7. Matrices, déterminants, polynômes caractéristiques - Exercices

Sauf mention contraire, E désigne un espace vectoriel sur un corps K. n est un entier naturel non nul. \mathbb{K} désigne un sous-corps de \mathbb{C} .

Algèbre des matrices

E-7.1. $(5')^*$ Soient $X \in \mathcal{M}_{n,1}(\mathbb{C})$ non nul, $\lambda = X^\top \overline{X}$, $M = \lambda I_n - 2X(\overline{X})^\top$, A = Re(M) et B = Im(M). Montrer que AB = -BA. Énoncé détaillé – Corrigé

E-7.2. $(5')^*$ Soit $A \in \mathcal{M}_n(K)$ telle qu'il existe $k \in \mathbb{N}^*$ vérifiant $kA^{k+1} = (k+1)A^k$. Montrer que $A - I_n$ est inversible.

Énoncé détaillé - Corrigé

E-7.3. $(5')^*$ Soit $n \in \mathbb{N}^*$.

(a) Soit $(A, B) \in GL_n(K) \times \mathcal{M}_n(K)$. Montrer que AB et BA sont semblables.

(b) Donner un exemple de couple $(A, B) \in \mathcal{M}_2(\mathbb{R})^2$ tel que AB et BA ne soient pas semblables.

Énoncé détaillé - Corrigé

E-7.4. $(5')^*$ Soit $(A, B, C, D) \in \mathcal{M}_n(K)^4$ telles que AB^{\top} et CD^{\top} soient symétriques, et $AD^{\top} - BC^{\top} = I_n$. Montrer que $A^{\top}D - B^{\top}C = I_n$.

Énoncé détaillé - Corrigé

E-7.5. (5')* Déterminer $\mathcal{Z} = \{A \in \mathcal{M}_n(K), \forall M \in \mathcal{M}_n(K), AM = MA\}.$

Énoncé détaillé - Corrigé

E-7.6. $(15')^{**}$ Soient $n \in \mathbb{N}^*$ et $A = \{M \in \mathcal{M}_n(K), M^2 = I_2\}$. Déterminer Vect(A).

Énoncé détaillé - Corrigé

E-7.7. $(20')^{***}$ Déterminer toutes les applications f de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{R}_+ vérifiant les propriétés suivantes.

(i) Pour tout $A \in \mathcal{M}_n(\mathbb{K})$ et tout $\lambda \in \mathbb{K}$

$$f(\lambda A) = |\lambda| f(A)$$
.

(ii) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$

$$f(A+B) \le f(A) + f(B).$$

(iii) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$

$$f(AB) = f(BA).$$

Énoncé détaillé - Corrigé

E-7.8. $(20')^{***}$ Soit $(A, B) \in \mathcal{M}_n(K)^2$. Montrer l'équivalence entre les assertions suivantes.

- (i) Il existe $M \in \mathcal{M}_n(K)$ telle que AM + MA = B.
- (ii) Pour tout $X \in \mathcal{M}_n(K)$, si AX + XA = 0, alors Tr(BX) = 0.

Énoncé détaillé - Corrigé

Représentations matricielles

E-7.9. $(10')^*$ Soient $(a,b) \in \mathbb{K}^2$ et $\varphi : \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ définie par $\varphi(M) = aM + bM^{\top}$. Donner une condition nécessaire et suffisante sur a et b pour que φ soit un automorphisme de $\mathcal{M}_n(\mathbb{K})$ et déterminer la trace et le déterminant de φ .

Énoncé détaillé - Corrigé

E-7.10. $(N')^{**}$ Soient $A \in \mathcal{M}_n(K)$, f et φ les endomorphismes de $\mathcal{M}_n(K)$ définis par $f: M \mapsto AM$ et $\varphi: M \mapsto MA + AM$.

- (a) Déterminer la matrice de f dans la base canonique. Donner le noyau, l'image, le rang, la trace et le déterminant de f en fonction de ceux de A.
 - (b) Déterminer la trace de φ .

Énoncé détaillé - Corrigé

E-7.11. $(10')^{**}$ Soient $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ deux matrices non nulles vérifiant $A^2 = B^2 = 0$.

- (a) Montrer que A et B sont semblables.
- (b) Est-ce toujours vrai dans $\mathcal{M}_4(\mathbb{C})$?

Énoncé détaillé - Corrigé

E-7.12. $(15')^{**}$ *Transvections*. Soient E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$ et $t \in \mathcal{L}(E)$. Montrer l'équivalence des propriétés suivantes.

- (i) $t \in GL(E) \setminus \{id_E\}$ et il existe un hyperplan H de E tel que t(x) = x pour tout $x \in H$ et $t(x) x \in H$ pour tout $x \in E$.
- (ii) Il existe $\varphi \in E^*$ non nulle et $a \in \text{Ker } \varphi$ tels que pour tout $x \in E$, $t(x) = x + \varphi(x)a$.
- (iii) Il existe une base \mathscr{B} de E telle que $\mathrm{Mat}_{\mathscr{B}}(t) = I_n + E_{2,1}$.

Un endomorphisme vérifiant ces propriétés est appelé transvection.

E-7.13. $(15')^{**}$ Soient E un K-espace vectoriel de dimension 2, D_1 , D_2 , D_3 trois droites vectorielles de E deux à deux distinctes, de même que Δ_1 , Δ_2 , Δ_3 .

- (a) Montrer que $\mathscr{D} = \{u \in \mathscr{L}(E), u(D_i) \subset \Delta_i \text{ pour } i \in \{1,2,3\}\}$ est une droite vectorielle de $\mathscr{L}(E)$.
- (b) Dans le cas $E = \mathbb{R}^2$, trouver la forme générale des matrices canoniquement associées aux éléments de \mathscr{D} pour $\Delta_1 : y = x$, $\Delta_2 : y = 2x$, $\Delta_3 : y = 3x$, $D_1 : y = 0$, $D_2 : x = 0$, $D_3 : y = -x$.

Énoncé détaillé - Corrigé

E-7.14. $(15')^{**}$ Soient E un K-espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E.

- (a) On note $A = \{u \in \mathcal{L}(E), F \subset \text{Ker } u\}$ et $B = \{u \in \mathcal{L}(E), \text{Im } u \subset F\}$. Montrer que A et B sont des sous-espaces vectoriels de $\mathcal{L}(E)$ et donner leurs dimensions.
 - (b) Déterminer la dimension de $C = \{u \in \mathcal{L}(E), u(F) \subset F \text{ et } u(G) \subset G\}$ en fonction de celles de F, G et $F \cap G$.

Énoncé détaillé - Corrigé

E-7.15. $(20')^{***}$ Soient N_1 et N_2 deux matrices carrées à coefficients dans K nilpotentes de tailles respectives p_1 et p_2 , et U_1 et U_2 deux matrices carrées inversibles de tailles respectives q_1 et q_2 , avec $n = p_1 + q_1 = p_2 + q_2$. Donner une condition nécessaire et suffisante pour que $M_1 = \begin{pmatrix} N_1 & 0 \\ 0 & U_1 \end{pmatrix}$ et $M_2 = \begin{pmatrix} N_2 & 0 \\ 0 & U_2 \end{pmatrix}$ soient semblables.

Énoncé détaillé - Corrigé

Rang, matrices équivalentes, opérations sur les rangées

E-7.16. (5')* Soit $M \in \mathcal{M}_n(K)$ une matrice de rang 1. Montrer qu'il existe deux vecteurs colonnes X et Y tels que $M = XY^{\top}$ et calculer M^p pour tout $p \in \mathbb{N}$.

Énoncé détaillé - Corrigé

E-7.17. $(10')^*$ Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (a) Montrer que si A est inversible, alors A est triangulaire inférieure si et seulement si A^k l'est pour tout $k \ge 2$.
- (b) Donner un exemple de matrice non inversible et non triangulaire inférieure telle que A^k soit triangulaire inférieure pour tout $k \ge 2$.

Énoncé détaillé - Corrigé

E-7.18. $(10')^{**}$ Soit $A \in \mathcal{M}_n(K)$. Déterminer la dimension du sous-espace E_A de $\mathcal{M}_n(K)$ défini par

$$E_A = \{B \in \mathcal{M}_n(K), ABA = 0\}.$$

Énoncé détaillé - Corrigé

E-7.19. $(10')^{**}$ $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{C})$ est dite *en damier* si $a_{i,j} = 0$ dès que i+j est impair. On note Dam l'ensemble des matrices en damier de $\mathcal{M}_n(\mathbb{C})$.

- (a) Montrer que Dam est une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$ et déterminer sa dimension.
- (b) Si A est inversible en damier, A^{-1} est-elle en damier?

Énoncé détaillé - Corrigé

E-7.20. $(10')^{**}$ Soient $(p,q) \in (\mathbb{N}^*)^2$ et $M \in \mathcal{M}_{p,q}(K)$. Montrer que

$$\operatorname{rg} M = \inf\{k \in \mathbb{N}, \exists (A,B) \in \mathcal{M}_{p,k}(K) \times \mathcal{M}_{k,q}(K) \text{ telles que } M = AB\}.$$

Énoncé détaillé - Corrigé

E-7.21. $(10')^{**}$ Soit A une matrice (a priori rectangulaire) partitionnée en blocs $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,k} \\ \vdots & & \vdots \\ A_{\ell,1} & \dots & A_{\ell,k} \end{pmatrix}$ (on ne précise pas les

dimensions, on impose seulement qu'elles soient compatibles).

- (a) Montrer que $\operatorname{rg}(A) \leq \sum_{(i,j) \in [\![1,k]\!] \times [\![1,\ell]\!]} \operatorname{rg}(A_{i,j}).$
- (b) *Application*: pour $(m, n, p) \in (\mathbb{N}^*)^3$, $B \in \mathcal{M}_{m,p}(K)$, $C \in \mathcal{M}_{m,n-p}(K)$, $D \in \mathcal{M}_{n-m,p}(K)$ et $A = \begin{pmatrix} B & C \\ D & 0 \end{pmatrix}$, montrer que si A est inversible, alors $\operatorname{rg} B \ge m + p n$.

Énoncé détaillé - Corrigé

E-7.22. $(20')^{***}$ Soient $(A,B) \in \mathcal{M}_n(\mathbb{R})^2$ tel que rg $A = \operatorname{rg} B$ et $A^2B = A$. Montrer que $B^2A = B$.

E-7.23. $(15')^{***}$ Soient E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$.

- (a) Montrer que dim $Ker(u^2) \le 2 \dim Ker(u)$.
- (b) Montrer l'équivalence des trois propriétés suivantes.
- (i) $\dim \operatorname{Ker}(u^2) = 2 \dim \operatorname{Ker}(u)$.
- (ii) $\operatorname{Ker}(u) \subset \operatorname{Im} u$.
- (iii) $u(\text{Ker}(u^2)) = \text{Ker } u$.
- (c) Soit $A \in \mathcal{M}_n(K)$. Montrer que dim $\operatorname{Ker}(A^2) = 2 \dim \operatorname{Ker}(A)$ si et seulement si $\operatorname{rg} \begin{pmatrix} A & I_n \\ 0 & A \end{pmatrix} = \operatorname{rg} \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$.

Énoncé détaillé - Corrigé

Formes linéaires, équations de sous-espaces, systèmes linéaires

E-7.24. $(10')^*$ Transposée d'un endomorphisme. Soient E un K-espace vectoriel de dimension $n \ge 1$ rapporté à une base \mathscr{B} et $u \in \mathscr{L}(E)$. La transposée de u est l'application $u^{\top} \in \mathscr{L}(E^*)$ définie pour tout $\varphi \in E^*$ par $u^{\top}(\varphi) = \varphi \circ u$. Donner la matrice de u^{\top} dans la base \mathscr{B}^* des formes coordonnées associée à \mathscr{B} , en fonction de la matrice de u dans \mathscr{B} .

Énoncé détaillé - Corrigé

E-7.25. $(20')^{***}$ Soit $n \in \mathbb{N}^*$. $P \in \mathcal{M}_n(\mathbb{R})$ est une matrice de permutation si et seulement s'il existe $\sigma \in \mathcal{S}_n$ tel que $P = \left(\delta_{i,\sigma(j)}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}$: on note alors $P = P_{\sigma}$. E est l'ensemble des matrices $M = \left(m_{i,j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ telles que pour tout $(i,j) \in [1,n]^2$,

 $\sum_{k=1}^{n} m_{i,k} = \sum_{k=1}^{n} m_{k,j} : \text{pour } M \in E, \text{ on note } s(M) \text{ cette valeur commune. On définit encore } E_0 = \{M \in E, s(M) = 0\}. \text{ On admet } (c'\text{est immédiat}) \text{ que } E \text{ est un sous-espace vectoriel de } \mathcal{M}_n(\mathbb{R}) \text{ et que } E_0 \text{ est un sous-espace de } E.$

- (a) Donner la dimension de E_0 , puis celle de E.
- (b) Montrer que $E = \text{Vect}((P_{\sigma})_{\sigma \in \mathscr{S}_n})$.

Énoncé détaillé – Corrigé

E-7.26. (20')*** Soient *E* un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et *A* un sous-espace de *E*. On pose

$$A^{\circ} = \{ \varphi \in E^*, \varphi(x) = 0 \text{ pour tout } x \in A \}$$

qui est de façon immédiate un sous-espace vectoriel de E^* . Montrer que dim A + dim $A^\circ = n$.

Énoncé détaillé - Corrigé

Déterminants

E-7.27.
$$(10')^*$$
 Soit $M = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$, avec $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$.

- (a) Montrer que det(M) = det(A + iB) det(A iB).
- (b) En déduire que si A et B sont à coefficients réels, alors det $M \ge 0$.

Énoncé détaillé - Corrigé

E-7.28. $(10')^*$ Les classiques des déterminants par blocs. Soit $(A, B, C, D) \in \mathcal{M}_n(K)^4$, avec D inversible.

(a) Montrer que si C et D commutent, alors le déterminant par blocs $\left| \begin{array}{cc} A & B \\ C & D \end{array} \right|$ vérifie

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = \det(AD - BC).$$

(b) Montrer que si CD^{\top} est symétrique, alors

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = \det(AD^{\mathsf{T}} - BC^{\mathsf{T}}).$$

(c) Montrer, en toute généralité, que

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(AD - B(D^{-1}CD)).$$

(d) (Pour les 5/2) Comment s'affranchir de l'hypothèse d'inversibilité de D dans (a) et (b) lorsque $K = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$?

Énoncé détaillé - Corrigé

E-7.29. $(10')^{**}$ Soit $(P_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathbb{C}[X]^{n^2}$. Pour tout $z \in \mathbb{C}$, on suppose que $A(z) = (P_{i,j}(z))_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathrm{GL}_n(\mathbb{C})$. Montrer que les

coefficients de $A(z)^{-1}$ sont des polynômes en z.

E-7.30. $(5')^{**}$ Soient $n \ge 2$, $M \in GL_n(\mathbb{R})$ et $k \in [1, n-1]$. On découpe M par blocs sous la forme $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ avec $A \in \mathcal{M}_k(\mathbb{R})$ et $D \in \mathcal{M}_{n-k}(\mathbb{R})$, les autres étant de tailles compatibles, et on fait de même pour $M^{-1} = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$. Montrer que $\det(A) = \det(M) \det(D')$.

Énoncé détaillé - Corrigé

E-7.31. $(20')^{**}$ Soit $(\lambda_k)_{1 \le k \le n} \in \mathbb{R}^n$ et $(a,b) \in \mathbb{R}^2$, on pose $M = \begin{pmatrix} m_{i,j} \end{pmatrix}_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ où pour tout $(i,j) \in \llbracket 1,n \rrbracket^2$, $m_{i,i} = \lambda_i$, $m_{i,j} = a$ si i < j et $m_{i,j} = b$ si i > j. Calculer

$$D_n(a,b) = \det M$$
.

On pourra commencer par le cas $a \neq b$.

Énoncé détaillé - Corrigé

E-7.32. $(15')^{**}$ Soient $(x_i)_{0 \le i \le n} \in \mathbb{R}^{n+1}$ et $A = (a_{i,j})_{\substack{0 \le i \le n \ 0 \le j \le n}}$ où $a_{i,j} = \cos((j-1)x_i)$ pour tout $(i,j) \in [0,n]^2$.

- (a) Déterminer la valeur de det(A) et le rang de A.
- (b) Montrer que $|\det A| \le n!$.

Énoncé détaillé - Corrigé

E-7.33. $(10')^{**}$ Soit $(a_1,\ldots,a_n,b_1,\ldots,b_n) \in K^{2n}$. Calculer $\det \left(m_{i,j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ où $m_{i,j} = b_i$ si $i \neq j$ et $m_{i,i} = a_i + b_i$, $(i,j) \in [\![1,n]\!]^2$.

Énoncé détaillé - Corrigé

E-7.34. $(15')^{**}$ Soit $(A, X) \in \mathcal{M}_n(\mathbb{R})^2$ où X est une matrice de rang 1. Montrer que $\det(A + X) \det(A - X) \leq \det(A)^2$. **Énoncé détaillé – Corrigé**

E-7.35. $(15')^{**}$ Formule de Cauchy-Binet. Soit $(n,p) \in (\mathbb{N}^*)^3$, $n \leq p$. Pour une matrice $A \in \mathcal{M}_{n,p}(K)$ et une partie $S \subset [[1,p]]$ de cardinal n, on note A^S la matrice de taille $n \times n$ obtenue en extrayant de A ses colonnes d'indices appartenant à S. De même, pour une matrice $B \in \mathcal{M}_{p,n}(K)$ et une partie $S \subset [[1,p]]$ de cardinal n, on note B_S la matrice de taille $n \times n$ obtenue en extrayant de B ses lignes d'indices appartenant à S. Montrer alors que

$$\det(AB) = \sum_{S \in \mathscr{P}_n([[1,p]])} \det(A^S) \det(B_S).$$

Énoncé détaillé - Corrigé

E-7.36. $(20')^{***}$ Soit $(a_1, ..., a_n, b_1, ..., b_n) \in K^{2n}$. Calculer det M où $M = ((a_i + b_j)^{n-1})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$.

Énoncé détaillé - Corrigé

E-7.37.
$$(15')^{***}$$
 Soit $(a_1, ..., a_n) \in \mathbb{Z}^n$. Montrer que $D = \frac{\prod\limits_{1 \le i < j \le n} (a_j - a_i)}{\prod\limits_{1 \le i < j \le n} (j - i)} \in \mathbb{Z}$.

Énoncé détaillé - Corrigé

E-7.38. $(20')^{***}$ Déterminant de Cauchy. Soit $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{K}^{2n}$ vérifiant $a_i + b_j \neq 0$ pour tout $(i, j) \in [1, n]^2$. Calculer

$$D_n(a_1,\ldots,a_n,b_1,\ldots,b_n) = \det\left(\frac{1}{a_i+b_j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}.$$

Énoncé détaillé – Corrigé

E-7.39. $(30')^{***}$ Déterminer toutes les matrices $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{R})$ telles que

$$|\det(A)| = \prod_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{i,j}| \right).$$

Calculs de polynômes caractéristiques

E-7.40.
$$(20')^{**}$$
 Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{C})$ où $a_{i,j} = 1$ si $|i-j| = 1$ et $a_{i,j} = 0$ sinon. On note P_n son polynôme caractéristique.

- (a) Former une relation de récurrence entre P_{n+2} , P_{n+1} et P_n .
- (b) Montrer que A est diagonalisable sur \mathbb{R} et donner ses valeurs propres.

Énoncé détaillé - Corrigé

E-7.41.
$$(20')^{***}$$
 Soit $A = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$.

(a) Soit $V \in \mathbb{R}^n$. Montrer que si AV est à coefficients positifs ou nuls, alors V également.

- (b) Montrer que A est inversible et que A^{-1} est à coefficients positifs.
- (c) Donner les valeurs propres de A.

7. Matrices, déterminants, polynômes caractéristiques - Exercices (énoncés détaillés)

Sauf mention contraire, E désigne un espace vectoriel sur un corps K. n est un entier naturel non nul. \mathbb{K} désigne un sous-corps de \mathbb{C} .

Algèbre des matrices

E-7.1. $(5')^*$ Soient $X \in \mathcal{M}_{n,1}(\mathbb{C})$ non nul, $\lambda = X^{\top} \overline{X}$, $M = \lambda I_n - 2X(\overline{X})^{\top}$, $A = \operatorname{Re}(M)$ et $B = \operatorname{Im}(M)$. Montrer que $i(AB + BA) \in \mathcal{M}_n(\mathbb{R})$, et en déduire que AB = -BA.

Énoncé non détaillé - Corrigé

E-7.2. $(5')^*$ Soit $A \in \mathcal{M}_n(K)$ telle qu'il existe $k \in \mathbb{N}^*$ vérifiant $kA^{k+1} = (k+1)A^k$. Montrer que $A - I_n$ est inversible en explicitant son inverse.

Énoncé non détaillé - Corrigé

E-7.3. $(5')^*$ Soit $n \in \mathbb{N}^*$.

- (a) Soit $(A, B) \in GL_n(K) \times \mathcal{M}_n(K)$. Montrer que AB et BA sont semblables en explicitant une matrice inversible effectuant la similitude.
- (b) Donner un exemple de couple $(A, B) \in \mathcal{M}_2(\mathbb{R})^2$ tel que AB et BA ne soient pas semblables. On s'arrangera pour que l'un des deux produits seulement soit nul.

Énoncé non détaillé - Corrigé

- **E-7.4.** $(5')^*$ Soit $(A, B, C, D) \in \mathcal{M}_n(K)^4$ telles que AB^{\top} et CD^{\top} soient symétriques, et $AD^{\top} BC^{\top} = I_n$.
 - (a) Montrer que la matrice par blocs $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ est inversible, en explicitant son inverse.
 - (b) Montrer que $A^{T}D B^{T}C = I_n$.

Énoncé non détaillé - Corrigé

E-7.5. $(5')^*$ Montrer que $\mathcal{Z} = \{A \in \mathcal{M}_n(K), \forall M \in \mathcal{M}_n(K), AM = MA\} = \text{Vect}(I_n)$. On exploitera le fait qu'un élément de \mathcal{Z} commute avec les vecteurs de la base canonique.

Énoncé non détaillé - Corrigé

- **E-7.6.** $(15')^{**}$ Soient $n \in \mathbb{N}^*$ et $A = \{M \in \mathcal{M}_n(K), M^2 = I_2\}.$
 - (a) Montrer que Vect(*A*) contient toutes les matrices de projection.
 - (b) Montrer que $\operatorname{Vect}(A) = \mathcal{M}_n(K)$ en considérant la base canonique de $\mathcal{M}_n(K)$.

Énoncé non détaillé - Corrigé

- **E-7.7.** $(20')^{***}$ Le but de cet exercice est de déterminer toutes les applications f de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{R}_+ vérifiant les propriétés suivantes.
 - (i) Pour tout $A \in \mathcal{M}_n(\mathbb{K})$ et tout $\lambda \in \mathbb{K}$

$$f(\lambda A) = |\lambda| f(A)$$
.

(ii) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$

$$f(A+B) \le f(A) + f(B)$$
.

(iii) Pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$

$$f(AB) = f(BA)$$
.

- (a) Montrer qu'une telle application f est constante sur les classes de similitude.
- (b) Étudier l'image par f des vecteurs de la base canonique de $\mathcal{M}_n(K)$.
- (c) Montrer que pour tout $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $f(B) = 0 \Rightarrow f(A + B) = f(A)$.
- (d) Montrer que l'image par A de toute matrice de trace nulle est nulle. En déduire enfin qu'il existe $\alpha \in \mathbb{R}_+$ tel que $f = \alpha |\operatorname{Tr}|$.

Énoncé non détaillé - Corrigé

E-7.8. $(20')^{***}$ Soit $(A, B) \in \mathcal{M}_n(K)^2$.

- (a) On suppose qu'il existe $M \in \mathcal{M}_n(K)$ telle que AM + MA = B. Montrer que pour tout $X \in \mathcal{M}_n(K)$ tel que AX + XA = 0, on a Tr(BX) = 0.
 - (b) On suppose réciproquement que pour tout $X \in \mathcal{M}_n(K)$, si AX + XA = 0, alors Tr(BX) = 0. Soient

$$\varphi: X \mapsto AX + XA$$
 et $\psi: X \mapsto \operatorname{Tr}(BX)$.

En utilisant la factorisation à travers le noyeu (voir TD 6) et les propriétés des formes linéaires sur $\mathcal{M}_n(K)$ (voir TD 7), montrer qu'il existe $M \in \mathcal{M}_n(K)$ telle que AM + MA = B.

Représentations matricielles

E-7.9. $(10')^*$ Soient $(a,b) \in \mathbb{K}^2$ et $\varphi : \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ définie par $\varphi(M) = aM + bM^\top$. En écrivant la matrice de φ dans une base adaptée à une décomposition de $\mathcal{M}_n(\mathbb{K})$ en sous-espaces supplémentaires bien choisis, donner une condition nécessaire et suffisante sur a et b pour que φ soit un automorphisme de $\mathcal{M}_n(K)$ et déterminer la trace et le déterminant de φ .

Énoncé non détaillé - Corrigé

- **E-7.10.** $(N')^{**}$ Soient $A \in \mathcal{M}_n(K)$, f et φ les endomorphismes de $\mathcal{M}_n(K)$ définis par $f: M \mapsto AM$ et $\varphi: M \mapsto MA + AM$.
- (a) Déterminer la matrice de f dans la base canonique. On ordonnera cette dernière de façon à obtenir une forme par blocs particulièrement simple. Donner le noyau, l'image, le rang, la trace et le déterminant de f en fonction de ceux de A.
 - (b) Déterminer la matrice dans la base canonique de $g: M \rightarrow AM$. En déduire la trace de φ .

Énoncé non détaillé - Corrigé

- **E-7.11.** $(10')^{**}$ Soient $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ deux matrices non nulles vérifiant $A^2 = B^2 = 0$.
- (a) En raisonnant en termes d'endomorphismes, montrer que A et B sont toutes deux semblables à la matrice $M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- (b) Construire dans $\mathcal{M}_4(\mathbb{C})$ deux matrices A et B vérifiant $A^2 = B^2 = 0$ mais non semblables.

Énoncé non détaillé - Corrigé

- **E-7.12.** $(15')^{**}$ *Transvections.* Soient E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$ et $t \in \mathcal{L}(E)$. Le but de cet exercice est de montrer l'équivalence des propriétés suivantes.
 - (i) $t \in GL(E) \setminus \{id_E\}$ et il existe un hyperplan H de E tel que t(x) = x pour tout $x \in H$ et $t(x) x \in H$ pour tout $x \in E$.
 - (ii) Il existe $\varphi \in E^*$ non nulle et $a \in \text{Ker } \varphi$ tels que pour tout $x \in E$, $t(x) = x + \varphi(x)a$.
 - (iii) Il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(t) = I_n + E_{2,1}$.
 - (a) On suppose (i). Montrer que $u: x \mapsto t(x) x$ est de rang 1, et en déduire (ii).
 - (b) On suppose (ii). Montrer qu'il existe $e_1 \in E$ tel que $\varphi(e_1) = 1$, et en déduire (iii).
 - (c) Montrer enfin (iii)⇒(i).

Un endomorphisme vérifiant ces propriétés est appelé transvection.

Énoncé non détaillé - Corrigé

- **E-7.13.** $(15')^{**}$ Soient E un K-espace vectoriel de dimension 2, D_1 , D_2 , D_3 trois droites vectorielles de E deux à deux distinctes, de même que Δ_1 , Δ_2 , Δ_3 .
- (a) Montrer que $\mathscr{D} = \{u \in \mathscr{L}(E), u(D_i) \subset \Delta_i \text{ pour } i \in \{1,2,3\}\}$ est une droite vectorielle de $\mathscr{L}(E)$. On pourra considérer deux bases \mathscr{B}_1 et \mathscr{B}_2 de E, respectivement adaptées aux décompositions $E = D_1 \oplus D_2 = \Delta_1 \oplus \Delta_2$
- (b) Dans le cas $E = \mathbb{R}^2$, trouver la forme générale des matrices canoniquement associées aux éléments de \mathscr{D} pour $\Delta_1 : y = x$, $\Delta_2 : y = 2x$, $\Delta_3 : y = 3x$, $D_1 : y = 0$, $D_2 : x = 0$, $D_3 : y = -x$.

Énoncé non détaillé - Corrigé

- **E-7.14.** $(15')^{**}$ Soient *E* un *K*-espace vectoriel de dimension finie et *F* et *G* deux sous-espaces vectoriels de *E*.
- (a) On note $A = \{u \in \mathcal{L}(E), F \subset \text{Ker } u\}$ et $B = \{u \in \mathcal{L}(E), \text{Im } u \subset F\}$. Montrer que A et B sont des sous-espaces vectoriels de $\mathcal{L}(E)$. En considérant une base de E adaptée à E, donner la forme des matrices d'éléments de E dans cette base, et en déduire leurs dimensions.
- (b) En considérant une base de E adaptée à $F \cap G$ et en la complétant judicieusement, déterminer la dimension de $C = \{u \in \mathcal{L}(E), u(F) \subset F \text{ et } u(G) \subset G\}$ en fonction de celles de F, G et $F \cap G$.

Énoncé non détaillé - Corrigé

E-7.15. $(20')^{***}$ Soient N_1 et N_2 deux matrices carrées à coefficients dans K nilpotentes de tailles respectives p_1 et p_2 , et U_1 et U_2 deux matrices carrées inversibles de tailles respectives q_1 et q_2 , avec $n = p_1 + q_1 = p_2 + q_2$. On pose $M_1 = \begin{pmatrix} N_1 & 0 \\ 0 & U_1 \end{pmatrix}$ et

$$M_2 = \left(\begin{array}{cc} N_2 & 0 \\ 0 & U_2 \end{array} \right).$$

- (a) Montrer que si N_1 et N_2 d'une part, U_1 et U_2 d'autre part, sont de même taille et semblables, alors M_1 et M_2 sont semblables.
- (b) On suppose réciproquement M_1 et M_2 semblables, et on note u un endomorphisme de K^n ayant pour matrices M_1 et M_2 dans des bases \mathcal{B} et \mathcal{B}' respectivement. En établissant un lien avec les suites des noyaux et images itérés de u (voir TD), montrer la réciproque de la question précédente.

Énoncé non détaillé - Corrigé

Rang, matrices équivalentes, opérations sur les rangées

- **E-7.16.** $(5')^*$ Soit $M \in \mathcal{M}_n(K)$ une matrice de rang 1.
 - (a) En considérant un vecteur colonne non nul X de M, montrer qu'il existe un second vecteur colonne tel que $M = XY^{\top}$.
 - (b) Montrer que $Y^{\top}X = \text{Tr}(M)$ puis calculer M^p pour tout $p \in \mathbb{N}$.

E-7.17. $(10')^*$ Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (a) Montrer que si A est inversible, alors A est triangulaire inférieure si et seulement si A^k l'est pour tout $k \ge 2$. On pourra utiliser le fait (voir cours) que l'inverse d'une matrice triangulaire est triangulaire.
- (b) Donner un exemple de matrice de $\mathcal{M}_2(\mathbb{R})$ non inversible et non triangulaire inférieure telle que A^k soit triangulaire inférieure pour tout $k \ge 2$.

Énoncé non détaillé - Corrigé

E-7.18. $(10')^{**}$ Soit $A \in \mathcal{M}_n(K)$. Déterminer la dimension du sous-espace E_A de $\mathcal{M}_n(K)$ défini par

$$E_A = \{B \in \mathcal{M}_n(K), ABA = 0\}.$$

On commencera par étudier le cas où A et de la forme par blocs $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ avec $r \in \mathbb{N}^*$.

Énoncé non détaillé - Corrigé

E-7.19. $(10')^{**}$ $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{C})$ est dite *en damier* si $a_{i,j} = 0$ dès que i + j est impair. On note Dam l'ensemble des matrices en damier de $\mathcal{M}_n(\mathbb{C})$.

- (a) Montrer que Dam est une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$ et déterminer sa dimension.
- (b) En effectuant des opérations sur les lignes et les colonnes, montrer que si A est inversible et en damier, alors A^{-1} est également en damier.

Énoncé non détaillé - Corrigé

E-7.20. $(10')^{**}$ Soient $(p,q) \in (\mathbb{N}^*)^2$ et $M \in \mathcal{M}_{p,q}(K)$. On note $r = \operatorname{rg} M$ et

$$d=\inf\{k\in\mathbb{N},\exists (A,B)\in\mathcal{M}_{p,k}(K)\times\mathcal{M}_{k,q}(K) \text{ telles que } M=AB\}.$$

- (a) Montrer que $r \le d$.
- (b) En considérant d'abord le cas où M est de la forme par blocs $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, montrer que $d \le r$.

Énoncé non détaillé - Corrigé

E-7.21. $(10')^{**}$ Soit A une matrice (a priori rectangulaire) partitionnée en blocs $A = \begin{pmatrix} A_{1,1} & \dots & A_{1,k} \\ \vdots & & \vdots \\ A_{\ell,1} & \dots & A_{\ell,k} \end{pmatrix}$ (on ne précise pas les

dimensions, on impose seulement qu'elles soient compatibles).

(a) On pose
$$C_j = \begin{pmatrix} A_{1,j} \\ \vdots \\ A_{\ell,j} \end{pmatrix}$$
 pour $j \in \llbracket 1,k \rrbracket$. Montrer que $\operatorname{rg}(A) \leqslant \sum_{j=1}^k \operatorname{rg}(C_j)$, puis que $\operatorname{rg}(A) \leqslant \sum_{(i,j) \in \llbracket 1,k \rrbracket \times \llbracket 1,\ell \rrbracket} \operatorname{rg}(A_{i,j})$.

(b) *Application*: pour $(m, n, p) \in (\mathbb{N}^*)^3$, $B \in \mathcal{M}_{m,p}(K)$, $C \in \mathcal{M}_{m,n-p}(K)$, $D \in \mathcal{M}_{n-m,p}(K)$ et $A = \begin{pmatrix} B & C \\ D & 0 \end{pmatrix}$, montrer que si A est inversible, alors $\operatorname{rg} B \ge m + p - n$.

Énoncé non détaillé - Corrigé

E-7.22. $(20')^{***}$ Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ telles que $r = \operatorname{rg} A = \operatorname{rg} B$ et $A^2 B = A$. On introduit les endomorphismes a et b de \mathbb{R}^n canoniquement associés à A et B.

- (a) Montrer que si r = n, alors $B^2 A = B$.
- (b) On ne suppose plus r = n. Montrer que Ker a = Ker b, puis que $B^2 A = B$ en écrivant les matrices de a et b dans une base bien choisie.

Énoncé non détaillé - Corrigé

E-7.23. $(15')^{***}$ Soient E un K-espace vectoriel de dimension $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$.

- (a) Montrer que dim $Ker(u^2) \le 2 \dim Ker(u)$ en considérant la restriction de u à $Ker(u^2)$.
- (b) Montrer l'équivalence des trois propriétés suivantes.
- (i) $\dim \operatorname{Ker}(u^2) = 2\dim \operatorname{Ker}(u)$.
- (ii) $\operatorname{Ker}(u) \subset \operatorname{Im} u$.
- (iii) $u(\text{Ker}(u^2)) = \text{Ker } u$.

On montrera précisément (i) \iff (iii), (i) \Rightarrow (ii) et (ii) \Rightarrow (iii).

(c) Soit $A \in \mathcal{M}_n(K)$. Montrer que dim Ker $(A^2) = 2$ dim Ker(A) si et seulement si $\operatorname{rg} M = \operatorname{rg} N$ où l'on a noté $M = \begin{pmatrix} A & I_n \\ 0 & A \end{pmatrix}$ et

 $N = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$. On pourra exhiber des isomorphismes explicites de (Ker A)² sur Ker N et de Ker(A²) sur Ker M.

Formes linéaires, équations de sous-espaces, systèmes linéaires

E-7.24. $(10')^*$ Transposée d'un endomorphisme. Soient E un K-espace vectoriel de dimension $n \ge 1$ rapporté à une base \mathcal{B} et $u \in \mathcal{L}(E)$. La transposée de u est l'application $u^{\top} \in \mathcal{L}(E^*)$ définie pour tout $\varphi \in E^*$ par $u^{\top}(\varphi) = \varphi \circ u$. Montrer que la matrice de u^{\top} dans la base \mathscr{B}^* des formes coordonnées associée à \mathscr{B} est la transposée de la matrice de u dans \mathscr{B} .

Énoncé non détaillé - Corrigé

E-7.25. $(20')^{***}$ Soit $n \in \mathbb{N}^*$. $P \in \mathcal{M}_n(\mathbb{R})$ est une matrice de permutation si et seulement s'il existe $\sigma \in \mathcal{S}_n$ tel que $P = (20')^{***}$ $\left(\delta_{i,\sigma(j)}\right)_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}$: on note alors $P=P_{\sigma}$. E est l'ensemble des matrices $M=\left(m_{i,j}\right)_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}$ telles que pour tout $(i,j)\in [\![1,n]\!]^2$,

 $\sum_{k=1}^{n} m_{i,k} = \sum_{k=1}^{n} m_{k,j} : \text{pour } M \in E, \text{ on note } s(M) \text{ cette valeur commune. On définit encore } E_0 = \{M \in E, s(M) = 0\}. \text{ On admet } (c'\text{est immédiat}) \text{ que } E \text{ est un sous-espace vectoriel de } \mathcal{M}_n(\mathbb{R}) \text{ et que } E_0 \text{ est un sous-espace de } E.$ (a) Pour $i \in [1, n]$, on pose $\varphi_i : M \mapsto \sum_{k=1}^{n} m_{i,k} \text{ et } \psi_i : M \mapsto \sum_{k=1}^{n} m_{k,i}. \text{ Montrer que } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1 \text{ dans } (\varphi_1, \dots, \varphi_n, \psi_1, \dots, \varphi_n) \text{ est de rang } 2n - 1$

 $\mathcal{M}_n(\mathbb{R})^*$. En déduire la dimension de E_0 , puis celle de E_0

(b) Montrer que $E = \text{Vect}((P_{\sigma})_{\sigma \in \mathcal{S}_n})$.

Énoncé non détaillé - Corrigé

E-7.26. $(20')^{***}$ Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et A un sous-espace de E. On pose

$$A^{\circ} = \{ \varphi \in E^*, \varphi(x) = 0 \text{ pour tout } x \in A \}$$

qui est de façon immédiate un sous-espace vectoriel de E^* . Montrer que dim $A + \dim A^\circ = n$. On pourra introduire une base de A, la compléter, considérer la base des formes coordonnées associée, et la compléter à son tour.

Énoncé non détaillé - Corrigé

Déterminants

E-7.27.
$$(10')^*$$
 Soit $M = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$, avec $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$.

- (a) À l'aide d'opérations par blocs sur les rangées (s'assurer de leur légalité), montrer que $\det(M) = \det(A + iB) \det(A iB)$. On remarquera que i ne peut pas apparaître tout seul...
 - (b) En déduire que si A et B sont à coefficients réels, alors $\det M \ge 0$.

Énoncé non détaillé - Corrigé

E-7.28. $(10')^*$ Les classiques des déterminants par blocs. Soit $(A, B, C, D) \in \mathcal{M}_n(K)^4$, avec D inversible.

(a) À l'aide du calcul par blocs $\begin{pmatrix} A & B \\ C & D \end{pmatrix}\begin{pmatrix} D & 0 \\ -C & I_n \end{pmatrix}$, montrer que si C et D commutent, alors le déterminant par blocs $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ vérifie

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = \det(AD - BC).$$

(b) Montrer que si CD^{\top} est symétrique, alors

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = \det(AD^{\top} - BC^{\top}).$$

(c) Montrer, en toute généralité, que

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(AD - B(D^{-1}CD)).$$

(d) (Pour les 5/2) Comment s'affranchir de l'hypothèse d'inversibilité de D dans (a) et (b) lorsque $K = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$?

Énoncé non détaillé - Corrigé

E-7.29.
$$(10')^{**}$$
 Soit $(P_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathbb{C}[X]^{n^2}$. Pour tout $z \in \mathbb{C}$, on suppose que $A(z) = (P_{i,j}(z))_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathrm{GL}_n(\mathbb{C})$.

- (a) Montrer que det(A(z)) est indépendant de z.
- (b) En déduire que les coefficients de $A(z)^{-1}$ sont des polynômes en z.

E-7.30. $(5')^{**}$ Soient $n \ge 2$, $M \in GL_n(\mathbb{R})$ et $k \in [1, n-1]$. On découpe M par blocs sous la forme $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ avec $A \in \mathcal{M}_k(\mathbb{R})$ et $D \in \mathcal{M}_{n-k}(\mathbb{R})$, les autres étant de tailles compatibles, et on fait de même pour $M^{-1} = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$.

(a) Calculer $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I_k & B' \\ 0 & D' \end{pmatrix}$.

(b) Montrer que det(A) = det(M) det(D').

Énoncé non détaillé - Corrigé

E-7.31. $(20')^{**}$ $(\lambda_k)_{1 \le k \le n} \in \mathbb{R}^n$ étant fixés, on pose pour $(a, b) \in \mathbb{R}^2$

$$D_n(a,b) = \det M$$

avec $M = (m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ où pour tout $(i,j) \in [1,n]^2$, $m_{i,i} = \lambda_i$, $m_{i,j} = a$ si i < j et $m_{i,j} = b$ si i > j.

- (a) Calculer $D_n(a,b)$ pour $a \neq b$. On pourra considérer $P: x \mapsto \det(M+xJ)$, où $J \in \mathcal{M}_n(\mathbb{R})$ a tous ses coefficients égaux à 1.
- (b) Calculer $D_n(a, a)$.

Énoncé non détaillé - Corrigé

E-7.32. $(15')^{**}$ Soient $(x_i)_{0 \le i \le n} \in \mathbb{R}^{n+1}$ et $A = (a_{i,j})_{\substack{0 \le i \le n \\ 0 \le j \le n}}$ où $a_{i,j} = \cos((j-1)x_i)$ pour tout $(i,j) \in [0,n]^2$.

- (a) Déterminer la valeur de det(A) et le rang de A. On pourra introduire les polynômes de Tchebychev.
- (b) Montrer que $|\det A| \le n!$. Un conseil : oubliez la première question!

Énoncé non détaillé - Corrigé

E-7.33. $(10')^{**}$ Soit $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in K^{2n}$. En exploitant la linéarité du déterminant par rapport à ses colonnes, calculer $\det(m_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ où $m_{i,j} = b_i$ si $i \ne j$ et $m_{i,i} = a_i + b_i$, $(i,j) \in [\![1,n]\!]^2$.

Énoncé non détaillé - Corrigé

E-7.34. $(15')^{**}$ Soit $(A, X) \in \mathcal{M}_n(\mathbb{R})^2$ où X est une matrice de rang 1. En utilisant un résultat d'équivalence matricielle et la multilinéarité du déterminant, montrer que $\det(A + X) \det(A - X) \leq \det(A)^2$.

Énoncé non détaillé - Corrigé

E-7.35. $(15')^{**}$ Formule de Cauchy-Binet. Soit $(n,p) \in (\mathbb{N}^*)^3$, $n \leq p$. Pour une matrice $A \in \mathcal{M}_{n,p}(K)$ et une partie $S \subset [[1,p]]$ de cardinal n, on note A^S la matrice de taille $n \times n$ obtenue en extrayant de A ses colonnes d'indices appartenant à S. De même, pour une matrice $B \in \mathcal{M}_{p,n}(K)$ et une partie $S \subset [[1,p]]$ de cardinal n, on note B_S la matrice de taille $n \times n$ obtenue en extrayant de B ses lignes d'indices appartenant à S. Montrer alors que

$$\det(AB) = \sum_{S \in \mathcal{P}_n([[1,p]])} \det(A^S) \det(B_S).$$

On pourra décomposer AB selon ses colonnes et exploiter la multilinéarité du déterminant en regroupant judicieusement les termes.

Énoncé non détaillé – Corrigé

E-7.36. $(20')^{***}$ Soit $(a_1,\ldots,a_n,b_1,\ldots,b_n)\in K^{2n}$. Calculer $\det M$ où $M=\left((a_i+b_j)^{n-1}\right)_{\substack{1\leq i\leq n\\1\leq j\leq n}}$. On pourra utiliser le binôme de

Newton et écrire *M* comme le produit de deux matrices « à peu près » de Vandermonde.

Énoncé non détaillé - Corrigé

E-7.37. $(15')^{***}$ Soit $(a_1,\ldots,a_n)\in\mathbb{Z}^n$. Montrer que $D=\frac{\prod\limits_{1\leqslant i< j\leqslant n}(a_j-a_i)}{\prod\limits_{1\leqslant i< j\leqslant n}(j-i)}\in\mathbb{Z}$. On montrera qu'on peut se ramener au cas $n\leqslant n$

 $a_1 \le ... \le a_n$, puis interpréter la quantité donnée comme le déterminant d'une matrice à coefficients entiers.

Énoncé non détaillé - Corrigé

E-7.38. $(20')^{***}$ *Déterminant de Cauchy.* Soit $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{K}^{2n}$ vérifiant $a_i + b_j \neq 0$ pour tout $(i, j) \in [1, n]^2$. Calculer

$$D_n(a_1,\ldots,a_n,b_1,\ldots,b_n) = \det\left(\frac{1}{a_i+b_j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}.$$

On pourra commencer par retrancher la dernière ligne à toutes les autres, puis retrancher la dernière colonne à toutes les autres dans le résultat obtenu.

E-7.39.
$$(30')^{***}$$
 Pour $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{R})$, on pose

$$P(A) = \prod_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{i,j}| \right).$$

On note aussi $\mathcal{F}_n = [\![1,n]\!]^{[\![1,n]\!]}$ l'ensemble de toutes les applications de $[\![1,n]\!]$ dans lui-même.

- (a) Montrer que si $|\det(A)| = P(A)$, alors $\prod_{i=1}^{n} |a_{i,f(i)}| = 0$ pour tout $f \in \mathscr{F}_n$ non bijective. (a) Montrer que $|\det(A)| = P(A)$ si et seulement si A possède au moins une ligne nulle, ou exactement un terme non nul par
- ligne et par colonne.

Énoncé non détaillé - Corrigé

Calculs de polynômes caractéristiques

E-7.40. $(20')^{**}$ Soit $A = (a_{i,j})_{1 \le i \le n} \in \mathcal{M}_n(\mathbb{C})$ où $a_{i,j} = 1$ si |i-j| = 1 et $a_{i,j} = 0$ sinon. On note P_n son polynôme caractéristique. (a) Montrer que $P_{n+2} - XP_{n+1} + P_n = 0$ pour tout $n \in \mathbb{N}$.

- (b) Expliciter $P_n(t)$ pour $t \in \mathbb{R}$ fixé et en déduire que A est diagonalisable sur \mathbb{R} . Donner ses valeurs propres.

Énoncé non détaillé - Corrigé

E-7.41.
$$(20')^{***}$$
 Soit $A = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$.

(a) Soit $V \in \mathbb{R}^n$. Montrer que si AV est à coefficients po

- (a) Soit $V \in \mathbb{R}^n$. Montrer que si AV est à coefficients positifs ou nuls, alors V également. On s'intéressera à l'indice où se situe le minimum des coefficients de V.
 - (b) Montrer que A est inversible et que A^{-1} est à coefficients positifs.
- (c) Montrer que le polynôme caractéristique χ_n de A vérifie la récurrence $\chi_n = (X-2)\chi_{n-1} \chi_{n-2}$. Établir un lien avec les polynômes de Tchebychev, et en déduire les valeurs propres de A.

7. Matrices, déterminants, polynômes caractéristiques - Exercices (corrigés)

Algèbre des matrices

E-7.1. On a $\lambda \in \mathbb{R}$ et

$$M^2 = \lambda^2 I_n = A^2 - B^2 + i(AB + BA)$$

d'où $i(AB + BA) = \lambda^2 I_n - A^2 + B^2 \in \mathcal{M}_n(\mathbb{R})$: elle est donc nulle.

Énoncé non détaillé - Énoncé détaillé

E-7.2. On a

$$k(A - I_n)A^k - A^k = 0 \iff k(A - I_n)A^k - (A^k - I_n) = I_n$$

d'où (A et I_n commutent)

$$(A - I_n) \left(kA^k - \sum_{\ell=0}^{k-1} A^\ell \right) = I_n$$

ce qui montre que $A - I_n$ est inversible et $(A - I_n)^{-1} = kA^k - \sum_{\ell=0}^{k-1} A^{\ell}$.

Énoncé non détaillé - Énoncé détaillé

E-7.3. (a) On a immédiatement

$$AB = A(BA)A^{-1}$$
.

(b) Les matrices $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ vérifient AB = 0 et BA = A qui ne sont donc pas semblables puisque $A \neq 0$.

Énoncé non détaillé - Énoncé détaillé

E-7.4. Remarquons qu'en transposant la dernière relation, on a aussi $DA^{\top} - CB^{\top} = I_n$. On a alors le produit par blocs dans $\mathcal{M}_{2n}(K)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D^\top & -B^\top \\ -C^\top & A^\top \end{pmatrix} = \begin{pmatrix} AD^\top - BC^\top & -AB^\top + BA^\top \\ CD^\top - DC^\top & -CB^\top + DA^\top \end{pmatrix} = \begin{pmatrix} I_n & 0_n \\ 0_n & I_n \end{pmatrix} = I_{2n}$$

si bien que $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ et $\begin{pmatrix} D^\top & -B^\top \\ -C^\top & D^\top \end{pmatrix}$ sont inversibles, inverses l'une de l'autre. On en déduit que

$$\begin{pmatrix} D^{\top} & -B^{\top} \\ -C^{\top} & A^{\top} \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = I_{2n}$$

et le bloc en haut à gauche fournit bien $D^{\top}A - B^{\top}C = I_n$.

Énoncé non détaillé - Énoncé détaillé

E-7.5. Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in \mathcal{Z}$. On note $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ la base canonique de $\mathcal{M}_n(K)$: pour tout $(i,j) \in [1,n]^2$, on a $A = \sum_{(k,\ell) \in [1,n]^2} a_{k,\ell} E_{k,\ell}$ d'où pour $i \neq j$

$$AE_{i,j} = E_{i,j}A \iff \sum_{k=1}^{n} a_{k,i}E_{k,j} = \sum_{\ell=1}^{n} a_{j,\ell}E_{i,\ell}$$

ce qui impose $a_{i,i} = a_{j,j}$ et $a_{i,j} = a_{j,i} = 0$. On en déduit que A est scalaire, la réciproque étant immédiate.

Énoncé non détaillé – Énoncé détaillé

E-7.6. Notons tout d'abord que $Vect(B) \subset Vect(A)$ où

$$B = \{M \in \mathcal{M}_n(K), M^2 = M\}$$

En effet, si $M \in B$, on sait (c'est immédiat en interprétant les éléments de A et B comme des matrices de symétrie et de projection respectivement) que $S = 2M - I_n \in A$ et comme $I_n \in A$, on a donc

$$M = \frac{S + I_n}{2} \in \text{Vect}(A).$$

On a ainsi $B \subset Vect(A)$ et donc $Vect(B) \subset Vect(A)$.

On note alors $(E_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ la base canonique de $\mathcal{M}_n(K)$. Pour tout $i \in [1,n]$, $E_{i,i} \in B$. Pour $(i,j) \in [1,n]^2$, $i \neq j$, on vérifie que

$$M_{i,j} = \frac{1}{2}(E_{i,i} + E_{j,j} + E_{i,j} + E_{j,i}) \in B$$

et de même

$$N_{i,j} = \frac{1}{3}(E_{i,i} + 2E_{j,j} + 2E_{i,j} + E_{j,i}) \in B$$

si bien que $2M_{i,j} - 3N_{i,j} + E_{j,j} = -E_{i,j} \in B$ et $E_{j,i} = 2M_{i,j} - E_{i,i} - E_{j,j} - E_{i,j} \in B$ et donc Vect(B) contient toute la base canonique de $\mathcal{M}_n(K)$. Il en découle que $Vect(B) = \mathcal{M}_n(\mathbb{K})$, et finalement $Vect(A) = \mathcal{M}_n(\mathbb{K})$.

Énoncé non détaillé - Énoncé détaillé

E-7.7. Montrons qu'il existe $\alpha \in \mathbb{R}_+$ tel que $f = \alpha |\text{Tr}|$. Remarquons déjà que $f(0) = f(0I_n) = |0| f(I_n) = 0$.

- * f est constante sur les classes de similitude : pour tout $(M, P) \in \mathcal{M}_n(\mathbb{K}) \times \mathrm{GL}_n(\mathbb{K}), f(PMP^{-1}) = f(P^{-1}PM) = f(M).$
- * Pour tout $(i, j) \in [1, n]^2$, $E_{i,i}$ et $E_{i,j}$ sont semblables : on note c la valeur commune des $f(E_{i,i})$. De plus, si $i \neq j$, on a

$$f(E_{i,j}) = f(E_{i,j}E_{j,j}) = f(E_{j,j}E_{i,j}) = f(0) = 0.$$

* Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$: si f(B) = 0, alors

$$f(A+B) \le f(A) + f(B) = f(A)$$

et

$$f(A) = f(A + B - B) \le f(A + B) + f(B) = f(A + B)$$

d'où f(A+B) = f(A).

- * Si $A \in \mathcal{M}_n(\mathbb{K})$ vérifie Tr(A) = 0, alors A est semblable à une matrice de diagonale nulle (voir TD), donc combinaison linéaire de $E_{i,j}$ avec $i \neq j$, d'où f(A) = 0 avec le point précédent.
 - * Pour tout $A \in \mathcal{M}_n(\mathbb{K})$, $A = A \text{Tr}(A)I_n + \text{Tr}(A)I_n$ donc

$$f(A) = f(A - \operatorname{Tr}(A)I_n + \operatorname{Tr}(A)I_n) = f(\operatorname{Tr}(A)I_n) = |\operatorname{Tr}(A)|f(I_n)$$

ce qui conclut avec $\alpha = \text{Tr}(I_n)$.

Énoncé non détaillé - Énoncé détaillé

E-7.8. Supposons (i), et soit $X \in \mathcal{M}_n(\mathbb{K})$ tel que AX + XA = 0. Alors

$$\operatorname{Tr}(BX) = \operatorname{Tr}(AMX + MAX) = \operatorname{Tr}(AMX) + \operatorname{Tr}(MAX) = \operatorname{Tr}(XAM) + \operatorname{Tr}(AXM) = \operatorname{Tr}((XA + AX)M) = 0.$$

Supposons (ii). Si $\varphi: X \mapsto AX + XA$ et $\psi: X \mapsto \operatorname{Tr}(BX)$, on a donc $\operatorname{Ker} \varphi \subset \operatorname{Ker} \psi:$ il existe donc $h \in \mathscr{L}(\mathscr{M}_n(\mathbb{K}), \mathbb{K})$ telle que $\psi = h \circ \varphi$ (voir TD sur les espaces vectoriels) et comme h est une forme linéaire sur $\mathscr{M}_n(\mathbb{K})$, il existe une unique $M \in \mathscr{M}_n(\mathbb{K})$ telle que $h: X \mapsto \operatorname{Tr}(MX)$ (voir le TD sur les matrices). On en déduit que pour tout $X \in \mathscr{M}_n(\mathbb{C})$

$$Tr(BX) = Tr(M(AX + XA)) = Tr((AM + MA)X)$$

et par l'unicité évoquée ci-dessus, B = AM + MA.

Énoncé non détaillé - Énoncé détaillé

Représentations matricielles

E-7.9. On considère une base \mathscr{B} de $\mathscr{M}_n(\mathbb{K})$ formée de la réunion d'une base de $\mathscr{S}_n(\mathbb{K})$ et d'une base de $\mathscr{A}_n(\mathbb{K})$. La matrice de φ dans \mathscr{B} est alors la matrice diagonale écrite par blocs $\begin{pmatrix} (a+b)I_{\frac{n(n+1)}{2}} & 0 \\ 0 & (a-b)I_{\frac{n(n-1)}{2}} \end{pmatrix}$. On en déduit aussitôt que

$$\mathrm{Tr}(\varphi) = \frac{n(n+1)}{2}(a+b) + \frac{n(n-1)}{2}(a-b) = n^2a - nb$$

et

$$\det(\varphi) = (a+b)^{\frac{n(n+1)}{2}} (a-b)^{\frac{n(n-1)}{2}}$$

puis que φ est un automorphisme si et seulement si $a \neq b$ et $a \neq -b$.

Énoncé non détaillé – Énoncé détaillé

E-7.10. En notant $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$, on a $AE_{i,j} = \sum_{k=1}^n a_{k,i}E_{k,j}$. Si l'on ordonne la base \mathscr{B} de la façon suivante : $(E_{1,1}, E_{2,1}, \dots, E_{n,1}, E_{1,2}, \dots, E_{n,2}, \dots, E_{$

la matrice de f dans $\mathscr B$ est alors la matrice diagonale par blocs $\begin{pmatrix} A & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A \end{pmatrix}.$

On obtient directement Tr(f) = n Tr(A) et $\det(f) = \det(A)^n$ par un calcul par blocs. Soit $M \in \mathcal{M}_n(K)$, de colonnes (C_1, \dots, C_n) . Alors AM est la matrice de colonnes (AC_1, \dots, AC_n) et est donc nulle si et seulement si (C_1, \dots, C_n) sont dans $\ker A$.

- * Si $A \in GL_n(K)$, alors $f \in GL(\mathcal{M}_n(K))$ (et sa réciproque est trivialement $M \mapsto A^{-1}M$).
- * Si A = 0, f = 0 et tout est évident.
- * Sinon, on note $r = \operatorname{rg} A \in [1, n-1]$, (U_1, \dots, U_{n-r}) une base de Ker A. Une base de Ker f est alors donnée par la famille des matrices de $\mathcal{M}_n(\mathbb{R})$ dont l'une des colonnes est l'un des U_i pour $i \in [1, n]$ et les autres colonnes sont nulles. Il vient dim Ker f = 0

n(n-r). On a alors $\operatorname{rg} f = nr$ par le théorème du rang, et une base de $\operatorname{Im} f$ est donnée par la même construction que celle ci-dessus à partir d'une base (V_1, \ldots, V_r) de $\operatorname{Im} A$.

(c) Soit
$$g: M \mapsto MA$$
. En ordonnant cette fois \mathscr{B} selon $(E_{1,1}, E_{1,2}, \dots, E_{1,n}, E_{2,1}, \dots, E_{2,n}, \dots)$, la matrice de g est
$$\begin{pmatrix} A^{\top} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A^{\top} \end{pmatrix}.$$

Par linéarité de la trace

$$\operatorname{Tr}(\varphi) = \operatorname{Tr}(f+g) = \operatorname{Tr}(f) + \operatorname{Tr}(g) = 2n\operatorname{Tr}(A).$$

Énoncé non détaillé - Énoncé détaillé

E-7.11. (a) Soient u et v les endomorphismes de \mathbb{C}^3 canoniquement associés à A et B. On a donc $u^2 = 0$, c'est-à-dire Im $u \subset Ker u$, donc rg $u \le \dim Ker u$. Comme $u \ne 0$, rg $u \ge 1$, et comme dim Ker u + rg u = 3 par le théorème du rang, on a nécessairement rg u = 1. Soit e_1 un vecteur directeur de Im u, e_3 un antécédent de e_1 (qui n'est donc pas dans Ker u) et enfin e_2 tel que (e_1, e_2)

forme une base de Ker u, et donc $\mathcal{B}=(e_1,e_2,e_3)$ forme une base de \mathbb{C}^3 . La matrice de u dans \mathcal{B} est $M=\begin{pmatrix}0&0&1\\0&0&0\\0&0&0\end{pmatrix}$. La même

construction étant possible pour v, A et B sont semblables à M, donc semblables entre elles.

rang.

Énoncé non détaillé - Énoncé détaillé

E-7.12. (i)⇒(ii): soit $u: x \mapsto t(x) - x$. u n'est pas nul et $H \subset \text{Ker } u$, de sorte que dim Ker u = n - 1 et u est donc de rang 1. Soit a un vecteur directeur de Im u: pour tout $x \in E$, il existe $\varphi(x) \in K$ tel que

$$u(x) = \varphi(x)a \iff t(x) = x + \varphi(x)a.$$

On vérifie immédiatement que φ est linéaire. De plus, $a \in \text{Im } u \subset H$ donc $u(a) = 0 \iff t(a) = a$ et donc $\varphi(a) = 0$.

(ii) \Rightarrow (iii): φ étant non nulle est de rang 1 donc surjective. Soit $e_1 \in E$ tel que $\varphi(e_1) = 1$, et donc $t(e_1) = e_1 + a$. On pose $e_2 = a$ qu'on complète en une base (e_2, \dots, e_n) de H. Comme $e_1 \notin H$, $\mathscr{B} = (e_1, \dots, e_n)$ est une base de E dans laquelle la matrice de E tel que E de la forme voulue.

(iii) ⇒ (i) : notons $\mathscr{B} = (e_1, ..., e_n)$ cette base, et $H = \text{Vect}(e_2, ..., e_n)$. $t \in \text{GL}(E)$ puisque sa matrice dans \mathscr{B} est inversible, différent de id $_E$ puisque sa matrice n'est pas I_n . On a $t(e_i) = e_i$ pour $i \in [2, n]$ donc t(x) = x pour tout $x \in H$, et $t(e_1) = e_2 \in H$, ce qui conclut.

Énoncé non détaillé - Énoncé détaillé

E-7.13. (a) On considère des bases \mathscr{B}_1 et \mathscr{B}_2 de E adaptées aux décompositions $E = D_1 \oplus D_2 = \Delta_1 \oplus \Delta_2$. Les éléments de \mathscr{D} dans ces deux bases ont alors des matrices diagonales. Soit $M = \operatorname{Diag}(\lambda, \mu)$ la matrice d'un élément de \mathscr{D} écrite dans les bases \mathscr{B}_2 et \mathscr{B}_1 . Soit $(a, b, c, d) \in K^4$ telles qu'un vecteur directeur de D_3 (resp. de Δ_3) ait (a, b) (resp. (c, d)) pour coordonnées dans \mathscr{B}_1 (resp. \mathscr{B}_2). Comme Δ_3 est distincte de Δ_1 et Δ_2 , on doit avoir $cd \neq 0$, de même que $ab \neq 0$. La condition $u(D_3) \subset \Delta_3$ impose alors que $M\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \lambda a \\ \mu b \end{pmatrix}$ et $\begin{pmatrix} c \\ d \end{pmatrix}$ soient colinéaires, donc $\lambda ad - \mu bc = 0$, ce qui donne la relation $\mu = \frac{ad}{bc}\lambda$, et donc \mathscr{D} est la droite vectorielle

des éléments $u \in \mathcal{L}(E)$ dont la matrice dans les bases \mathcal{B}_1 et \mathcal{B}_2 est de la forme $\operatorname{Diag}\left(\lambda, \frac{ad}{bc}\lambda\right)$ avec $\lambda \in K$, ou encore $\lambda \operatorname{Diag}(bc, ad)$ en changeant de constante arbitraire. Autrement dit, \mathcal{D} est associée dans \mathcal{B}_2 et \mathcal{B}_1 à la droite $\operatorname{Vect}(\operatorname{Diag}(bc, ad))$ de $\mathcal{M}_2(K)$, et est donc également une droite.

(b) On applique ce qui précède à $\mathscr{B}_1=((1,0),(0,1)), \mathscr{B}_2=((1,1),(1,2))$: on peut alors prendre (a,b)=(1,-1), (c,d)=(-1,2) (puisque 2(1,2)-(1,1)=(1,3) dirige Δ_3): les matrices des éléments de \mathscr{D} dans \mathscr{B}_2 et \mathscr{B}_1 sont de la forme $M'(\lambda)=\mathrm{Diag}(\lambda,2\lambda), \, \lambda\in\mathbb{R}$. \mathscr{B}_1 est la base canonique et la matrice de passage de \mathscr{B}_1 à \mathscr{B}_2 est $P_{\mathscr{B}_1,\mathscr{B}_2}=\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ de sorte que la matrice d'un élément $u\in\mathscr{D}$ dans la base canonique est de la forme

$$M(\lambda) = P_{\mathcal{B}_1, \mathcal{B}_2} M'(\lambda) = \lambda \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$$

avec $\lambda \in \mathbb{R}$.

Énoncé non détaillé – Énoncé détaillé

E-7.14. On exclut dans cet exercice les cas triviaux où F, G ou $F \cap G$ seraient égaux à $\{0\}$ ou E.

(a) Notons $n = \dim E$ et $p = \dim F$. On considère une base $\mathscr{B}_F = (e_1, \dots, e_p)$ de F que l'on complète en une base $\mathscr{B} = (e_1, \dots, e_n)$ de E. On a alors $u \in A$ si et seulement si $u(e_1) = \dots = u(e_p) = 0$, donc si et seulement si la matrice de u dans \mathscr{B} a ses p premières colonnes nulles. A est donc isomorphe au sous-espace de $\mathscr{M}_n(K)$ Vect $(E_{k,\ell}, 1 \le k \le n, p+1 \le \ell \le n)$, donc de dimension n(n-p).

B est, de façon immédiate, isomorphe à $\mathcal{L}(E,F)$, donc de dimension np.

(b) On note $q = \dim G$ et $r = \dim(F \cap G)$. On définit (b_1, \dots, b_r) une base de $F \cap G$, que l'on complète en une une base (b_1, \dots, b_p) de F et en une base $(b_1, \dots, b_r, b_{p+1}, \dots, b_{p+q-r})$ de G. On sait alors (voir dans le cours la preuve de la formule de Grassmann) que

 $(b_1, ..., b_{p+q-r})$ est une base de F+G, que l'on complète enfin en une base $\mathscr{B}'=(b_1, ..., b_n)$ de E. On a alors $u \in C$ si et seulement si $\mathrm{Mat}_{\mathscr{B}}(u)$ est de la forme par blocs

$$\operatorname{Mat}_{\mathscr{B}}(u) = \left(\begin{array}{cccc} M_1 & M_2 & M_3 & M_4 \\ 0 & M_5 & 0 & M_6 \\ 0 & 0 & M_7 & M_8 \\ 0 & 0 & 0 & M_9 \end{array} \right)$$

avec $M_1 \in \mathcal{M}_r(K), M_2 \in \mathcal{M}_{r,p-r}(K), M_3 \in \mathcal{M}_{r,q-r}(K), M_4 \in \mathcal{M}_{r,n-p-q+r}(K), M_5 \in \mathcal{M}_{p-r,p-r}(K), M_6 \in \mathcal{M}_{p-r,n-p-q+r}(K), M_7 \in \mathcal{M}_{q-r,q-r}(K), M_8 \in \mathcal{M}_{q-r,n-p-q+r}(K), M_9 \in \mathcal{M}_{n-p-q+r,n-p-q+r}(K).$ On en déduit que

$$\dim C = rn + (p-r)(n-q) + (q-r)(n-p) + (n-p-q+r)^{2}$$

dont le développement n'apporte par grand chose.s

Énoncé non détaillé - Énoncé détaillé

E-7.15. Si N_1 est semblable à N_2 et U_1 à U_2 , elles sont de même taille $p=p_1=p_2$ et $q=q_1=q_2$, et si $(P,Q)\in \mathrm{GL}_p(K)\times\mathrm{GL}_q(K)$ vérifient $N_1=PN_2P^{-1}$ et $U_1=QU_2Q^{-1}$, alors $R=\begin{pmatrix}P&0\\0&Q\end{pmatrix}\in\mathrm{GL}_n(K)$ a pour inverse $R^{-1}=\begin{pmatrix}P^{-1}&0\\0&Q^{-1}\end{pmatrix}$ par un calcul direct et $M_1=RM_2R^{-1}$.

Supposons réciproquement que M_1 et M_2 soient semblables : il existe $u \in \mathcal{L}(K^n)$ et deux bases \mathcal{B} et \mathcal{B}' de K^n telles que $\operatorname{Mat}_{\mathcal{B}'}(u) = M_1$ et $\operatorname{Mat}_{\mathcal{B}'}(u) = M_2$. En notant $\mathcal{B} = (e_1, \dots, e_n)$, $F = \operatorname{Vect}(e_1, \dots, e_{p_1})$ et $G = \operatorname{Vect}(e_{p_1+1}, \dots, e_n)$ sont stables par u, l'induit de u sur F est nilpotent, et l'induit de u sur G est inversible. Le travail usuel sur les noyaux et images itérés (voir TD) donne l'existence d'un élément $k \in [0, n]$ minimal vérifiant $\operatorname{Im} u^k \oplus \operatorname{Ker} u^k = E$, $\operatorname{Im} u^\ell = \operatorname{Im} u^k$ et $\operatorname{Ker} u^\ell = \operatorname{Ker} u^k$ pour tout $\ell \geq k$, et les induits de u sur $\operatorname{Ker} u^k$ et $\operatorname{Im} u^k$ sont respectivement nilpotent et inversible : montrons que $F = \operatorname{Ker}(u^k)$ et $G = \operatorname{Im}(u^k)$.

- * Pour tout $x \in F$, il existe $p \in \mathbb{N}^*$ tel que $u^p(x) = 0$, de sorte que $x \in \operatorname{Ker} u^p$. Si $p \le k$, alors $\operatorname{Ker} u^p \subset \operatorname{Ker} u^k$ de façon directe, et si $p \ge k$, alors $\operatorname{Ker} u^p = \operatorname{Ker} u^k$, si bien que $x \in \operatorname{Ker} u^k$ dans tous les cas, et donc $F \subset \operatorname{Ker} u^k$.
- * Pour tout $x \in G$, comme l'induit \tilde{u} de u sur G est inversible, toutes ses puissances le sont et on peut donc poser $y = \tilde{u}^{-k}(x)$, de sorte que $\tilde{u}^k(y) = u^k(y) = x$. On a donc $G \subset \text{Im } u^k$.
 - * Comme $n = \dim F + \dim G = \dim \operatorname{Ker} u^k + \operatorname{rg} u^k$, on doit en fait avoir $F = \operatorname{Ker} u^k$ et $G = \operatorname{Im} u^k$.

Le même raisonnement tient pour $\mathcal{B}' = (e'_1, \dots, e'_n)$, si bien que d'une part

$$F = \text{Vect}(e_1, ..., e_{p_1}) = \text{Vect}(e'_1, ..., e'_{p_2})$$

ce qui impose que $p_1 = p_2 = p$, et d'autre part N_1 (resp. N_2) est la matrice de l'induit de u sur F dans (e_1, \ldots, e_p) (resp. (e'_1, \ldots, e'_p)), si bien que N_1 et N_2 sont semblables, et de même pour U_1 et U_2 .

Énoncé non détaillé - Énoncé détaillé

Rang, matrices équivalentes, opérations sur les rangées

E-7.16. Soit *X* une colonne non nulle de *M*. Comme elle est de rang 1, pour toute colonne C_i , $1 \le i \le n$ de *M*, il existe $y_i \in K$ tel

que
$$C_i = y_i X$$
. On pose alors $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ et on constate facilement que $M = XY^{\top}$. On a alors $M = \begin{pmatrix} x_i y_j \\ 1 \le i \le n \\ 1 \le j \le n \end{pmatrix}$ et $Y^{\top}X = \sum_{i=1}^n x_i y_i = \sum_{i=1}^n x_i y_i$

Tr(M). $M^0 = I_n$ par convention, et pour $p \ge 1$

$$M^p = X(Y^\top X)^{p-1} Y^\top = (\text{Tr } M)^{p-1} M.$$

Énoncé non détaillé - Énoncé détaillé

E-7.17. (a) Le sens direct est immédiat puisque les matrices triangulaires inférieures forement une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$. Réciproquement, si $A^k = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ est triangulaire inférieure pour tout $k \ge 2$, alors en particulier, A^2 et A^3 le sont, et on sait alors

que A^{-2} l'est aussi (cours : conséquence du pivot de Gauss), si bien que $A = A^3 A^{-2}$ l'est également.

(b)
$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
 vérifie $A^k = 0$, évidemment triangulaire, pour tout $k \ge 2$ mais elle ne l'est pas.

Énoncé non détaillé - Énoncé détaillé

E-7.18. Soit $r \in [0, n]$ le rang de A, il existe $(P, Q) \in GL_n(K)^2$ tel que $A = PJ_rQ$. On a alors pour tout $B \in \mathcal{M}_n(K)$

$$ABA = 0 \iff PJ_rQBPJ_rQ = 0 \iff J_rQBPJ_r = 0$$

et $B \mapsto QBP$ est un automorphisme de $\mathcal{M}_n(K)$, de sorte que dim $E_A = \dim E_{J_r}$. On est ainsi ramené à calculer cette dernière dimension. En écrivant B par blocs

$$B = \left(\begin{array}{cc} B_1 & B_2 \\ B_3 & B_4 \end{array}\right)$$

avec $B_1 \in \mathcal{M}_r(K)$, $B_4 \in \mathcal{M}_{n-r}(K)$ et les deux autres de tailles compatibles, il vient $J_R B J_r = \begin{pmatrix} E_1 & 0 \\ 0 & 0 \end{pmatrix}$ donc

$$B \in E_{J_r} \iff B_1 = 0.$$

On en déduit que dim $E_A = \dim E_{I_r} = n^2 - r^2$.

Énoncé non détaillé – Énoncé détaillé

E-7.19. (a) La dimension de Dam est $\frac{n}{2}$ si n est pair et $\frac{n+1}{2}$ sinon. La stabilité par combinaison linéaire et produit est facile. (b) Si n est pair, n=2p, en effectuant les échanges de lignes successifs $L_2 \leftrightarrow L_{2p-1}$, $L_4 \leftrightarrow L_{2p-3}$, etc., puis de même sur les

(b) Si n est pair, n = 2p, en effectuant les échanges de lignes successifs $L_2 \leftrightarrow L_{2p-1}$, $L_4 \leftrightarrow L_{2p-3}$, etc., puis de même sur les colonnes de A, il vient A = UDU où D est diagonale par blocs, de blocs diagonaux de taille p, et U est un produit de matrices d'échanges commutant deux à deux (elles interviennent sur des lignes/colonnes deux à deux distinctes) de sorte que $U^{-1} = U$. Il vient $A^{-1} = UD^{-1}U$, D^{-1} étant de même diagonale par blocs de blocs diagonaux de taille p, ce qui montre que A^{-1} est en damier $(UD^{-1}U)$ effectue les mêmes opérations en sens inverse). Le même raisonnement est valide si p est impair en fixant la ligne et la colonne du milieu.

Énoncé non détaillé - Énoncé détaillé

E-7.20. Notons $d = \inf\{k \in \mathbb{N}, \exists (A, B) \in \mathcal{M}_{p,k}(K) \times \mathcal{M}_{k,q}(K) \text{ telles que } M = AB\}$. Si M = AB avec $(A, B) \in \mathcal{M}_{p,k}(K) \times \mathcal{M}_{k,q}(K)$ pour $k \in \mathbb{N}$, alors

$$\operatorname{rg} M \leq \min(\operatorname{rg} A, \operatorname{rg} B) \leq \min(\min(p, k), \min(k, q)) \leq k$$

si bien que $\operatorname{rg} M \leq d$.

Supposons que $\operatorname{rg} M = r \in \mathbb{N}$: il existe $(U, V) \in \operatorname{GL}_p(K) \times \operatorname{GL}_q(K)$ telles que

$$M = UIV$$

où
$$J = \begin{pmatrix} I_r & 0_{r,q-r} \\ 0_{p-r,r} & 0_{p-r,q-r} \end{pmatrix} \in \mathcal{M}_{p,q}(K)$$
. Or

$$J = \begin{pmatrix} I_r \\ 0_{p-r,r} \end{pmatrix} \begin{pmatrix} I_r & 0_{r,q-r} \end{pmatrix}$$

si bien que M = AB avec

$$A = U\begin{pmatrix} I_r \\ 0_{n-r,r} \end{pmatrix} \in \mathcal{M}_{p,r}(K) \qquad ; \qquad B = \begin{pmatrix} I_r & 0_{r,q-r} \end{pmatrix} V \in \mathcal{M}_{r,q}(K).$$

On en déduit que $r \ge d$ et donc r = d.

Énoncé non détaillé - Énoncé détaillé

E-7.21. (a) On pose $C_j = \begin{pmatrix} A_{1,j} \\ \vdots \\ A_{\ell,j} \end{pmatrix}$ pour $j \in [1,k]$. L'image de A est engendrée par ses colonnes, donc incluse dans la somme

des images des $(C_j)_{1 \le j \le k}$ qui contient évidemment toutes les colones de A. Il vient

$$\operatorname{Im}(A) \subset \sum_{j=1}^{k} \operatorname{Im}(C_j)$$

donc

$$\operatorname{rg}(A) \leq \dim \left(\sum_{i=1}^{k} \operatorname{Im}(C_i)\right) \leq \sum_{i=1}^{k} \operatorname{rg}(C_i).$$

De façon analogue, en transposant, on aboutit pour tout $j \in [1, k]$ à $\operatorname{rg}(C_j) \leq \sum_{i=1}^{\ell} \operatorname{rg}(A_{i,j})$ d'où le résultat.

(b) On a avec la question précédente

$$rg(A) = n \le rg(B) + rg(C) + rg(D) \le rg(B) + n - p + n - m$$

d'où le résultat.

Énoncé non détaillé - Énoncé détaillé

E-7.22. Si A et B sont inversibles, on obtient $AB = I_n$ donc $BA = I_n$ et le résultat en multipliant par B.

Sinon, $A^2B = A \Rightarrow \operatorname{Ker} B \subset \operatorname{Ker} A$ et donc $\operatorname{Ker} B = \operatorname{Ker} A$ par argument dimensionnel avec le théorème du rang. En termes des endomorphismes a et b de \mathbb{R}^n canoniquement associés, il existe une base $\mathscr{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ telle que $\operatorname{Ker} a = \operatorname{Ker} b = \operatorname{Vect}(e_{r+1}, \dots, e_n)$ et $\operatorname{Im} a = \operatorname{Vect}(a(e_1), \dots, a(e_r))$. Les matrices de a et b dans ces bases sont de la forme par blocs $A' = \begin{pmatrix} C & 0 \\ D & 0 \end{pmatrix}$,

 $B' = \begin{pmatrix} E & 0 \\ F & 0 \end{pmatrix}$, où C et E sont de taille $r \times r$. Si P est La matrice de passage de la base canonique à \mathcal{B} , on a

$$A = PA'P^{-1}$$
; $B = PB'P^{-1}$

si bien que $A^2B = A \iff A'^2B' = A'$, c'est-à-dire

$$\left(\begin{array}{cc} C & 0 \\ D & 0 \end{array}\right) \left(\begin{array}{cc} C & 0 \\ D & 0 \end{array}\right) \left(\begin{array}{cc} E & 0 \\ F & 0 \end{array}\right) = \left(\begin{array}{cc} C & 0 \\ D & 0 \end{array}\right)$$

ce qui impose $\binom{C}{D}CE = \binom{C}{D}$ en extrayant la « colonne » de gauche. Comme $\operatorname{rg}(A) = \operatorname{rg}(A') = \operatorname{rg}\binom{C}{D} = r$, $\binom{C}{D}$ est la matrice d'une application injective de $\mathscr{L}(\mathbb{R}^r,\mathbb{R}^n)$ donc possédant un inverse à gauche. On en déduit que $CE = I_r$, donc C est inversible d'inverse E, puis

$$B^{\prime 2}A^{\prime} = \left(\begin{array}{cc} E^{2}C & 0\\ FEC & 0 \end{array}\right) = \left(\begin{array}{cc} E & 0\\ F & 0 \end{array}\right) = B^{\prime}$$

d'où finalement $B^2 A = B$.

Énoncé non détaillé - Énoncé détaillé

E-7.23. À toutes fins utiles, on exclut dans toute la suite les cas où u = 0 et $u \in GL(E)$, qui sont triviaux, de même que dans la dernière question pour les cas A = 0 ou A inversible.

(a) Soit \tilde{u} la restriction de u à Ker (u^2) . D'après le théorème du rang

$$\dim \operatorname{Ker}(u^2) = \operatorname{rg}(\tilde{u}) + \dim \operatorname{Ker} \tilde{u}.$$

Or, $\operatorname{Ker} \tilde{u} = \operatorname{Ker}(u^2) \cap \operatorname{Ker} u = \operatorname{Ker} u$ et pour tout $x \in \operatorname{Im} \tilde{u}$, il existe $y \in \operatorname{Ker}(u^2)$ tel que $x = \tilde{u}(y) = u(y)$ d'où $u(x) = u^2(y) = 0$, si bien que $x \in \operatorname{Ker} u$. On a donc $\operatorname{Im} \tilde{u} \subset \operatorname{Ker} u$ et donc $\operatorname{rg}(\tilde{u}) \leq \operatorname{dim} \operatorname{Ker} u$. On en déduit que

$$\dim \operatorname{Ker}(u^2) = \operatorname{rg}(\tilde{u}) + \dim \operatorname{Ker} u \le 2 \dim \operatorname{Ker} u$$

comme voulu.

(b) D'après le raisonnement de la question précédente, $\dim \operatorname{Ker}(u^2) = 2 \dim \operatorname{Ker}(u)$ si et seulement si $\operatorname{rg}(\tilde{u}) = \dim \operatorname{Ker} u$, ou encore si et seulement si $\operatorname{Im} \tilde{u} = u(\operatorname{Ker} u^2) = \operatorname{Ker} u$ puisque l'on a déjà une inclusion. Ceci donne directement (i) \iff (iii). Si (i) est vérifié, alors $\operatorname{Im} \tilde{u} = \operatorname{Ker} u$ et comme $\operatorname{Im} \tilde{u} \subset \operatorname{Im} u$, on a $\operatorname{Ker} u \subset \operatorname{Im} u$, ce qui prouve (i) \Rightarrow (ii). Enfin, si (ii) est vérifié, alors pour tout $x \in \operatorname{Ker} u$, il existe $y \in E$ tel que x = u(y), d'où $u^2(y) = u(x) = 0$ et donc $y \in \operatorname{Ker} u^2$, puis $x = u(y) \in u(\operatorname{Ker}(u^2))$ et donc (ii) \Rightarrow (iii), ce qui conclut à l'équivalence des trois propositions.

(c) Notons $M = \begin{pmatrix} A & I_n \\ 0 & A \end{pmatrix}$ et $N = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$. Pour $(X_1, X_2) \in (\mathbb{R}^n)^2$, $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \operatorname{Ker} N \iff \begin{cases} AX_1 = 0 \\ AX_2 = 0 \end{cases} \iff (X_1, X_2) \in \operatorname{Ker}(A)^2$ de sorte que

$$\varphi: (X_1, X_2) \mapsto \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

(qui est trivialement linéaire) est un isomorphisme de ($\operatorname{Ker} A$)² sur $\operatorname{Ker} N$. On en déduit que dim $\operatorname{Ker} N = \dim((\operatorname{Ker} A)^2) = 2\dim\operatorname{Ker} A$. De même

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \operatorname{Ker} M \iff \left\{ \begin{array}{l} AX_1 + X_2 = 0 \\ AX_2 = 0 \end{array} \right. \iff \left\{ \begin{array}{l} X_2 = -AX_1 \\ A^2X_1 = 0. \end{array} \right.$$

On en déduit que nécessairement, $X_1 \in \text{Ker}(A^2)$ et $X_2 = -AX_1$, si bien que

$$\psi: X_1 \mapsto \begin{pmatrix} X_1 \\ -AX_1 \end{pmatrix}$$

est une application linéaire surjective de $Ker(A^2)$ dans Ker M. Comme $\varphi(X_1) = 0$ entraîne directement $X_1 = 0$, elle est aussi injective, donc bijective, et dim $Ker M = \dim Ker(A^2)$. En rassemblant ces éléments, on a bien avec le théorème du rang

$$\dim \operatorname{Ker}(A^2) = 2 \dim \operatorname{Ker}(A) \iff \dim \operatorname{Ker} M = \dim \operatorname{Ker} N \iff \operatorname{rg} M = \operatorname{rg} N$$

ce qui conclut.

Énoncé non détaillé - Énoncé détaillé

Formes linéaires, équations de sous-espaces, systèmes linéaires

E-7.24. Le fait que $u^{\top} \in \mathcal{L}(E^*)$ est immédiat. Notons $\mathscr{B} = (e_1, \dots, e_n)$, $\mathscr{B}^* = (e_1^*, \dots, e_n^*)$ la base de E^* des formes linéaires coordonnées associées, et $A = \begin{pmatrix} a_{i,j} \end{pmatrix}_{1 \le i \le n} = \operatorname{Mat}_{\mathscr{B}}(u)$: pour tout $j \in [\![1,n]\!]$, on a $1 \le j \le n$

$$u^{\top}(e_j^*) = e_j^* \circ u$$

de sorte que pour tout $i \in [1, n]$

$$u^{\top}(e_j^*)(e_i) = e_j^* \circ u(e_i) = e_j^* \left(\sum_{k=1}^n a_{k,i} e_k\right) = \sum_{k=1}^n a_{k,i} e_j^*(e_k) = a_{j,i}.$$

Il vient ainsi

$$u^{\top}(e_j^*) = \sum_{i=1}^n u^{\top}(e_j^*)(e_i)e_i^* = \sum_{i=1}^n a_{j,i}e_i^*$$

et donc

$$\operatorname{Mat}_{\mathscr{B}^*}(u^{\mathsf{T}}) = \left(a_{j,i}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} = A^{\mathsf{T}}.$$

Remarque : on généralise la définition et le résultat à toute application linéaire $u \in \mathcal{L}(E,F)$ avec E et F de dimensions finies. On a alors $u^{\mathsf{T}} \in \mathcal{L}(F^*,E^*)$. La démonstration est identique.

Énoncé non détaillé - Énoncé détaillé

E-7.25. (a) Pour $i \in [1, n]$, on pose $\varphi_i : M \mapsto \sum_{k=1}^n m_{i,k}$ et $\psi_i : M \mapsto \sum_{k=1}^n m_{k,i}$. On a le lien clair

$$\sum_{i=1}^{n} \varphi_i = \sum_{i=1}^{n} \psi_i$$

ces deux formes linéaires calculant la somme de tous les coefficients d'une matrice : ceci montre que $(\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_n)$ est liée. Montrons par contre que $(\varphi_1, \dots, \varphi_n, \psi_1, \dots, \psi_{n-1})$ est libre dans $\mathcal{M}_n(\mathbb{R})^*$: soit $(\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_{n-1}) \in \mathbb{R}^{2n-1}$ tel que

$$\theta = \sum_{i=1}^{n-1} (\lambda_i \varphi_i + \mu_i \psi_i) + \lambda_n \varphi_n = 0.$$

Pour tout $j \in [1, n-2]$, on obtient en particulier

$$\theta(E_{j,j} - E_{j,j+1}) = 0 = \mu_j - \mu_{j+1}$$

et

$$\theta(E_{i,n-1} - E_{i,n}) = 0 = \mu_{n-1}$$

ce qui donne $\mu_j = 0$ pour tout $j \in [1, n-1]$. On obtient de même $\lambda_j = \lambda_{j+1}$ pour tout $j \in [1, n-1]$, et il reste en notant λ cette valeur commune

$$\lambda \sum_{i=1}^{n-1} \varphi_i = 0.$$

En particulier, $\lambda \sum_{i=1}^{n-1} \varphi_i(E_{1,1}) = \lambda = 0$ et finalement, $(\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_{n-1}) = (0, \dots, 0)$, ce qu'on voulait. On en déduit que

$$\dim E_0 = \dim \left(\left(\bigcap_{1 \leq i \leq n} \operatorname{Ker} \varphi_i \right) \cap \left(\bigcap_{1 \leq i \leq n} \operatorname{Ker} \psi_i \right) \right) = \dim \left(\left(\bigcap_{1 \leq i \leq n} \operatorname{Ker} \varphi_i \right) \cap \left(\bigcap_{1 \leq i \leq n-1} \operatorname{Ker} \psi_i \right) \right) = n^2 - (2n-1) = (n-1)^2$$

puisqu'il s'agit de l'intersection des noyaux de 2n-1 formes linéaires indépendantes. Pour $M \in E$, on a immédiatement $M-s(M)I_n \in E_0$, de sorte que $M=(M-s(M)I_n)+s(M)I_n \in E_0+{\rm Vect}(I_n)$. Cette dernière somme est directe puisque $I_n \notin E_0$, et on a donc

$$E = E_0 \oplus \operatorname{Vect}(I_n)$$

ďoù

$$\dim(E) = (n-1)^2 + 1 = n^2 - 2n + 2$$

(b) Notons $H = \text{Vect}((P_{\sigma})_{\sigma \in \mathscr{S}_n})$. Il est clair que pour tout $\sigma \in \mathscr{S}_n$, P_{σ} a la somme de toutes ses lignes et de toutes ses colonnes constante égale à 1, d'où $H \subset E$. Construisons une base de E_0 : pour tout $(i, j) \in [1, n-1]^2$, on pose

$$M_{i,j} = E_{i,j} + E_{n,n} - E_{i,n} - E_{n,j}$$
.

On vérifie facilement que $M_{i,j} \in E_0$, et que $(M_{i,j})_{\substack{1 \le i \le n-1 \\ 1 \le j \le n-1}}$ est libre, et constitue donc une base de E_0 puisqu'elle contient $(n-1)^2$

éléments. En notant $\tau_{i,j}$ la transposition $(i\ j)$, on vérifie encore que $M_{i,j} = I_n - P_{\tau_{i,j}} \in H$. On a donc $E_0 \subset H$, d'où $E_0 \subset H \subset E = E_0 \oplus \text{Vect}(I_n)$. Comme $I_n \in H$, on a en fait H = E ce qui conclut.

Énoncé non détaillé - Énoncé détaillé

E-7.26. Si A = E, on sait (cours) que $A^{\circ} = \{0\}$, et le résultat est clair. Il en va de même si $A = \{0\}$. On suppose dans la suite que dim $A = r \in [1, n-1]$.

On considère (e_1,\ldots,e_n) une base de A, que l'on complète en une base (e_1,\ldots,e_n) de E, et la base (e_1^*,\ldots,e_n^*) de E^* formée des formes coordonnées associées (pour rappel : $e_i^*(e_j) = \delta_{i,j}$ pour tout $(i,j) \in [\![1,n]\!]^2$) : on montre que $A^\circ = \operatorname{Vect}(e_{r+1}^*,\ldots,e_n^*)$. Il est clair par définition que pour tout $(i,j) \in [\![r+1,n]\!] \times [\![1,r]\!]$, on a $e_i^*(e_j) = 0$ et donc $H = \operatorname{Vect}(e_{r+1}^*,\ldots,e_n^*) \subset A$. Réciproquement, soit $\varphi \in A^\circ$:

on sait alors que $\varphi = \sum_{i=1}^{n} \varphi(e_i) e_i^* = \sum_{i=r+1}^{n} \varphi(e_i) e_i^* \in H$. On a donc bien $A^\circ = H$ et donc dim $A + \dim A^\circ = r + n - r = n$ comme voulu.

Énoncé non détaillé - Énoncé détaillé

Déterminants

E-7.27. (a) On remarque que les opérations usuelles sur les rangées d'un déterminant peuvent s'effectuer par blocs. Par exemple l'opération

$$\left| \begin{array}{cc} A & -B \\ B & A \end{array} \right| = \left| \begin{array}{cc} A+iB & -B+iA \\ B & A \end{array} \right|$$

se traduit par $L_k \leftarrow L_k + iL_{n+k}$ pour tout $k \in [1, n]$. On la notera plus simplement $\mathcal{L}_1 \leftarrow \mathcal{L}_1 + i\mathcal{L}_2$ pout signifier qu'on travaille sur des blocs de lignes, et de même avec des $\operatorname{\mathscr{C}}$ pour des blocs de colonnes. On a ainsi

$$\left| \begin{array}{cc|c} A & -B & \mathscr{L}_1 - \mathscr{L}_1 + i\mathscr{L}_2 \\ B & A \end{array} \right| \stackrel{\mathscr{L}_1 - \mathscr{L}_1 + i\mathscr{L}_2}{=} \left| \begin{array}{cc|c} A + iB & -B + iA \\ B & A \end{array} \right| \stackrel{\mathscr{L}_2 - \mathscr{L}_2 - i\mathscr{L}_1}{=} \left| \begin{array}{cc|c} A + iB & 0 \\ B & A - iB \end{array} \right| = \det((A + iB)(A - iB))$$

par un calcul par blocs.

(b) Par la formule du déterminant

$$\det\left(\left(p_{i,j}\right)_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}\right) = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{k=1}^n p_{k,\sigma(k)}$$

on voit aussitôt que $\det(\overline{P}) = \overline{\det(P)}$ pour toute matrice $P \in \mathcal{M}_n(\mathbb{C})$. On en conclut que si A et B sont à valeurs réelles

 $\det(M) = \det((A+iB)(A-iB)) = \det(A+iB)\det(A-iB) = \det(A+iB)\det(\overline{A+iB}) = \det(A+iB)\overline{\det(A+iB)} = |\det(A+iB)|^2 \geqslant 0$ ce qu'on voulait.

Énoncé non détaillé - Énoncé détaillé

E-7.28. (a) On a immédiatement $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0 \\ -C & I_n \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ 0 & D \end{pmatrix}$ donc en effectuant des calculs de déterminants par blocs

$$\left| \begin{array}{cc|c} A & B \\ C & D \end{array} \right| \left| \begin{array}{cc|c} D & 0 \\ -C & I_n \end{array} \right| = \left| \begin{array}{cc|c} AD - BC & B \\ 0 & D \end{array} \right| \Longleftrightarrow \left| \begin{array}{cc|c} A & B \\ C & D \end{array} \right| \det D = \det(AD - BC) \det D \Longleftrightarrow \left| \begin{array}{cc|c} A & B \\ C & D \end{array} \right| = \det(AD - BC)$$

- (b) Faire de même avec $\begin{pmatrix} D^{\top} & 0 \\ -C^{\top} & I_n \end{pmatrix}$. (c) Faire de même avec $\begin{pmatrix} D & 0 \\ -D^{-1}CD & I_n \end{pmatrix}$.
- (d) Toutes ces relations étant continues en D, il suffit d'utiliser la densité de $GL_n(K)$ dans $\mathcal{M}_n(K)$ (voir le cours de topologie pour des preuves de ce résultat).

Énoncé non détaillé - Énoncé détaillé

E-7.29. L'expression explicite du déterminant montre que $z \mapsto \det(A(z))$ est polynomiale en z. L'hypothèse que $A(z) \in GL_n(\mathbb{C})$ pour tout $z \in \mathbb{C}$ montre que ce polynôme ne s'annule pas sur \mathbb{C} : c'est donc une constante non nulle d par le théorème de d'Alembert-Gauss. La formule des cofacteurs montre alors que les coefficients de $dA(z)^{-1}$ sont des déterminants extraits de A(z) donc des polynômes en z, ce qui conclut.

Énoncé non détaillé – Énoncé détaillé

E-7.30. On a

$$MM^{-1} = I_n \iff \begin{cases} AA' + BC' = I_k \\ AB' + BD' = 0 \\ CA' + DC' = 0 \\ CB' + DD' = I_{n-k} \end{cases}$$

d'où $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I_k & B' \\ 0 & D' \end{pmatrix} = \begin{pmatrix} A & 0 \\ C & I_{n-k} \end{pmatrix}$ puis le résultat en prenant le déterminant.

Énoncé non détaillé - Énoncé détaillé

E-7.31. (a) Soit $P: x \mapsto \det(M+xJ)$, où $J \in \mathcal{M}_n(\mathbb{R})$ a tous ses coefficients égaux à 1. Pour tout $x \in \mathbb{R}$, les transformations $C_i \leftarrow C_i - C_i$ C_1 pour tout $i \in [2, n]$ sur P(x) annulent tous les x du déterminant sauf ceux de la première colonne. Un développement par rapport à cette première colonne montre alors que P est un polynôme de degré inférieur ou égal à 1. On a facilement $P(-a) = \prod_{i=1}^{n} (\lambda_i - a)$ et

 $P(-b) = \prod_{i=1}^{n} (\lambda_i - b)$. La connaissance de ces deux valeurs suffit à connaître le polynôme P puisqu'il est de degré inférieur ou égal à

$$P(x) = \frac{x+b}{b-a} \prod_{i=1}^{n} (\lambda_i - a) + \frac{x+a}{a-b} \prod_{i=1}^{n} (\lambda_i - b)$$

pour tout $x \in \mathbb{R}$ et donc

$$D_n(a,b) = P(0) = \frac{b}{b-a} \prod_{i=1}^{n} (\lambda_i - a) + \frac{a}{a-b} \prod_{i=1}^{n} (\lambda_i - b).$$

(b) Par continuité du déterminant, $D_n(a,a) = \lim_{b \to a} D_n(a,b)$. Notons que si a est nul, $D_n(0,0) = \prod_{i=1}^n \lambda_i$. On suppose donc maintenant que $a \neq 0$, et on prend $b \neq 0$ également puisqu'on va le faire tendre vers a. Il vient

$$D_n(a,b) = -ab \frac{1}{b-a} \left[\frac{1}{b} \prod_{i=1}^n (\lambda_i - b) - \frac{1}{a} \prod_{i=1}^n (\lambda_i - a) \right].$$

Si l'on pose $f(x) = \frac{1}{x} \prod_{i=1}^{n} (\lambda_i - x)$ pour $x \neq 0$, on voit apparaître ci-dessus le taux d'accroissement de f entre a et b, et sa limite est donc

$$f'(a) = -\frac{1}{a^2} \prod_{i=1}^n (\lambda_i - a) - \frac{1}{a} \sum_{i=1}^n \prod_{\substack{i=1 \ i \neq i}}^n (\lambda_i - a).$$

Il vient

$$D_n(a, a) = \prod_{i=1}^n (\lambda_i - a) + a \sum_{i=1}^n \prod_{\substack{i=1 \ j \neq i}}^n (\lambda_i - a).$$

Énoncé non détaillé - Énoncé détaillé

E-7.32. (a) On considère la suite des polynômes de Tchebychev $(T_n)_{n\in\mathbb{N}}$, qui est telle que pour tout $n\in\mathbb{N}$ et tout $\theta\in\mathbb{R}$, $T_n(\cos(\theta))=\cos(n\theta)$, avec $\deg(T_n)=n$. On pose $c_i=\cos(x_i)$ pour tout $i\in[0,n]$, et pour tout $k\in\mathbb{N}$

$$T_k = \sum_{\ell=0}^k a_{k,\ell} X^{\ell}.$$

La k-ième colonne de A est alors $\begin{pmatrix} T_k(c_0) \\ \vdots \\ T_k(c_n) \end{pmatrix}$. On effectue dans $\det(A)$ les opérations $C_k \leftarrow C_k - \frac{a_{k,0}}{a_{0,0}}C_0$ pour tout $k \ge 1$, puis $C_k \leftarrow C_k - \frac{a_{k,0}}{a_{0,0}}C_0$

 $\frac{a_{k,1}}{a_{1,1}}C_1$ pour tout $k \ge 2$, *etc.*, et on factorise chaque colonne par le coefficient dominant de T_k : det(A) est alors égal au déterminant de la matrice « presque » de Vandermonde

$$\begin{pmatrix} a_{0,0} & a_{1,1}c_0 & a_{2,2}c_0^2 & \dots & a_{n,n}c_0^n \\ \vdots & \vdots & & & \vdots \\ a_{0,0} & a_{1,1}c_n & a_{2,2}c_n^2 & \dots & a_{n,n}c_n^n \end{pmatrix}.$$

On sait (on retrouve facilement) que $a_{0,0} = 1$ et $a_{k,k} = 2^{k-1}$ pour $k \in [1, n]$, si bien que

$$\det(A) = a_{0,0} \dots a_{n,n} \begin{vmatrix} 1 & c_0 & c_0^2 & \dots & c_0^n \\ \vdots & \vdots & & \vdots \\ 1 & c_n & c_n^2 & \dots & c_n^n \end{vmatrix} = 2^{\frac{n(n-1)}{2}} \prod_{0 \le i < j \le n} (c_j - c_i).$$

A est de même rang que cette matrice, qui est $r = \text{Card}\{c_i, 0 \le i \le n\}$ (autant que de cosinus distincts), puisqu'il s'agit clairement de la taille de la plus grande matrice carrée inversible extraite de A.

(b) On a

$$|\det(A)| = \left| \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{k=1}^n \cos((\sigma(k) - 1)x_k) \right| \leq \sum_{\sigma \in \mathcal{S}_n} \prod_{k=1}^n |\cos((\sigma(k) - 1)x_k)| \leq \sum_{\sigma \in \mathcal{S}_n} 1 = n!.$$

Énoncé non détaillé - Énoncé détaillé

E-7.33. On note C la colonne $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$, et $(E_k)_{1 \le k \le n}$ la base canonique de $\mathcal{M}_{n,1}(K)$. Par n-linéarité et en annulant tous les déter-

minant avant deux colonnes identiques, il vient

$$\det M = \det(C + a_1 E_1, \dots, C + a_n E_n) = \det(a_1 E_1, \dots, a_n E_n) + \det(C, a_2 E_2, \dots, a_n E_n) + \dots$$

$$+ \det(a_1 E_1, \dots, a_{k-1} E_{k-1}, C, a_{k+1} E_{k+1}, \dots, a_n E_n) + \dots + \det(a_1 E_1, \dots, a_{n-1} E_{n-1}, C)$$

ďoù

$$\det M = \prod_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k \prod_{\substack{j=1 \ i \neq i}}^{n} a_j.$$

Énoncé non détaillé - Énoncé détaillé

E-7.34. On note $J = E_{1,1}$. Comme rg(X) = 1, X = UJV avec U et V inversibles, d'où

$$\det(A+X) = \det(A+UJV) = \det(UV)\det(U^{-1}AV^{-1}+J)$$

et de même $\det(A-X) = \det(UV) \det(B-J)$ où l'on a noté $B = U^{-1}AV^{-1} = \begin{pmatrix} b_{i,j} \end{pmatrix}_{\substack{1 \le i \le n}}$, la matrice B+J ayant les mêmes coefficients hormis celui en position (1,1) qui est $b_{1,1}+1$. Par linéarité du déterminant par rapport à sa première colonne

$$\det(B+J) = \det B + \det B'$$

où B' a pour première colonne $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ et ensuite les mêmes colonnes que B. De même, $\det(B-J) = \det B - \det B'$. Finalement

 $\det(A + X)\det(A - X) = \det(UV)^{2}(\det B + \det B')(\det B - \det B') = \det(UV)^{2}((\det B)^{2} - (\det B')^{2}) \leq \det(UV)^{2}(\det B)^{2} = (\det A)^{2}.$

Énoncé non détaillé - Énoncé détaillé

E-7.35. On note $(A_1, ..., A_p)$ la liste des colonnes de A et $B = (b_{i,j})_{1 \le i \le p}$. On a alors par multilinéarité du déterminant $1 \le i \le p$

$$\det(AB) = \det\left(\sum_{k=1}^{p} b_{k,1}A_k, \dots, \sum_{k=1}^{p} b_{k,n}A_k\right) = \sum_{(k_1,\dots,k_n)\in[[1,p]]^n} b_{k_1,1}\dots b_{k_n,n}\det(A_{k_1},\dots,A_{k_n}).$$

Dans la somme de droite, tous les termes pour lesquels les $(k_i)_{1 \le i \le n}$ ne sont pas deux à deux distincts sont nuls. On regroupe alors les autres termes selon la liste des colonnes présentes : pour tout $S \in \mathcal{P}_n([[1,p]])$, en notant U l'ensemble de toutes les bijections de [[1,n]] dans S, il vient

$$\det(AB) = \sum_{S \in \mathscr{P}_n(\llbracket 1, p \rrbracket)} \sum_{\varphi \in U} b_{\varphi(1), 1} \dots b_{\varphi(n), n} \det(A_{\varphi(1)}, \dots, A_{\varphi(n)}).$$

On réordonne alors par indices croissants les termes de $\det(A_{\varphi(1)},\ldots,A_{\varphi(n)})$ pour tout $S\in \mathscr{P}_n([\![1,p]\!])$ et tout $\varphi\in U$, ce qui donne $\varepsilon(\varphi)\det(A^S)$, où $\varepsilon(\varphi)$ est précisément la signature de la permutation $\alpha\mapsto\varphi(\alpha)$ des colonnes de la matrice B_S . Il vient en définitive

$$\det(AB) = \sum_{S \in \mathcal{P}_n([\![1,p]\!])} \sum_{\varphi \in U} \varepsilon(\varphi) b_{\varphi(1),1} \dots b_{\varphi(n),n} \det(A^S) = \sum_{S \in \mathcal{P}_n([\![1,p]\!])} \det(A^S) \sum_{\varphi \in U} \varepsilon(\varphi) b_{\varphi(1),1} \dots b_{\varphi(n),n} = \sum_{S \in \mathcal{P}_n([\![1,p]\!])} \det(A^S) \det(B_S) + \sum_{S \in \mathcal{P}_n([\![1,p]\!])} \det(A^S) \det(A^S) + \sum_{S \in \mathcal{P}_n([\![1,p]\!])} \det(A^S) + \sum_{S \in \mathcal{P}_n([\![1,$$

comme voulu.

Énoncé non détaillé - Énoncé détaillé

E-7.36. Notons $(m_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} = ((a_i + b_j)^{n-1})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$, on a alors pour tout $(i,j) \in [\![1,n]\!]^2$ avec la formule du binôme

$$m_{i,j} = \sum_{k=0}^{n-1} \binom{n-1}{k} a_i^k b_j^{n-1-k} = \sum_{k=1}^n \binom{n-1}{k-1} a_i^{k-1} b_j^{n-k} = \sum_{k=1}^n u_{i,k} v_{k,j}$$

avec $u_{i,j} = \binom{n-1}{j-1}a_i^{j-1}$ et $v_{i,j} = b_j^{n-i}$ pour tout $(i,j) \in [1,n]^2$. On en déduit que M = UV avec $U = \left(\binom{n-1}{j-1}a_i^{j-1}\right)_{\substack{1 \le i \le n \\ 1 \le i \le n}}$ et $V = \binom{n-1}{j-1}a_i^{j-1}$

 $\left(b_{j}^{n-i}\right)_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}}$. On reconnaît dans det V le déterminant de Vandermonde associé aux scalaires $(b_{1},...,b_{n-1})$, écrit en lignes et « à

l'envers » (dans le sens des puissances décroissantes du haut en bas). La permutation qui renverse l'ordre est le produit de $\left\lfloor \frac{n}{2} \right\rfloor$ transpositions et est donc de signature $(-1)^{\left\lfloor \frac{n}{2} \right\rfloor}$. On en déduit que

$$\det V = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \prod_{1 \leq i < j \leq n} (b_j - b_i).$$

On peut factoriser $\det U$ par $\binom{n-1}{j-1}$ dans chaque colonne $j \in [1, n]$. Une fois cette opération effectuée, on reconnaît un déterminant de Vandermonde usuel. Il vient

$$\det U = \left(\prod_{k=0}^{n-1} \binom{n-1}{k}\right) \left(\prod_{1 \le i < j \le n} (a_j - a_i)\right)$$

d'où finalement

$$\det(M) = \det(U)\det(V) = (-1)^{\left\lfloor \frac{n}{2} \right\rfloor} \left(\prod_{k=0}^{n-1} \binom{n-1}{k} \right) \left(\prod_{1 \leq i < j \leq n} (b_j - b_i) \right) \left(\prod_{1 \leq i < j \leq n} (a_j - a_i) \right).$$

Remarque: on montre assez facilement que $\prod_{k=0}^{n-1} \binom{n-1}{k} = \prod_{k=1}^{n-1} k^{2k-n}$... ce qui n'apporte pas grand chose de plus ici.

Énoncé non détaillé - Énoncé détaillé

E-7.37. Quitte à réordonner les a_i dans l'ordre croissant (ce qui ne change éventuellement que le signe de D) et à ajouter $n-a_1$ à tous les termes (ce qui ne change pas les différences apparaissant au numérateur), on peut supposer $n \le a_1 \le ... \le a_n$ (et même $a_1 =$

n, ce qui ne change rien ci-après). On note $V = \begin{bmatrix} 1 & a_1 & \dots & a_n^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & a_n & \dots & a_n^{n-1} \end{bmatrix}$ le déterminant de Vandermonde qui apparaît au numérateur. On remarque que $\prod_{1 \le i < j \le n} (j-i)$ fait apparaître n-1 fois le facteur 1, n-2 fois le facteur 2, etc., 1 fois le facteur n-1, d'où

$$\prod_{1 \le i < j \le n} (j - i) = 1! 2! \dots (n - 1)!.$$

Par opérations sur les colonnes, on remarque aussi que

$$V = \begin{vmatrix} 1 & a_1 & a_1(a_1 - 1) & \dots & a_1(a_1 - 1) \dots (a_1 - n + 2) \\ \vdots & & & \vdots \\ 1 & a_n & a_n(a_n - 1) & \dots & a_n(a_n - 1) \dots (a_n - n + 2) \end{vmatrix}$$

Il vient

$$D = \begin{vmatrix} \frac{1}{0!} & \frac{a_1}{1!} & \frac{a_1(a_1-1)}{2!} \cdots & \frac{a_1(a_1-1)...(a_1-n+2)}{(n-1)!} \\ \vdots & & \vdots \\ \frac{1}{0!} & \frac{a_n}{1!} & \frac{a_n(a_n-1)}{2!} \cdots & \frac{a_n(a_n-1)...(a_n-n+2)}{(n-1)!} \end{vmatrix} = \det(M)$$

où $M = \left(\binom{a_j}{i-1}\right)_{1 \le i \le n}$ est une matrice à coefficients entiers. D est donc bien entier.

Énoncé non détaillé - Énoncé détaillé

E-7.38. En retranchant la dernière ligne de $D_n(a_1, \ldots, a_n, b_1, \ldots, b_n)$ à toutes les autres, en réduisant au même dénominateur, puis en factorisant $a_n - a_j$ dans la colonne j et $\frac{1}{a_n + b_j}$ dans la ligne j pour tout $j \in [1, n-1]$, il vient

$$D_n(a_1,\ldots,a_n,b_1,\ldots,b_n) = \frac{(a_n-a_1)\ldots(a_n-a_{n-1})}{(a_n+b_1)\ldots(a_n+b_{n-1})} \begin{vmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} & \cdots & \frac{1}{a_1+b_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_{n-1}+b_1} & \frac{1}{a_{n-1}+b_2} & \cdots & \frac{1}{a_{n-1}+b_n} \end{vmatrix}.$$

On retranche maintenant la dernière colonne à toutes les autres, et par des opérations analogues, il vient

$$D_n(a_1,\ldots,a_n,b_1,\ldots,b_n) = \frac{(a_n-a_1)\ldots(a_n-a_{n-1})(b_n-b_1)\ldots(b_n-b_{n-1})}{(a_n+b_1)\ldots(a_n+b_{n-1})(a_1+b_n)\ldots(a_{n-1}+b_n)} \begin{vmatrix} \frac{1}{a_1+b_1} & \cdots & \frac{1}{a_1+b_{n-1}} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{1}{a_{n-1}+b_1} & \cdots & \frac{1}{a_{n-1}+b_{n-1}} & 1\\ 0 & \cdots & 0 & 1 \end{vmatrix}.$$

En développant par rapport à la dernière ligne, on aboutit à la relation de récurrence

$$D_n(a_1,\ldots,a_n,b_1,\ldots,b_n) = \frac{(a_n-a_1)\ldots(a_n-a_{n-1})(b_n-b_1)\ldots(b_n-b_{n-1})}{(a_n+b_1)\ldots(a_n+b_{n-1})(a_1+b_n)\ldots(a_{n-1}+b_n)} D_{n-1}(a_1,\ldots,a_{n-1},b_1,\ldots,b_{n-1}).$$

On en déduit par une récurrence facile que

$$D_n(a_1,...,a_n,b_1,...,b_n) = \frac{\prod\limits_{1 \le i < j \le n} (a_j - a_i)(b_j - b_i)}{\prod\limits_{(i,j) \in [1,n]^2} (a_i + b_j)}.$$

Énoncé non détaillé - Énoncé détaillé

E-7.39. On sait que

$$|\det(A)| = \left| \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right| \leq \sum_{\sigma \in \mathscr{S}_n} \prod_{i=1}^n |a_{i,\sigma(i)}|.$$

Par ailleurs

$$P(A) = \prod_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{i,j}| \right) = \sum_{(j_1, \dots, j_n) \in [1, n]^n} \prod_{i=1}^{n} |a_{i,j_i}| = \sum_{f \in \mathscr{F}_n} \prod_{i=1}^{n} |a_{i,f(i)}|$$

où l'on a noté $\mathscr{F}_n = [\![1,n]\!]^{[\![1,n]\!]}$ l'ensemble de toutes les applications de $[\![1,n]\!]$ dans lui-même. Comme $\mathscr{S}_n \subsetneq \mathscr{F}_n$, on a donc

$$\sum_{\sigma \in \mathcal{S}_n} \prod_{i=1}^n |a_{i,\sigma(i)}| \le P(A)$$

avec égalité si et seulement si $\prod_{i=1}^{n} |a_{i,f(i)}| = 0$ pour tout $f \in \mathcal{F}_n$ non bijective.

Il est clair que si A possède une ligne nulle, alors A n'est pas inversible, donc det(A) = 0, et P(A) = 0 car l'un des termes de ce produit est nul. A est donc solution du problème.

Il est clair aussi que si A possède exactement un terme non nul par ligne et par colonne, alors det(A) est égal, au signe près, au produit de ces termes, de même que P(A), et A est donc encore solution du problème.

Montrons que ce sont les seules solutions. Supposons d'abord que A possède au moins un terme non nul par ligne, et qu'il existe une ligne $k \in [1, n]$ de A possédant aux moins deux termes non nuls. Pour tout $i \in [1, n]$, on peut donc choisir $j_i \in [1, n]$ tel que $a_{i,j_i} \neq 0$, et on peut encore choisir $j_k' \neq j_k$ tel que $a_{k,j_k'} \neq 0$.

- * Si la liste $(j_1, ..., j_n)$ contient deux éléments égaux, on pose $g(i) = j_i$ pour tout $i \in [1, n]$.
- * Si la liste $(j_1, ..., j_n)$ contient des éléments deux à deux distincts, alors on pose $g(i) = j_i$ pour tout $i \in [1, n] \setminus \{k\}$, et $g(k) = j'_k$. Par construction, g n'est pas injective, et $a_{i,g(i)} \neq 0$ pour tout $i \in [1, n]$. On en déduit que

$$P(A) = \sum_{f \in \mathscr{F}_n} \prod_{i=1}^n |a_{i,f(i)}| \ge \sum_{\sigma \in \mathscr{S}_n} \prod_{i=1}^n |a_{i,\sigma(i)}| + \prod_{i=1}^n |a_{i,g(i)}| > \sum_{\sigma \in \mathscr{S}_n} \prod_{i=1}^n |a_{i,\sigma(i)}| \ge |\det(A)|$$

et donc que A n'est pas solution du problème.

Enfin, si A possède exactement un terme non nul par ligne mais pas par colonne, alors P(A) est égal au produit des valeurs absolues de ces termes donc n'est pas nul, tandis que A a au moins une colonne nulle, donc $|\det(A)| = 0$.

Finalement, les seules solutions du problème sont les matrices *A* ayant une ligne nulle, ou exactement un terme non nul par ligne et par colonne.

Énoncé non détaillé – Énoncé détaillé

Calculs de polynômes caractéristiques

E-7.40. (a) En effectuant les opérations DC_1 puis DL_1 , il vient $P_{n+2} - XP_{n+1} + P_n = 0$.

(b) A est symétrique réelle donc diagonalisable. On résout la récurrence double pour tout $t \in \mathbb{R}$:

* si |t| > 2

$$P_n(t) = \frac{1}{2} \left(\frac{t + \sqrt{t^2 - 4}}{2} \right) + \frac{1}{2} \left(\frac{t - \sqrt{t^2 - 4}}{2} \right);$$

- * $P_n(2) = n + 1$ et $P_n(-2) = (-1)^n (n + 1)$;
- $* \operatorname{si} |t| < 2$

$$P_n(t) = \frac{1}{2} \left(\frac{t + i\sqrt{4 - t^2}}{2} \right) + \frac{1}{2} \left(\frac{t - i\sqrt{4 - t^2}}{2} \right).$$

Remarque : il n'apparaît pas de façon immédiate sur ces expressions que P_n est un polynôme. On constate alors qu'il n'y a pas de racine réelle t telle que $|t| \ge 2$ (aucune annulation de la première expression). On résout dans $\mathbb{C}[P_n(t)] = 0$ pour |t| < 2, par exemple en posant $t = 2\sin u$ avec $u \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Il vient les valeurs propres $\left\{ 2\sin\left(\frac{(2k+1)\pi}{2n}\right), k \in \left[\left[-\frac{n}{2}, \frac{n}{2} - 1\right]\right] \right\}$ si n est pair et $\left\{ 2\sin\left(\frac{k\pi}{n}\right), k \in \left[\left[-\frac{n-1}{2} - 1, \frac{n-1}{2}\right]\right] \right\}$ si n impair.

Énoncé non détaillé - Énoncé détaillé

- **E-7.41.** (a) Si $V = (x_1 \dots x_n)^{\top}$ est tel que AV est à coefficients positifs ou nuls, alors chaque x_i pour $i \in [2, n-1]$ est plus grand que la moyenne des deux qui l'encadrent. Si le minimum des x_i est atteint en un de ces points, alors les deux qui l'encadrent doivent lui être égaux et par itération, V est le vecteur $\lambda(1 \dots 1)^{\top}$ et $\lambda \ge 0$ puisque $2\lambda \lambda \ge 0$ en regardant la première coordonnée de AV. Sinon, ce minimum est atteint en x_1 ou x_n , et $x_2 \le 2x_1 \le 2x_2$ impose $x_1 \ge 0$ de même que x_n .
- (b) Si AV = 0, alors V est à coefficients positifs ou nuls, et négatifs ou nuls de même, d'où V = 0. Les colonnes $(C_1, ..., C_n)$ de A^{-1} vérifient AC_i à coefficients positifs ou nuls (c'est la i-ème colonne de I_n) donc C_i aussi avec ce qui précède.
- (c) Le polynôme caractéristique χ_n de A vérifie la récurrence $\chi_n = (X-2)\chi_{n-1} \chi_{n-2}$ en développant directement par rapport à la dernière colonne. Reconnaître dans $T_n = \chi_n(2X+2)$ les polynômes de Tchebychev : les valeurs propres de A sont les $\left\{\sin\left(\frac{(2k+1)\pi}{n}\right) + 2, 0 \le k \le n-1\right\}$.

Énoncé non détaillé - Énoncé détaillé