0.42347 0.03571 0.97292
Cs2LiYCl6 Cs Li Y Cl 1.88 0.76 0.9 1.81 0.45856 0.03867 0.988
Cs2NaLaBr6 Cs Na La Br 1.88 1.02 1.032 1.96 0.52347 0.00306 0.90934
Cs2NaLaCl6 Cs Na La Cl 1.88 1.02 1.032 1.81 0.56685 0.00331 0.92003
Cs2NaScBr6 Cs Na Sc Br 1.88 1.02 0.745 1.96 0.45026 0.07015 0.95413
Cs2NaScCl6 Cs Na Sc Cl 1.88 1.02 0.745 1.81 0.48757 0.07597 0.96781
Cs2NaScI6 Cs Na Sc I 1.88 1.02 0.745 2.2 0.40114 0.0625 0.935
Cs2NaYBr6 Cs Na Y Br 1.88 1.02 0.9 1.96 0.4898 0.03061 0.9297
Cs2NaYCl6 Cs Na Y Cl 1.88 1.02 0.9 1.81 0.53039 0.03315 0.94174
K2LiScCl6 K Li Sc Cl 1.64 0.76 0.745 1.81 0.41575 0.00414 0.952
La2CaTiO6 La Ca Ti O 1.36 1.0 0.605 1.4 0.57321 0.14107 0.88255
La2CaZrO6 La Ca Zr O 1.36 1.0 0.72 1.4 0.61429 0.1 0.86189
La2LiNbO6 La Li Nb O 1.36 0.76 0.64 1.4 0.5 0.04286 0.92896

Continued on next page
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Element A B B’ X rA rB rB′ rX µ̄ ∆µ t
in Å in Å in Å in Å

La2LiVO6 La Li V O 1.36 0.76 0.54 1.4 0.46429 0.07857 0.95064
La2MgHfO6 La Mg Hf O 1.36 0.72 0.71 1.4 0.51071 0.00357 0.92275
La2MgTiO6 La Mg Ti O 1.36 0.72 0.605 1.4 0.47321 0.04107 0.94587
La2MgZrO6 La Mg Zr O 1.36 0.72 0.72 1.4 0.51429 0.0 0.92057
Na3ScBr6 Na Na Sc Br 1.39 1.02 0.745 1.96 0.45026 0.07015 0.83238
Na3ScCl6 Na Na Sc Cl 1.39 1.02 0.745 1.81 0.48757 0.07597 0.83929
Na3YBr6 Na Na Y Br 1.39 1.02 0.9 1.96 0.4898 0.03061 0.81106
Na3YCl6 Na Na Y Cl 1.39 1.02 0.9 1.81 0.53039 0.03315 0.81668
Pb2MgMoO6 Pb Mg Mo O 1.49 0.72 0.59 1.4 0.46786 0.04643 0.99393
Pb2ScNbO6 Pb Sc Nb O 1.49 0.745 0.64 1.4 0.49464 0.0375 0.97629
Pb2ScTaO6 Pb Sc Ta O 1.49 0.745 0.64 1.4 0.49464 0.0375 0.97629
Rb2LiLaCl6 Rb Li La Cl 1.72 0.76 1.032 1.81 0.49503 0.07514 0.92126
Rb2LiScCl6 Rb Li Sc Cl 1.72 0.76 0.745 1.81 0.41575 0.00414 0.97408
Rb2LiYCl6 Rb Li Y Cl 1.72 0.76 0.9 1.81 0.45856 0.03867 0.94516
Rb2NaLaCl6 Rb Na La Cl 1.72 1.02 1.032 1.81 0.56685 0.00331 0.88014
Rb2NaScCl6 Rb Na Sc Cl 1.72 1.02 0.745 1.81 0.48757 0.07597 0.92585
Rb2NaYCl6 Rb Na Y Cl 1.72 1.02 0.9 1.81 0.53039 0.03315 0.9009
Sr2CaMoO6 Sr Ca Mo O 1.44 1.0 0.59 1.4 0.56786 0.14643 0.91093
Sr2CaWO6 Sr Ca W O 1.44 1.0 0.6 1.4 0.57143 0.14286 0.90906
Sr2LaNbO6 Sr La Nb O 1.44 1.032 0.64 1.4 0.59714 0.14 0.89468
Sr2LaTaO6 Sr La Ta O 1.44 1.032 0.64 1.4 0.59714 0.14 0.89468
Sr2LiReO6 Sr Li Re O 1.44 0.76 0.53 1.4 0.46071 0.08214 0.98045
Sr2MgMoO6 Sr Mg Mo O 1.44 0.72 0.59 1.4 0.46786 0.04643 0.97673
Sr2MgWO6 Sr Mg W O 1.44 0.72 0.6 1.4 0.47143 0.04286 0.97443
Sr2NaReO6 Sr Na Re O 1.44 1.02 0.53 1.4 0.55357 0.175 0.9175
Sr2ScNbO6 Sr Sc Nb O 1.44 0.745 0.64 1.4 0.49464 0.0375 0.9594
Sr2ScTaO6 Sr Sc Ta O 1.44 0.745 0.64 1.4 0.49464 0.0375 0.9594
Sr2TiHfO6 Sr Ti Hf O 1.44 0.605 0.71 1.4 0.46964 0.0375 0.97571
Sr2TiZrO6 Sr Ti Zr O 1.44 0.605 0.72 1.4 0.47321 0.04107 0.97329
Sr2YNbO6 Sr Y Nb O 1.44 0.9 0.64 1.4 0.55 0.09286 0.92377
Sr2YTaO6 Sr Y Ta O 1.44 0.9 0.64 1.4 0.55 0.09286 0.92377
Sr3MoO6 Sr Sr Mo O 1.44 1.18 0.59 1.4 0.63214 0.21071 0.87162
Sr3WO6 Sr Sr W O 1.44 1.18 0.6 1.4 0.63571 0.20714 0.86999
Tl2NaScCl6 Tl Na Sc Cl 1.7 1.02 0.745 1.81 0.48757 0.07597 0.9206

Table A.3: Ionic Radii rA, rB, r
′
B, rX in Å [31] for the different ions (A,B,B’,X) of

the different double perovskites and the avergage octahedral factor µ̄, octahedral
mismatch ∆µ and generalized tolerance factor t (calculated with eq. (5.3), (5.4) and
(5.5)).
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18K. Kopitzki and P. Herzog, Einführung in die Festkörperphysik (Springer, Berlin,
Heidelberg, 2017).

19L. Yang, X. Li, E. Allahyarov, Q. Zhang, and L. Zhu, “Novel polymer ferroelectric
behavior via crystal isomorphism and the nanoconfinement effect”, Polymer 54,
1709–1728 (2013).

20M. Christl, “Charakterisierung ferroelektrischer Eigenschaften von ultradünnen epi-
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