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Abstract

While public debate and prominent studies expect digitalization to substantially reduce energy use
and carbon dioxide (CO2) emissions, quantitative research has produced ambiguous results. This
study addresses the challenges in the analysis of the relationship between a country’s digitalization
level and CO2 emissions by employing the Group Fixed Effects estimator for panel data of EU and
OECD countries and by differentiating between emissions associated with digitalization in firms
and households.
Results are highly robust to the statistical procedure and indicate that digitalization in both house-
holds and firms generally decreases emissions. At the sample median, a 10% increase in firm (house-
hold) level digitalization would, on average, decrease emissions by 0.3% (0.8%). In countries of the
three lowest deciles in the income distribution, however, the effect is reversed: Here, an increase in
digitalization is also associated with an increase in emissions.
The results are further interpreted beyond the median effect and differentiate between countries of
different incomes through a non-parametric approach. This analysis also has implications for the
discussion of the EKC hypothesis, as the empirical analysis nests an estimation of an EKC model,
extended by a measure of digitalization.
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1 Introduction1

Digitalization has inspired great hopes for the attempt to alleviate environmental challenges such2

as climate change and the overuse of natural resources. Such hopes are nurtured by governmen-3

tal stakeholders (Mickoleit, 2010; Federal Government of Germany, 2014; Federal4

Ministry for Education and Research, 2014) and business stakeholders alike (Karger-5

mann and Wahlster, 2013; GeSI and Accenture, 2015; Schebek et al., 2017). The Global6

e-Sustainability Initiative, for example, an international network of IT companies, argues that7

digitalization could decrease global carbon emissions by an impressive 20% (GeSI and Accen-8

ture, 2015). However, many such hopes are based on weak foundations, as environmental costs9

of increasing digitalization tend to be underestimated (Lange and Santarius, 2020; Hilty10

and Bieser, 2017).11

Despite its many facets, the process of digitalization is often discussed as the panacea for environ-12

mental degradation, be it because of the efficiency gains through improved logistics (Moberg13

et al., 2010a), more efficient manufacturing due to robot use (Wang et al., 2022), lower in-14

put agriculture due to precision farming (Griepentrog, 2017), or, on the household side, less15

environmental effects through media consumption (Shehabi et al., 2014) or less commuting16

for shopping (Mangiaracina et al., 2015; Loon et al., 2015; Horner et al., 2016; Buldeo17

Rai, 2021) or work related traveling (Hischier and Hilty, 2002; Faber, 2021). It is therefore18

necessary to understand the aggregate effect of digitalization on environmental degradation.19

The mechanisms through which environmental outcomes are affected by digitalization differ be-20

tween firms and households. What the two have in common is that mechanisms, which lead to21

an increasing effect of digitalization on emissions, are equally plausible as oppositely directed22

effects. On the firm level, the application of information and communication technologies (ICT)23

promises to increase energy and resource efficiencies of production processes (e.g., Renn et al.,24

2021). Their application could also optimize logistics (GeSI and Accenture, 2015) or ensure25

more precise and therefore reduced use of pesticides and fertilizers in agriculture (Griepen-26

trog, 2017). However, such increases in efficiencies are based on new robotic technologies,27

additional sensors, or new (farming) machines, which must be produced, powered, and disposed28

of - necessitating additional energy and resource use. Furthermore, the new technologies often29

increase production by increasing the productivity of energy and resources, as well as that of30

labor (Brynjolfsson and McAfee, 2014). These higher production levels can lead to a net31

increase of energy and resource use, constituting an example for rebound effects (Chan and32

Gillingham, 2015; Hertel, 2018). Such detrimental effects have been found for increasing33

levels of science and technology in different contexts (Fisher-Vanden and Ho, 2010; Cole34

et al., 2013).35

At the household level, digitalization promises to decrease energy and resource consumption36

through two mechanisms. First, physical goods can be substituted by digital services – for37

example replacing DVDs by video-streaming services (Shehabi et al., 2014). Second, digital38
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appliances can be used to change everyday behavior in an environmentally sustainable manner39

– such as using video-conferencing instead of traveling to a conference (Hischier and Hilty,40

2002; Faber, 2021). However, two countervailing effects may come into play. First are direct41

effects related to the use of digital appliances, such as the increased electricity consumption42

related to video-streaming (Shehabi et al., 2014; The Shift Project, 2019; Faber, 2021).43

Second, digitalization may increase consumption and thereby require additional resources. For44

example, video-conferencing might lead to an increase in physical traveling to visit the people45

one has first met online (Hischier and Hilty, 2002).46

Since opposite effects of increased digitalization on CO2 emissions are plausible, an empiri-47

cal analysis is conducted to determine which of the two dominates. However, measuring the48

aggregate effect of digitalization on the environment is challenging (Heijungs et al., 2009;49

Finkbeiner et al., 2014; Miller and Keoleian, 2015). Most feasible is investigating the50

direct effects and efficiency increases on a microeconomic scale by measuring the energy and51

resources used to produce and use ICT, and by estimating changes in energy and resource52

efficiencies when producing specific goods and services (see Section 2). However, even these53

investigations are methodologically challenging (Hilty, 2015). Isolating the effect of digitaliza-54

tion on CO2 emissions at the macroeconomic scale is a complex undertaking as well, given that55

economies undergo a multitude of transformations and macroeconomic shocks (Lange et al.,56

2020). One approach to address those challenges for analyses at the macro level is to com-57

pare economies within the same historical setting through a panel data approach (Schulte58

et al., 2016). Such an approach allows digitalization effects to be isolated from other factors59

and enables to determine whether economies experiencing higher levels of digitalization produce60

more carbon emissions, compared to economies with lower digitalization levels in the same time61

period.62

While the focus of the study is to understand the environmental consequences of the intensity63

of digitalization, the inclusion of GDP per capita as a control variable results in an estimation64

that can also be used as an empirical test for the Environmental Kuznets Curve (EKC) while65

controlling for digitalization. The EKC hypothesis states that the relation between a country’s66

per capita income and its emissions is characterized by an inverted U-shape. This hypothesis of67

an inverted U-shape means that an initial increase in average income leads to higher emissions, up68

to a turning point, from which on a further increase in income leads to reductions in emissions.69

Dinda (2004), Stern (2004), Romero-Ávila (2008), Al-Mulali et al. (2015), Ridzuan70

(2019), and Saqib and Benhmad (2021) offer comprehensive reviews of the EKC literature.71

The implications of our results for the discussion on the EKC hypothesis are provided in the72

results section.73

Few studies have assessed the overall effect of ICT on greenhouse gas emissions. As shown74

below, they provide conflicting results. Also, they are all based on digitalization indicators75

on the individual (rather than firm) level, and they do not differentiate between economies of76

different income levels. By working with two different indicators – one for households and one77
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for firms - and by allowing for different effects depending on the average income level, we shed78

additional light on the relationship between digitalization and greenhouse gas emissions. Due to79

availability of data on measures of digitalization, the study is limited to high income, western80

countries and the period from 1995 to 2019 on the firm side and 2002 to 2016 on the household81

side.82

2 The environmental effects of digitalization83

This section first presents the mechanisms that moderate the effects of increasing digitalization84

on CO2 emissions. It shows that at both the firm and the household level, oppositely directed85

mechanisms are plausible. Subsequently, we summarize the existing evidence on the net effects86

of increasing digitalization on CO2 emissions.87

2.1 Households88

On the household side, the literature largely focuses on the effect of single technologies. Moberg89

et al. (2010b) find that digital newspapers can save up to 60% of the energy consumed by90

producing the printed versions. Martin and Rivers (2018) conclude that digital, real-time91

meters of electricity use help households in reducing their energy consumption. Several studies92

on the implications of online shopping (and other delivery services) on energy consumption come93

to lesser clear conclusions. Whether replacing traditional commerce by e-commerce reduces94

energy intensity and the net environmental impact depends on various circumstances, such as95

population density, freight mode, the return rate, trip allocation, and the type of packaging96

used (e.g., Mangiaracina et al., 2015; Loon et al., 2015; Horner et al., 2016; Buldeo Rai,97

2021). The complexity of the relationship between e-commerce and environmental impact is also98

due to the multidimensional nature of a household’s travel behavior in its particular shopping99

environment. Le et al. (2021) review 42 studies on the relation between online shopping and100

travel behavior, but although they find some evidence that online shopping reduces shopping101

travel, they describe the evidence as being far away from overwhelming. Shi et al. (2021) rely102

on a propensity score matching approach to compare travel behavior of car owners and non-car103

owners in China. They find that car owners are less likely to reduce trip frequencies due to104

online shopping than non-car owners. The authors suggest that the size of the substitution105

effect for car owners may vary geographically according to the dependence on private cars. To106

sum up, the discussion in the literature about the effect of online shopping on shopping travel107

behavior is not settled. Ambivalent results have also been found for media substitution regarding108

online video streaming compared to renting DVDs. Here, the net environmental effect depends109

on several parameters, in particular on the distance the average consumer travels to the DVD110

rental establishments (Shehabi et al., 2014).111
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2.2 Firms112

For the firm side, the literature can be categorized into analyses on how digital technologies113

change greenhouse gas emissions in different sectors of the economy and on the greenhouse gas114

emissions of the ICT sector itself. A first strand of literature finds that digitalization has the115

potential to increase efficiency throughout economic sectors. However, many of those studies116

assess the potential of digital technologies to reduce greenhouse gas emissions in the future,117

rather than observed impacts in the past (Lange et al., 2023). Regarding mobility, the role118

of autonomous vehicles is controversially debated. Whether they can contribute to climate119

protection depends on whether they will be used in a future mobility system that continues to120

be based primarily on cars or a system focusing on public transport (Creutzig et al., 2019).121

In the agricultural sector, the energy intensive production of fertilizers can be reduced through122

precision farming (Griepentrog, 2017). However, precision farming technologies can only123

reduce greenhouse gas emissions to a limited degree and go along with negative side effects such124

as intensive cultivation methods (Finger et al., 2019). In industrial production, increasing125

efficiency in manufacturing through smart operation of industrial robots reduces their energy126

requirements (Wang et al., 2022). However, increasing ICT capital only reduces the energy127

intensity of manufacturing to a small extent (Clausen et al., 2022; Schulte et al., 2016).128

Whether digital technologies increase energy consumption or decrease it depends on the concrete129

technology applied (Chiarini, 2021).130

However, the material base for digitalization, most prominently the ICT sector, is also re-131

sponsible for a substantial (and growing) amount of global climate gas emissions. Electricity132

consumption of the ICT sector has been growing for decades and is expected to continue rising133

in the future. Studies that measure ICT’s share of total global electricity consumption come to134

similar results, with differences being caused by the exact time under consideration and empiri-135

cal methodology employed in the respective analysis. Malmodin et al. (2010) assess it to have136

been 3.9% in 2007. Malmodin and Lundén (2018) find that electricity consumption did not137

change significantly between 2010 and 2015, staying constant at around 4%. Van Heddeghem138

et al. (2014) calculate it to have risen to 4.6% in 2012, while Corcoran and Andrae (2013)139

derive a value of 7.4% for the same year. Andrae and Edler (2015) predict that this share140

will rise by 2030 - depending on the scenario parameters chosen - to up to 51%. Regarding spe-141

cific technologies, Moberg et al. (2010a) find that electronic invoicing can increase the energy142

efficiency of invoicing.143

In line with the increase of the ICT sector’s energy consumption, all reviewed studies agree that144

the greenhouse gas emissions of the ICT sector have grown over the past decades (Andrae145

and Edler, 2015; Belkhir and Elmeligi, 2018; Malmodin and Lundén, 2018; The Shift146

Project, 2019). The share of emissions stemming from the ICT sector were estimated to be147

between 1% and 1.6% of all global greenhouse gas emissions in 2007 (Belkhir and Elmeligi,148

2018), 2.1% in 2010 (Andrae and Edler, 2015), 1.4% in 2015 (Malmodin and Lundén, 2018)149

and 3.7% in 2018 (The Shift Project, 2019). In a study for the leading industrial association150
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of ICT companies in Germany, Bieser et al. (2020) estimate the share of ICT in global CO2151

emissions to be between 1.8% and 3.2%. Taking into account supply chain pathways, Freitag152

et al. (2021) find that this share might actually be between 2.1% and 3.9%. Their meta-analysis153

identified a trend in the absolute CO2 footprint of ICT, which increased by 40% between 2002154

and 2012.155

Regarding future developments, the predictions differ widely. While Andrae and Edler (2015)156

expect emissions caused by ICT to rise to 23% of all emissions in 2030, Belkhir and Elmeligi157

(2018) estimate that, if the current pathway continues, ICT’s greenhouse gas emissions could158

exceed 14% of total greenhouse gas emissions of the 2016 level by 2040. Malmodin and Lundén159

(2018), on the other hand, observe a stagnation of the emission share since 2010. A possible160

explanation for the increase in CO2 emissions being less clear than the increase in electricity161

consumption is that digital appliances are increasingly powered by renewable energy (Green-162

peace, 2017) – albeit it is unclear how fast this transformation process is taking place (Cook163

and Jardim, 2019).164

2.3 Economy-wide net effects165

Since some of the mechanisms that determine the CO2 emissions as a consequence of increas-166

ing digitalization act in opposing directions, empirical analyses are required to identify which167

of these dominate. Studies on economy-wide net effects of digitalization estimate the overall168

environmental effect, allowing for both negative and positive effects.169

The existing literature provides empirical evidence that increasing digitalization increases elec-170

tricity consumption. This relationship has been found for OECD countries (Salahuddin and171

Alam, 2016; Schulte et al., 2016), emerging economies (Sadorsky, 2012; Afzal and Gow,172

2016), and in case studies for Japan (Cole et al., 2013; Ishida, 2015) and China (Fisher-173

Vanden and Ho, 2010). However, these results do not allow for deriving clear conclusions on174

the relationship between ICT and overall energy use: Schulte et al. (2016) find a positive175

relation between digitalization and electricity consumption but a negative relation between dig-176

italization and non-electric energy. Similarly, Khayyat et al. (2016) conclude that ICT reduces177

energy use in industrial production in South Korea. Ishida (2015) finds that ICT investments178

decrease overall energy consumption. Levinson (2015) identifies reducing effects of technology179

change on climate gas emissions in US manufacturing, but without discussing the nature of the180

technology change.181

A number of studies identify environmental effects of digitalization at the country level, con-182

trolling for time-invariant country characteristics and common macroeconomic shocks by using183

fixed effects panel estimation approaches, similar to the approach that this analysis builds upon.184

However, the overall results of this body of literature are ambiguous. It appears that whether185

emissions are found to increase or decrease with digitalization depends critically on the inclusion186

of energy use as a covariate. Two relevant studies focus on the aggregate net effect and assess187
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the relations between ICT, economic growth, and emissions (Lee and Brahmasrene, 2014;188

Salahuddin et al., 2016). They find that digitalization increases greenhouse gas emissions.189

Salahuddin et al. (2016) find a positive relation between digitalization (measured in mobile190

cellular subscriptions) and CO2 emissions in OECD countries between 1991 and 2012. Lee and191

Brahmasrene (2014) also report a positive relation for nine ASEAN countries between 1991192

and 2009 (using fixed telephone lines and mobile subscriptions as an indicator). Contrastingly,193

two other studies focus on the actual mechanisms between increasing digitalization and CO2194

emissions by including more covariates, most importantly energy use (Lu, 2018; Haseeb et al.,195

2019). Those studies find that ICT reduces CO2 emissions but increases energy use, which in196

turn causes greater CO2 emissions. Lu (2018) reports that higher digitalization levels are associ-197

ated with a decrease in carbon dioxide emissions for 12 Asian countries between 1993 and 2013,198

using the number of internet users as an indicator. Haseeb et al. (2019) also find a negative199

relation between digitalization (measured in mobile cellular subscriptions) and CO2 emissions200

for the BRICS economies between 1994 and 2014. The study at hand adds to the literature of201

the first kind, i.e., measuring the aggregate net effect of increasing digitalization, regardless of202

the transmission channel.203

In summary, microeconomic studies indicate the potential of digitalization to reduce environ-204

mental pressure while there are also examples of detrimental environmental effects for individual205

technologies. The majority of the literature finds that global CO2 emissions of the material base206

of digitalization (i.e., ICT), are rising. However, the literature also yields conflicting results207

about the net effect of the entire process of digitalization on CO2 emissions. The following208

analysis takes a step towards improving the understanding of this relationship by differentiating209

between income levels. While all of the studies cited above measure digitalization at the house-210

hold rather than the firm level, the present study is - to the best of our knowledge - the first to211

combine the analyses of CO2 emissions originating in the production and consumption sides of212

the economy.213

3 Methodology214

3.1 Estimation method215

Our analysis relies on the Group Fixed Effects (GFE) estimator (Bonhomme and Manresa,216

2015), which allows unobserved heterogeneity between countries to vary over time, in contrast to217

the conventional fixed effects approach. The inclusion of time-varying, unobserved heterogeneity218

is achieved by first assembling all countries into groups according to changes in the observables.219

Then a panel estimation is exercised, supplemented by dummy variables for each group-year220

combination instead of individual country effects. The use of grouped fixed effects instead of221

country fixed effects is also advantageous in panel estimations with many countries in terms222

of degrees of freedom. As the GFE bundles all countries within a relatively small number of223

groups (all literature reviewed that employs the GFE estimator relies on fewer than ten groups:224
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Bonhomme and Manresa, 2015; Grunewald et al., 2017; Kopp and Nabernegg, 2022),225

the number of dummy-covariates decreases substantially.226

The estimated relationship between digitalization and environmental damage can be biased due227

to omitted variables, as carbon emissions are also determined by other factors. To address this228

potential cause of endogeneity, we control for three of those factors. First is the gross domestic229

product per capita (GDP p.c.), as income is one of the main determinants of carbon emissions.230

Next, differences between countries depend not only on the state of technology and the size of231

the economy but also on the economy’s sectoral composition (Lange et al., 2020). Regarding232

the consumption side estimation, a change in the sizes of economic sectors of an economy leads to233

a change in the composition of imports and exports when consumption patterns remain stable.234

As we analyze consumption-based greenhouse gas emissions in the household side estimation,235

we want to control for the emissions that are embodied in traded goods. The respective shares236

of economic sectors influence the composition of imports and exports, which, in turn, affects the237

emissions that are embodied in traded goods because the footprint of producing the same good238

differs across countries. Including the composition of the domestic economy allows us to control239

for the environmental footprints of production of the same goods being different across countries.240

Regarding the production side estimation, digital tools applied across different economic sectors241

have different potentials to increase energy and resource efficiencies. Therefore, the impact on an242

economy with a prominent service sector differs from the impact on a country with a high share of243

manufacturing or agricultural production. We control for the sectoral composition by including244

the shares of GDP being generated in agriculture, manufacturing, and the service sector. We245

further control for the share of population living in urban areas, as suggested by Grunewald et246

al. (2017) and Kopp and Nabernegg (2022). The reason is that urban consumers’ consumption247

bundles are systematically different from the one of the rural population, especially in the use248

of public infrastructure, heating, and cooking (Muñoz et al., 2020).249

Digitalization may affect CO2 emissions not only directly but also by affecting the GDP p.c.,250

as discussed in the literature on digitalization-induced rebound effects (e.g., Pohl et al., 2019).251

The estimated coefficient of GDP p.c. may therefore capture part of the effect of digitalization252

increases on emissions if not controlled for. For that reason, we include an interaction term253

between GDP p.c. and digitalization. The measures of digitalization and income also enter in254

squares to allow for non-linear effects of digitalization and income on CO2 emissions (see the255

literature on the environmental Kuznets curve, e.g., Grossman and Krueger, 1995; Dinda,256

2004; Carson, 2010; Hamit-Haggar, 2012).257

This leads to the following equation to be estimated for both production and consumption258

analyses:259
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ln CO2it = α + β1 ln Digiit + β2(ln Digiit)2 + β3 ln GDPit

+ β4(ln GDPit)2 + β5(ln GDPit ∗ ln Digiit)

+ ΓXit + δgt + ϵit,

(1)

where CO2it stands for climate gas emissions and Digiit for the level of digitalization at time t260

in country i. GDPit denotes each country’s GDP p.c. ln GDPit ∗ ln Digiit is a variable capturing261

interaction effects between GDP p.c. and the measure of digitalization on the outcome variable.262

This variable allows for the possibility that the effect of one of the variables depends on the state263

of the other i.e. that digitalization’s effect on CO2 emissions in richer countries is systematically264

different to the effect in poorer countries. Xit is the vector of control variables (economic sectors’265

GDP shares and urban population share) and Γ the vector of the corresponding coefficients.266

δgt stands for the coefficients of the time-variant group fixed effects (which are generated by267

interacting group and time dummies), of which one is omitted from the estimation to avoid268

collinearity. α is a constant and ϵit represents Gaussian errors with mean zero. The dependent269

and explaining variables are described in the following sections.270

One challenge when conducting statistical analyses based on panel data is the potential presence271

of spurious regressions, i.e., the apparent correlation of non-stationary data which are in fact272

unrelated (Hsiao, 2014) - an issue that is known from the empirical literature on the EKC273

hypothesis, which represents a structurally similar econometric question (Wagner, 2015). To274

rule out spurious regressions, the time series, which the panel is composed of, must either275

be stationary, or - if they are non-stationary - must show patterns of cointegration between276

the variables (Breitung and Pesaran, 2008). As this study is interested in the relationship277

between the level of digitalization and environmental impact in the long run, the analysis relies278

on the original variables in levels instead of estimating the equation in differences as one would279

do for the analysis of short run effects. For the firm side analysis, the panel displays a sufficient280

number of observations over time (25 years) for non-stationarity and cointegration tests to be281

feasible. We provide a detailed analysis of unit-root and cointegration tests in Appendix A.2.1.282

The results of those tests are diverse for the 24 countries within the panel in terms of both283

stationarity and cointegration. As a response, robustness checks are conducted for different284

subsets of the original data set. Those subsets are generated such as to rule out spurious285

regressions in the corresponding estimations. The results of all robustness checks are displayed286

in Appendix A.2.2 and show that the main results are highly stable when a) reducing the287

panel to non-stationary and cointegrated countries, as well as b) when splitting the panel into288

time periods which are short enough to rule out spurious regressions. The latter approach also289

addresses the issue of including the squared transformations of the integrated processes which290

are not integrated processes themselves (Wagner, 2015; Wagner and Hong, 2016). The291

household side estimation relies on data from 31 countries over a time span of 15 years. In such292

a case of large N and small T, spurious results are less likely to occur (Pesaran, 2015; Breitung293

and Pesaran, 2008; Banerjee, 1999). The short duration of the time series (15 years) makes294
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it also unfeasible to run most of the standard tests for non-stationarity and cointegration: 5 out295

of 6 possible tests for a unit root and 2 out of 3 cointegration tests failed to execute because of296

the short span of the time series1. The impossibility to run those tests supports the point that297

the series is too short to display spurious regressions.298

To test the robustness of the results against the choice of the estimation technique, two additional299

econometric approaches were conducted in addition to the GFE estimator. First, instead of300

applying the GFE method to correct for time-unvarying unobserved heterogeneity, we estimated301

a dynamic panel data model that includes the lag of the dependent variable on the right-302

hand side of the equation. In this estimation, we address the potential bias arising from this303

approach (“Nickell-Bias”, Nickell, 1981) by applying the widely used instrumental variable304

approach estimated via the General Method of Moments (2Step-Sys-GMM) method, developed305

by Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond306

(1998). A second approach maintains the GFE and also includes the lagged dependent variable,307

controlling for the bias of the LDV with a two-stage least square estimation that instruments308

the LDV with an earlier lag.309

The two GFE models and the 2Step-Sys-GMM yield very similar results (see Table 3 and310

Table A.1 in the appendix). The substantial differences between those estimation approaches311

in combination with the similarity of the results suggests that the results are not driven by the312

choice of the econometric approach. Direct reverse causality is also not possible because within313

the time frame of observation (the timely frequency of the data set is one year), a country’s314

CO2 emission level at the left hand side of the estimation equation does not affect its level of315

digitalization. Further, including country mean incomes at the right hand side of the estimation316

equation controls for the main confounding variable which likely affects both our explanatory317

variable of interest, the level of digitalization, as well as the depending variable, CO2 emissions.318

Its exclusion would otherwise lead to spurious correlation. The intermediary variable energy use319

is omitted on purpose to allow for the identification of the net effect of digitalization, similar to320

the “reduced form” estimation of the Environmental Kuznets Curve (Grossman and Krueger,321

1995, p. 359, Dinda, 2004; Carson, 2010).322

3.2 Measurement of digitalization and data description323

The dynamics in the digitalization process can be segregated into those taking place within324

the production side of the economy (i.e., in firms) and those associated with the consumption325

decisions of private households. The first group of dynamics includes the consequences from326

increased technical and environmental efficiency due to the use of ICT in production processes327

(as laid out in section 2.2), while the latter refers to changing consumption patterns (section328

2.1). We therefore approach the question raised in this study from two sides: First from the329

1The tests were conducted with Stata packages xtunitroot and xtcointtest, which include a number of unit-
root and cointegration tests for panel data. Hlouskova and Wagner (2006) provide an overview of simulated
test performances for panel unit-root tests with small T.
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firm perspective and then from the household perspective.330

Firms331

To estimate firm level effects, we measure all CO2 emissions associated with one country’s332

aggregate production and investigate how these emissions are affected by the country’s level of333

digitalization in companies. The level of industrial digitalization is captured by the annual stock334

of the ICT infrastructure. This variable is provided by the Vienna Institute for International335

Economic Studies (WIIW, 2021) and contains information for European Countries, Japan and336

the USA (for detailed country list, see Table A.9 in the appendix). The dependent variable is337

CO2 emissions, generated by all production processes in one country. This variable, as well as338

the control variables, are taken from the World Development Indicators (The World Bank,339

2021). Descriptive statistics for all variables entering the firm-side regression are provided in340

Table 1.341

Table 1: Summary statistics of all variables entering the firm-side regression.

Variable Observations Mean SD Min Max Median
CO2 emissions p.c. (metric tons) 519 8.91 4.07 2.93 25.60 8.17
ICT stock p.c. (const 2010 USD) 519 12,164 37,541 48 231,577 1,652
GDP p.c. (const. 2010 USD) 519 33,509 19,835 3,193 112,418 33,558
Agriculture (% of value added) 519 2.38 1.85 0.21 17.07 1.97
Manufacture (% of value added) 519 23.92 5.33 9.97 38.15 23.75
Service (% of value added) 519 63.50 6.64 40.28 80.08 63.75
Urban population (%) 519 74.48 11.07 52.77 97.96 75.78

On the firm side, the following model is estimated:342

ln CO2P,it = αP + β1P ln ICTit + β2P (ln ICTit)2 + β3P ln GDPit+

β4P (ln GDPit)2 + β5P (ln GDPit ∗ ln ICTit)+

ΓP Xit + δP,gt + ϵit,

(2)

where subscript P indicates the firm-side coefficients to be estimated.343

Households344

The analysis on the household side considers all CO2 emitted during the production of the345

goods and services consumed in one country, including those produced abroad, and associates346

them with a measure of digitalization on the consumer side. The key explanatory variable is347

the share of individuals who used the internet to purchase goods or services during the previous348

three months, which serves as a proxy for digitalization in households. The data is provided349

by EuroStat, the statistics service of the European Commission (Eurostat, 2021a), so all350

EU countries enter the empirical analysis for the household side. CO2 emissions caused in a351

country by consuming goods and services are measured by the sub-index for CO2 emissions352
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in the ecological footprint (EF), provided by the Ecological Footprint Network (Lin et al.,353

2016; Global Footprint Network, 2019). Unlike other accounts of emissions, the EF not354

only captures the emissions produced in the country under consideration but also accounts for355

the emissions embodied in all goods and services imported and exported. Since the database356

provides the EF as “global hectares”, the measure was converted back to CO2 emissions, based357

on average sequestration capacity of forests, which is the measure used to construct the EF358

in the first place. The control variables are the same as in the firm-side analysis. Descriptive359

statistics of all variables entering the household side regression are provided in Table 2.360

Table 2: Summary statistics of all variables entering the household side regression.

Variable Observations Mean SD Min Max Median
Carbon Ecological Footprint 343 3.49 1.87 1.36 13.03 3.26
OnlineShopping (%) 343 25.21 19.74 1 78 21
GDP p.c. (const. 2010 USD) 343 34,873 24,536 3,591 111,968 29,875
Agriculture (% of value added) 343 2.57 2.04 0.21 11.55 2.03
Manufacture (% of value added) 343 14.09 4.52 3.95 33.10 13.71
Service (% of value added) 343 61.97 6.60 42.96 79.12 62.15
Urban population (%) 343 71.75 12.16 51.31 97.92 73.29

The household side is estimated as follows:361

ln carbonEFit = αC + β1C ln OnlineShoppingit + β2C(ln OnlineShoppingit)2+

β3C ln GDPit + β4C(ln GDPit)2+

β5C(ln GDPit ∗ ln OnlineShoppingit) + ΓCXit + δC,gt + ϵit,

(3)

where subscript C indicates the household side coefficients.362

The countries entering the analysis, their descriptive statistics, and group assignments are dis-363

played in Table A.9 in the appendix. The panel for the firm side analysis consists of 519 obser-364

vations and covers 24 countries from 1995-2019, and for the household side, the panel includes365

343 observations for 31 countries from 2002-20162.366

4 Results367

Results of both regressions are displayed in Table 3, and the robustness checks are in the ap-368

pendix (Table A.1)3. Different signs are yielded by the coefficients of the measures of digitaliza-369

tion - ICT and OnlineShopping - which appear in the regression results as single, quadratic,370

2The panels are unbalanced due to missing values in ICT stock and OnlineShopping for some country-year
combinations.

3 We refrained from displaying p-values and asterisks representing statistical significance because of increasing
concerns about over-emphasizing statistical significance and p-hacking (Ziliak and McCloskey, 2011; Imbens,
2021). In addition, note that this study does not attempt to isolate treatment effects at a single point in the
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and interaction terms. These non-linear relationships between digitalization and environmental371

effects impede a straight-forward interpretation of the coefficients directly from the regression372

output. We therefore first assess the effects at one specific point in the sample - the sample me-373

dian - and interpret the effect of digitalization at this particular point. In a second step, we in-374

terpret the econometric results over the entire sample range through two- and three-dimensional,375

graphical illustrations of the results.376

All results are highly robust across alternative, fundamentally different estimation procedures.377

Appendix A.1 contains the estimation equations of the robustness checks and corresponding378

results.379

4.1 Marginal effects at the sample median380

To provide an understanding of the marginal effects at the sample median, we first transform381

equation (1) from the logarithmic form to levels and then differentiate with respect to the382

measure for digitalization, building upon Kopp and Nabernegg (2022). Equation (1) in levels383

is given by384

CO2it = Digi
(β̂1+β̂2 ln Digiit+β̂5 ln GDPit)
it ∗ GDP

(β̂3+β̂4 ln GDPit)
it ∗ e

(
α̂+Γ̂Xit+δ̂gt

)
, (4)

where the ĥats indicate estimated coefficients. The marginal effect at the sample median is385

obtained by differentiating equation (4) with respect to Digiit, yielding386

∂CO2it

∂Digiit
= GDP

(β̂3+β̂4 ln GDP it)
it ∗ e

(
α̂+Γ̂Xit+δ̂gt

)
∗ (β̂1 + 2β̂2 ln Digiit + β̂5 ln GDP it)

∗ Digi
(β̂1+β̂2 ln Digiit+β̂5 ln GDP it−1)
it ,

(5)

in which the horizontal bars indicate values at the sample median4. The effect of a 10% increase387

in digitalization is calculated as
0.1Digi∗ ∂CO2it

∂Digiit

CO2it
∗ 100%.388

Table 4 displays the marginal effects at the sample median, as well as the effects of a 10%389

increase in digitalization. On the firm side, a 10% increase of investments in ICT is associated390

range of observations (such as the mean effect) but is interested in digitalization’s effect on carbon emissions over
the whole sample range of country incomes and digitalization levels. So the discussion of statistical significance
of individual coefficients could even be potentially misleading, independent of the concerns raised by Ziliak and
McCloskey (2011) and Imbens (2021). Finally, individual significance of the variables is of less interest, as the
digitalization variable is included in three terms in the right side of the regression equation. Joint significance
tests for all terms including ln(ICT) in the firm side regression and ln(OS) in the household side regression show
that they are jointly, significantly different from zero. We provide detailed results for the joint significance test
in Tables A.7 and A.8 in the appendix.

4The advantage of using the median instead of the mean is its resilience to extreme values and wide ranges, which
both occur in the GDP , ICT , and OnlineShopping data series.
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Table 3: Regression results from Group Fixed Effects estimation.
(1 - Firms) (2 - Households)

Dependent Variable ln CO2 ln carbonEF

ln ICT 2.830
(6.905)

(ln ICT )2 0.009
(0.396)

(ln ICT*ln GDP) -0.287
(-4.446)

ln OnlineShopping 2.022
(3.385)

(ln OnlineShopping)2 0.020
(1.397)

(ln OnlineShopping*ln GDP) -0.217
(-3.369)

ln GDP p.c. -7.235 -6.145
(-6.462) (-5.983)

(ln GDP p.c.)2 0.483 0.363
(7.376) (6.667)

Agriculture 0.054 -0.043
(1.021) (-1.493)

Manufacture 0.022 -0.008
(0.765) (-0.437)

Service 0.021 -0.005
(0.777) (-0.216)

Urban 0.002 0.001
(0.336) (0.385)

Constant 23.517 26.560
(3.857) (5.392)

Observations 519 343
R-squared 0.774 0.855
Number of Groups 4 4
Time Fixed Effects Yes Yes

Robust t-statistics in parentheses.
Levels of statistical significance are not indicated by asterisks (see Footnote 3 in Section 4). The
joint significance tests for terms including ln(ICT) in column (1-Firms) and ln(OS) in column
(2-Households) are provided in Tables A.7 and A.8 in the appendix.

with a 0.29% decrease in emissions, ceteris paribus (c. p.), while a 10% increase in households’391

online shopping is associated with a reduction in emissions by 0.80%, c. p.392

The relation between digitalization and carbon emissions at the sample median is an important393

first insight. Nevertheless, the different signs of the coefficients that include digitalization in394

both regressions, as well as the statistical significance of the respective interaction terms (see395
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Table 4: Marginal effects of digitalization on measures of CO2 emissions
at the sample median.

Dimension ∂CO2
∂Digi Effect of 10% increase in Digi

Firms − 0.000145 −0.29 %
Households −0.0123 −0.80 %

Own calculations, based on equation (5) with data from estimation re-
sults (Table 3) and descriptive information (Tables 1 and 2). Column
∂CO2
∂Digi displays the marginal effect of Digitalization on CO2 emissions at
the sample median.

Table 3) indicate that any interpretation that imposes a ceteris paribus assumption represents396

a substantial simplification. The econometric results rather suggest that the effect of digitaliza-397

tion on carbon emissions depends both on a country’s income level and on the initial level of398

digitalization. To allow for statements on the net effect of digitalization over the entire sample399

range, the following section provides a more nuanced, graphical illustration of the regression400

results.401

4.2 Graphical representation and interpretation402

To facilitate an intuitive interpretation of the parameterized equation (4), Figures 1 to 4 visu-403

alize the effect of digitalization (companies’ ICT investments and households’ online shopping404

behavior, respectively) within the range of digitalization and GDP p.c. levels in the observed405

data.406

First, the analysis is condensed to two dimensions to show the marginal effects of digitalization407

on carbon emissions at different initial levels of digitalization, holding the value of GDP p.c.408

at a constant level (Figures 1 and 3). Plotting levels of digitalization on the horizontal axis409

and corresponding carbon emission levels on the vertical axis reveals how their relationship410

depends on the initial level of digitalization. Figure 1 illustrates the relation between firm-411

side digitalization and emissions while holding GDP p.c. constant at different levels. Figure 3412

illustrates the relation between household-side digitalization and consumption-based emissions.413

The relations are displayed for three different levels of GDP p.c. (p25, p50, and p75 percentiles)414

because the respective signs of the effect of digitalization on emissions is different for the lower415

income percentiles (p25). To indicate the range of values for digitalization observed in the data,416

the observations that enter the analysis are displayed by boxplots in Figures 1 and 35. These417

graphs show whether the relationship between digitalization and emissions is convex or concave.418

The figures further indicate the marginal effect of 10% increases in Digi on CO2 emissions.419

To illustrate the effects that stem from the interaction between digitalization and income, the420

GDP dimension is added to the graphical analysis by displaying the parameterized equation (4)421

5Country averages, calculated over time.
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as surface graphs (Figures 2 and 4). The horizontal axes represent income (GDP p.c.) and the422

vertical axes the digitalization level. The CO2 emission level is indicated by the shading, with423

darker shading representing higher emissions. The red lines in Figures 2 and 4 indicate minima424

along the Digi-gradient6. If a country converges towards the respective red line by increasing425

or decreasing levels of digitalization, carbon emissions decrease. Whether increasing levels of426

digitalization lead to an increase or a decrease in carbon emissions depends on whether the427

country under consideration is located above or below the line. In other words, the existence of428

minima in Figures 1 and 3 indicates that the sign of digitalization’s effect on carbon emissions429

depends on the initial digitalization level. The exact location of a country’s emission minimum430

along the digitalization gradient is affected by the country’s initial income level.431

Figure 1: Effects of ICT-Investments on domestic
CO2 emissions.

Black points indicate minima at the percentiles p25,
p50 (median), and p75 of the GDP p.c. distribu-
tion. White point represents the sample median of
ICT . The red line indicates the derivative ∂CO2

∂ICT

at the sample median of ICT . Grey point in-
dicates the change in CO2 at a 10% increase in
ICT − Investment.

Figure 2: Effects of ICT-Investments and GDP p.c.
on CO2 domestic emissions.

The shading indicates the predicted amount of CO2

emissions as a function of ICT and GDP p.c.,
based upon the regression results displayed in Table
3. The dots represent the distribution of ICT and
GDP p.c. of all countries in our sample, averaged
between 1995 and 2019.

Figures 1 and 2 illustrate that the level of digitalization in firms can lead to substantial differences432

in the CO2 emissions. The lines in Figure 1 for income levels at and above the median (percentiles433

p50 and p75) indicate that in those income levels, higher levels of ICT stock are associated with434

lower levels of CO2 emissions. At percentile p25 within the income distribution, increases in ICT435

stock raise CO2 emissions and the relation between ICT stocks and emissions is concave. Figure436

2 illustrates that the lowest emissions are located at different levels of digitalization, depending437

on the country’s GDP p.c.. Increases in digitalization are associated with decreases in emissions438

in countries with higher GDP p.c., while in countries with an average income below percentile439

6The extreme points are obtained by setting the parameterized version of equation (5) to zero and solving for
Digiit, which yields Digiit = e

( −β1−β5 ln GDPit
2β2

).
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447, increases in the ICT stock are associated with increases in the CO2 emissions.440

Figure 3: Effects of Online-Shopping on CO2

emissions (accounting for imported/exported emis-
sions).

Black points indicate minima at the percentiles
p25, p50 (median), and p75 of the GDP p.c.
distribution. White points are the sample me-
dian of OnlineShopping. Red lines indicate the
derivative ∂CO2

∂OS
at the corresponding percentile of

OnlineShopping. Grey points indicate the change
in CO2 at a 10% increase in OnlineShopping.

Figure 4: Effects of Online-Shopping and GDP
p.c. on CO2 emissions (accounting for im-
ported/exported emissions).

The shading indicates the predicted value of the
CO2-emission-based EF as a function of Online-
Shopping and GDP p.c., based upon the regression
results displayed in Table 3. The dots represent
the distribution of Online-Shopping and GDP p.c.

of all countries in our sample, averaged between
2002 and 2016.

On the household side (Figures 3 and 4), the effects are similar to the firm side. Figure 3441

indicates that, for income levels at and above the median (percentiles p50 and p75), higher levels442

of OnlineShopping are associated with lower levels of CO2 emissions, whereas at percentile p25443

the relationship between OnlineShopping and CO2 emissions is positive. All sampled countries444

above the 34th-percentile8 of incomes engage in Online Shopping at a less-than-optimal rate445

from an environmental perspective, indicating that more Online Shopping would be associated446

with lower CO2 emissions, irrespective of the initial level. For lower income countries (within447

the 34th-income-percentile), on the other hand, we observe that increasing OnlineShopping is448

associated with an increase in CO2 emissions, or - formulated differently - a reduction of the449

carbon EF would require a reduction in OnlineShopping9. In Figure 4, the red line represents,450

again, minima along the vertical axis and splits the sample into a group of poorer countries that451

all lie above the line and richer countries that all lie below the line. Thus, in poorer countries,452

increasing levels of online shopping are associated with increases in CO2 emissions and vice versa453

in richer countries.454

7Exactly at the 43.67th percentile where GDP p.c. is at a level of 30,495 USD.
8Exactly at the 33.819th percentile where GDP p.c. is at a level of 19,519 USD.
9This holds for all but five country-year observations, i.e., for 98.5% of all observations in the p34 percentile of
mean incomes. These five country-year observations are probably statistical outliers. The five observations stem
from Montenegro, North Macedonia, and Romania.
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Those results also have implications for the discussion on the Environmental Kuznets Curve455

hypothesis (Wagner and Hong, 2016; Wagner, 2015). A recent empirical meta study con-456

cludes that 57% of all studies find that the EKC hypothesis is valid, while 47% do not (Saqib457

and Benhmad, 2021). The main reasons for the heterogeneous results are the choice of the458

econometric methodology and the data selection, including the measure of environmental degra-459

dation. Luzzati et al. (2018) conclude that the existing (unstable) evidence in support of the460

EKC depends too strongly on the chosen method and data as to be convincing. Their own461

findings do not support the EKC hypothesis. The results of this paper’s model are in line with462

the part of the literature that rejects the EKC hypothesis (e.g., Luzzati et al., 2018), as the463

estimated coefficient for the squared GDP term are positive for both the firm and the household464

side analysis. The explanation for the statistically significant effect on the household side may465

lay in the choice of the dependent variable, a consumption-based measure, i.e., accounting for466

emissions embedded in imports and exports. The meta study of Saqib and Benhmad (2021)467

does not consider the inclusion of trade in the LHS variable. And Destek et al. (2018), who also468

use a consumption-based measure (albeit relying on the aggregated EF, not only the sub index469

that captures carbon emissions as in our case), also identify a U-shaped relationship between470

income and emissions. Note that the positive coefficients in both the firm and household side471

regressions do not necessarily imply that the countries with lower average income first decrease472

their emissions with increasing GDP p.c. until the relation reverses. As Figures 4 and 2 show, all473

countries are either located within the lightest (i.e., lowest) area of the parameterized function474

or already on the increasing side, i.e., increasing income is associated with increasing emissions475

in all countries. For the firm side, those findings suggest that increasing production activities476

lead to increasing emissions. For the household side, the emissions embedded in the imports of477

higher income countries are large enough to outweigh the emission reductions that occur within478

the importing countries’ industries.479

5 Discussion480

The overall results indicate a decreasing effect of firm side digitalization on emissions at the481

sample median and also a reducing effect for household level digitalization. A view beyond the482

median reveals that an optimal level of both firm and household level digitalization exists in terms483

of CO2 emissions. Both analyses yield coherent results regarding the countries’ positionings484

relative to this optimum: While in lower income countries (bottom third in our sample), nearly485

all observations are above the optimum, all countries in the top two-thirds of incomes are below486

the optimum.487

The existence of an optimal amount of firm-side digitalization in terms of CO2 emissions can be488

explained by the different channels through which digitalization affects emissions. As discussed489

before, gains from digitalization have been shown to emerge from improved environmental effi-490

ciency, for example due to precision farming, efficiency gains in factories, and the replacement491

of in person meetings by video conferences. These gains can, on the other hand, be negated492
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by the detrimental effect of emissions stemming from the production, use, and disposal of ICT493

devices and from constructing and maintaining the ICT infrastructure. The results of this anal-494

ysis, especially regarding the differences between poorer and richer countries, can be therefore495

explained by the different effects of efficiency gains with increasing digitalization in firms in496

combination with the material base of the ICT sector.497

The variation in the location of the optimum with changing incomes is likely due to the rela-498

tive sizes of the environmentally beneficial and detrimental effects of firm level digitalization,499

depending on the average income of the country under consideration. The results suggest that500

the detrimental relationship is more pronounced in countries of lower average incomes, c.p.,501

where the negative environmental effects outweigh the environmental efficiency gains. This may502

be due to poorer countries producing more labor intensively, while production in richer coun-503

tries is more capital intensive. Given that the environmental efficiency gains from digitalization504

are larger in capital intensive production (think, for example, of the benefits of a 5G mobile505

network that can create substantial improvements in already digitalized agricultural practices506

through precision farming in contrast to low-tech farming in lower income countries which does507

not benefit in any way from high speed mobile internet access), increases in digitalization can508

have higher potential for improvements in environmental efficiency in richer countries. A further509

possible explanation is that an increase in the ICT stock in poorer countries is used to set up510

the initial digital infrastructure, which creates emissions where there were none before while511

in richer countries, increases in the ICT stock are more likely to replace existing infrastructure512

by more efficient solutions, therefore reducing the CO2 emissions (note that the ICT stock is513

relatively short-lived, with depreciation periods of less than five years).514

At the household level, the prevalence of the negative effects of emissions caused by digitaliza-515

tion’s material base over digitalization’s efficiency enhancements also holds for the lower income516

percentiles. For higher income countries, the beneficial effects prevail throughout the entire517

distribution of digitalization levels in our sample. This indicates that in richer countries, the518

efficiency gains of digitalization are always higher than the damage caused by the households’519

use of digital devices. This effect of income levels on the location of the optimum might be520

due to the ICT devices already existing in the vast majority of richer countries’ households at521

relatively low levels of digitalization10, meaning that an increase in digitalization would require522

a smaller broadening of the material base and thus few additional resources and energy ex-523

penditures to produce the devices used in these countries. A second reason may be that the524

CO2 efficiency gains from digitalization are more pronounced in higher income countries, given525

that a major part of emissions stemming from online shopping emerges in transporting goods526

between stores and households. Given that a larger share of the population in higher income527

countries has access to individual motorized vehicles while in lower income countries, more peo-528

ple rely on public transport (see above), the beneficial effect of CO2-efficient transport between529

10Data from Eurostat (2021b) indicate a positive correlation between mean income and number of ICT devices
per household.
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stores and households through the centralized delivery associated with online shopping may save530

more emissions caused by private households’ shopping in richer countries because, in poorer531

countries, the number of private cars is smaller in the first place.532

6 Conclusion533

This paper is the first to differentiate between firms and households when assessing the envi-534

ronmental effects of digitalization. We make use of a unique data set linking firm-based CO2535

emissions to digitalization levels in firms and consumption-based CO2 levels, that account for536

emissions embedded in imports, to digitalization levels in households. The econometric analyses537

apply the Group Fixed Effects estimator to avoid the assumption of time-invariant fixed effects538

in panel data analyses.539

The results of this study provide evidence regarding the non-linear relationship between digi-540

talization and its associated environmental costs in EU and OECD countries. For both firms541

and households, the marginal effect of increasing digitalization, measured as the effect of the542

ICT stock and online shopping on CO2 emissions, is negative at the respective sample medians.543

The optimal digitalization level is rather low for countries within the first three income deciles544

but increases steeply with the level of GDP p.c. This finding implies for almost all lower in-545

come countries that increases in the ICT stock and/or in online shopping lead to higher CO2546

emissions, c.p., while in higher income countries, more online shopping and a higher ICT stock547

reduce CO2 emissions. At the firm level, this difference can be explained by environmental effi-548

ciency gains by digitalization being stronger than the direct effects of setting up and operating549

digital infrastructure in richer countries and the opposite in poorer countries. This can be due550

to a) richer countries producing more capital intensively (which involves more scope for environ-551

mental efficiency gains than in labor intensive production) and b) the fact that poorer countries552

start off with a lower level of digital infrastructure whose initial set-up is associated with higher553

emissions (outweighing the efficiency gains) while further investments in the ICT stock of rich554

countries are less material intensive. At the household level, two factors explain the results: The555

efficiency effect of the already existing digital material base in higher income countries, and the556

higher prevalence of individual motorized transport in higher income countries.557

The results do not support the EKC hypothesis, similar to some findings in the respective558

literatures, for example Luzzati et al. (2018) regarding the firm side or Destek et al. (2018)559

for the household side.560

Policy implications are that in the countries in which the level of digitalization is above the561

environmentally optimal level, an increase in digitalization would be associated with an increase562

in emissions in the business-as-usual scenario, i.e., unless counter measures are introduced, such563

as a tax on carbon emissions. The result of such a tax may be a speeding up of the components564

of digitalization which replace carbon intensive activities, while the revenues of such a tax could565

be used to finance research and development for a more energy efficient ICT sector. For countries566
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that are below that optimal level, an increase in digitalization is associated with a decrease in567

CO2 emissions. In those countries, policies that provide the business environment for deepening568

digitalization in production and consumption would likely have beneficial outcomes in terms of569

lower greenhouse gas emissions.570

It needs to be considered for all policy scenarios that the predictions derived in this analysis only571

hold if digitalization is used in the manner it has been used in the past. If digital technologies572

were used differently and explicitly geared towards environmental sustainability (for example,573

due to more stringent environmental policies), the policy implications regarding the degree of574

digitalization could be altered.575
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A Appendix836

A.1 Robustness checks 1: Estimation procedure837

To test the robustness of our results against the chosen estimation procedure, we repeat the838

econometric analysis with two dynamic panel data models. The first is a Two-Stage System839

General Method of Moment model (2S-SysGMM, see equation A.1), following Arellano and840

Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), and Roodman841

(2009). The second is a Two-Stage GFE model including the lagged dependent variable (equation842

A.2), instrumented in a first stage with its second lag as suggested by Bonhomme and Manresa843

(2015).844

ln CO2it = α + β0 ln CO2it−1 + β1 ln Digiit + β2(ln Digiit)2 + β3 ln GDPit+
β4(ln GDPit)2 + β5(ln GDPit ∗ ln Digiit) + ΓP Xit + ϵit,

(A.1)

26



ln CO2it = α + β0 ln CO2it−1 + β1 ln Digiit + β2(ln Digiit)2 + β3 ln GDPit+
β4(ln GDPit)2 + β5(ln GDPit ∗ ln Digiit) + ΓP Xit + δgt + ϵit,

(A.2)

Regression results for the Two-Stage System GMM estimation and the Two-Stage GFE estima-845

tion are shown in Table A.1. Marginal effects and the effect of a 10% increase in Gini at the846

sample median can be found in Table A.2.847

Table A.1: Robustness checks: Two-Stage System GMM and Two-Stage GFE estimations.

2S-SysGMM GFE-2SLS
(1) (2) (3) (4)

VARIABLES CO2 carbon EF CO2 carbon EF
lag ln CO2 0.976 0.976

(31.804) (105.527)
ln ICT 0.085 0.118

(0.788) (2.346)
(ln ICT )2 0.002 0.001

(1.520) (0.940)
(ln ICT*ln GDP) -0.013 -0.013

(-1.009) (-2.693)
lag ln carbon EF 0.739 0.350

(6.396) (1.475)
ln OnlineShopping 0.610 1.344

(1.805) (1.992)
(ln OnlineShopping)2 0.011 0.011

(1.155) (1.168)
(ln OnlineShopping*ln GDP) -0.070 -0.142

(-1.876) (-2.002)
ln GDP p.c. -0.090 -2.501 -0.177 -4.105

(-0.321) (-1.670) (-1.844) (-2.585)
(ln GDP p.c.)2 0.011 0.136 0.014 0.242

(0.567) (1.755) (2.252) (2.568)
Agriculture 0.011 -0.027 0.010 -0.023

(3.739) (-1.545) (4.922) (-1.255)
Manufacture 0.004 0.007 0.003 -0.001

(2.065) (1.461) (4.509) (-0.105)
Service 0.002 0.002 0.003 -0.000

(1.026) (0.629) (3.730) (-0.004)
Urban 0.000 0.002 -0.000 0.001

(0.122) (1.098) (-0.939) (0.355)
Constant -0.176 11.514 0.144 17.520

(-0.175) (1.612) (0.399) (2.528)

Observations 500 337 481 330
R-squared 0.991 0.931
AR(1)-pvalue 0.000621 0.00355 . .
AR(2)-pvalue 0.320 0.301 . .
Hansen-J-Statistic 0.130 0.864 . .

t-statistics in parentheses.
Levels of statistical significance are not indicated by asterisks (see Footnote 3 in Section 4).

For the Two-Stage System GMM estimation, Figures A.1 for firms and A.3 for households show848

the marginal effect of digitalization on carbon emissions, holding GDP p.c. constant at its median849

for ICT-investment and including also the percentiles 25 and 75 for OnlineShopping. To show850
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Table A.2: Robustness check: marginal effects of digitalization on mea-
sures of biosphere use at the sample median.

Estimation Method Dimension ∂Ω
∂Digi Effect of 10% increase in Digi

2S-SysGMM Firms −0.000014 −0.21 %
Households −0.0065 −0.42 %

GFE-2SLS Firms −0.000014 −0.30 %
Households −0.0086 −0.56 %

Own calculations, based on equations (A.1) and (A.2) with data from
estimation results and descriptive information (Tables 1 and 2).

the effect over the whole GDP range, Figures A.2 and A.4 represent surface graphs where darker851

shading represents higher emissions and the red lines indicate extreme values.852

All figures indicate that the results are highly robust to both estimation methods.853

Figure A.1: Effects of lnICT-Investments on do-
mestic CO2 emissions - 2S-SysGMM.

Figure A.2: Effects of lnICT-Investments and
lnGDP on domestic CO2 emissions - 2S-SysGMM.

For the Two-Stage GFE estimations, Figures A.5 for firms and A.7 for households show the854

marginal effect of digitalization on carbon emissions, holding GDP p.c. constant at its median855

for ICT − investment and including also the percentiles 25 and 75 for OnlineShopping. To856

show the effect over the whole GDP range, Figures A.6 and A.8 represent surface graphs, where857

darker shading represents higher emissions and the red lines indicate extreme values.858
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Figure A.3: Effects of lnOnline-Shopping on CO2
emissions (including imported emissions) - 2S-
SysGMM.

Figure A.4: Effects of lnOnline-Shopping and
lnGDP on CO2 emissions (including imported
emissions) - 2S-SysGMM.

Figure A.5: Effects of lnICT-Investments on do-
mestic CO2 emissions - GFE-2SLS.

Figure A.6: Effects of lnICT-Investments and
lnGDP on domestic CO2 emissions - GFE-2SLS.

Figure A.7: Effects of lnOnline-Shopping on CO2
emissions (including imported emissions) - GFE-
2SLS.

Figure A.8: Effects of lnOnline-Shopping and
lnGDP on CO2 emissions (including imported
emissions) - GFE-2SLS.
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A.2 Unit-root and cointegration analysis for the firm side analysis859

A.2.1 Tests for non-stationarity and cointegration860

The firm side estimation includes 24 countries over 25 years, which is a long enough time span861

to test for non-stationarity and cointegration of the time series. The results of the Im-Pasaran-862

Shin unit-root test are displayed in Table A.3. Each row contains the test statistics for the three863

variables of interest (ln(CO2), ln(ICT ), and ln(GDP )). The null hypothesis of this test is that864

the whole panel contains a unit root for each country (and would be therefore non-stationarity,865

Im et al., 2003), which is rejected for ln(ICT ) and ln(GDP ), but not for ln(CO2). This implies866

that ln(CO2) is non-stationary in every country and that both ln(ICT ) and ln(GDP ) are867

stationary in at least one country, respectively.868

Table A.3: Tests for unit-root for the dependent variable ln(CO2) and the independent variables
ln(ICT ) and ln(GDP ) at the firm side.

Im-Pesaran-Shin unit-root test
variable Ztbar p-value
ln(ICT) -7.0831 0.0000
ln(CO2) 4.9563 1.0000
ln(GDP) -3.0535 0.0011

Ztbar is a modified version of the (standardized) t-bar statistic, in which errors in individual
Dickey–Fuller (DF) regressions are not assumed to be serially correlated (Im et al., 2003).

Given that the panel unit-root tests cannot rule out that some of the countries combine sta-869

tionary and non-stationary series for the three main variables, we perform unit-root tests for all870

countries separately (Romero-Ávila, 2008). The left part of table A.4 shows Dicky Fuller and871

Im-Pasaran-Shin test statistics by country. Numbers are printed in italics whenever the null872

hypothesis of a unit-root is rejected. Results suggests that all three variables are non-stationary873

in 13 countries (from Cyprus to Estonia in the table)11. The right panel of the same table874

displays test statistics of two classes of cointegration tests: The Kao class (five tests) and the875

Pedroni class (three tests). For the 13 countries with non-stationary variables, the majority of876

tests suggest cointegration (null hypothesis is non-cointegration, and p-values are smaller than877

0.05).878

Based on those results, several robustness checks are carried out, displayed in Subsection A.2.2.879

A.2.2 Robustness checks 2: Subsamples880

Given the results of non-stationarity and cointegration tests (see Appendix A.2.1), the main881

estimation is repeated with several subsets of the whole data set to check for robustness. The first882

collection of subsets includes a different selection of countries, based on the findings displayed in883

Table A.4. In the following Table A.5, column (1) displays the original results, column (2) the884

results for the first 10 countries of Table A.4 (at least four unit-root tests show non-stationarity885

and strong evidence for cointegration) and the extended group of 12 countries in column (3)886

(non-stationary but mixed evidence for cointegration).887

A second set of robustness checks is executed by splitting the sample into shorter time periods888

11In those 13 countries, nearly all tests suggest non-stationarity. The exceptions are ESP, NLD, and EST in which
one test each is significant.
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Table A.4: Tests for unit-root and cointegration for each country, firm side
.

Unit Root tests (H0: non-stationarity) Cointegration tests (H0: no cointegration)
Dicky Fuller tests Im-Pesaran-Shin tests Kao tests Pedroni tests

ln(ICT) ln(GDP) ln(CO2) ln(ICT) ln(GDP) ln(CO2) MDF DF ADF UMDF UDF MPP PP ADF
CYP 0.07 0.36 0.90 0.11 0.33 0.89 0.00 0.07 0.05 0.03 0.09 0.45 0.07 0.44
CZE 0.13 0.90 0.87 0.16 0.88 0.85 0.00 0.01 0.06 0.00 0.01 0.47 0.01 0.35
DEU 0.35 0.90 0.74 0.33 0.89 0.69 0.04 0.11 0.00 0.09 0.13 0.22 0.46 0.46
FRA 0.56 0.11 0.96 0.50 0.14 0.97 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.01
LUX 0.90 0.05 0.97 0.88 0.09 0.98 0.00 0.03 0.01 0.00 0.03 0.40 0.41 0.34
PRT 0.16 0.17 0.81 0.18 0.18 0.75 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00
SVK 0.37 0.66 0.55 0.34 0.59 0.48 0.02 0.00 0.00 0.00 0.00 0.34 0.00 0.01
SWE 0.94 0.30 0.96 0.95 0.29 0.97 0.01 0.11 0.01 0.01 0.11 0.46 0.41 0.50
ESP 0.08 0.04 0.91 0.11 0.08 0.90 0.00 0.02 0.04 0.00 0.03 0.40 0.15 0.26
NLD 0.07 0.03 0.75 0.11 0.06 0.70 0.00 0.00 0.02 0.00 0.00 0.41 0.14 0.08
IRL 0.33 0.39 0.93 0.31 0.36 0.92 0.02 0.10 0.00 0.07 0.13 0.25 0.42 0.35
LVA 0.26 0.43 0.44 0.25 0.39 0.39 0.06 0.11 0.01 0.04 0.10 0.28 0.44 0.44
EST 0.02 0.15 0.06 0.06 0.17 0.10 0.39 0.39 0.06 0.46 0.44 0.09 0.08 0.15
AUT 0.00 0.06 0.66 0.00 0.10 0.60 0.09 0.23 0.06 0.24 0.29 0.15 0.20 0.21
BEL 0.00 0.08 0.93 0.00 0.12 0.93 0.00 0.01 0.00 0.00 0.01 0.43 0.04 0.30
DNK 0.00 0.29 0.95 0.00 0.28 0.95 0.06 0.17 0.11 0.06 0.17 0.39 0.39 0.37
FIN 0.00 0.02 0.82 0.00 0.05 0.78 0.00 0.01 0.01 0.00 0.01 0.42 0.14 0.09
GBR 0.00 0.13 1.00 0.00 0.15 1.00 0.42 0.44 0.20 0.43 0.33 0.12 0.07 0.03
GRC 0.00 0.51 0.99 0.00 0.45 1.00 0.01 0.10 0.02 0.07 0.13 0.25 0.42 0.43
ITA 0.00 0.36 0.99 0.00 0.33 1.00 0.00 0.01 0.00 0.00 0.01 0.21 0.05 0.01
JPN 0.00 0.73 0.15 0.00 0.67 0.17 0.01 0.06 0.04 0.06 0.07 0.21 0.29 0.43
LTU 0.01 0.62 0.37 0.04 0.56 0.34 0.02 0.18 0.03 0.15 0.24 0.19 0.25 0.33
SRB 0.19 0.00 0.02 0.20 0.03 0.06 0.41 0.35 0.44 0.36 0.30 0.08 0.04 0.02
USA 0.00 0.09 0.99 0.01 0.13 1.00 0.08 0.21 0.00 0.23 0.27 0.15 0.19 0.42

p-values of unit-root and cointegration tests. Italic number show p-values<0.05. The countries
are ordered by the results of the unit-root test (the first 10 countries cannot reject unit roots
for the three variables), and by cointegration (the first 10 countries reject the null of no cointe-
gration).

which are so short that spurious regression is unlikely (Pesaran, 2015). We decided for three889

time periods of 8-9 years each (1995-2003, 2004-2011, and 2012-2019).890

All coefficients and significance levels of all robustness checks (Tables A.5 and A.6) are very891

similar to the main results, which suggests that the main results of the econometric analysis are892

not the result of spurious regressions.893
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Table A.5: Robustness checks: Firm side regression for all, 10, and 12 countries (non-stationary
and cointegrated)

.

(1) (2) (3)
VARIABLES GFE (all) GFE (10 countries) GFE (12 countries)

ln_ICT_stock 2.830 2.360 3.424
(6.905) (5.034) (7.218)

ln_ICT_2 0.009 0.072 0.028
(0.396) (2.307) (0.671)

ln_GDP -7.235 -9.514 -7.940
(-6.462) (-1.907) (-3.289)

ln_GDP_2 0.483 0.624 0.551
(7.376) (2.707) (3.837)

ln_ICT_GDP -0.287 -0.367 -0.381
(-4.446) (-6.055) (-4.016)

agri 0.054 -0.095 -0.047
(1.021) (-1.257) (-0.892)

ind 0.022 0.032 0.016
(0.765) (1.647) (0.409)

serv 0.021 0.004 0.007
(0.777) (0.247) (0.210)

urban 0.002 0.019 -0.000
(0.336) (1.262) (-0.010)

Constant 23.517 38.339 26.898
(3.857) (1.384) (2.659)

Observations 519 216 260
R-squared 0.774 0.922 0.876

Robust t-statistics in parentheses.
Estimation 2 includes 10 countries (CYP, CZE, DEU, FRA, LUX, PRT, SVK, SWE, ESP, NLD),
estimation 3 includes 12 countries (in addition to the countries of (2) also IRL and LVA)
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Table A.6: Robustness checks: Firm side regression for 3 time periods
.

(1) (2) (3) (4)
VARIABLES GFE (all years 1995-2019) GFE (1995_2003) GFE (2004_2011) GFE (2012_2019)

ln_ICT_stock 2.830 2.235 3.445 2.400
(6.905) (5.029) (4.088) (3.164)

ln_ICT_2 0.009 0.000 0.000 0.015
(0.396) (0.010) (0.009) (0.503)

ln_GDP -7.235 -5.258 -8.229 -9.535
(-6.462) (-4.870) (-5.886) (-5.585)

ln_GDP_2 0.483 0.363 0.549 0.579
(7.376) (5.574) (6.407) (6.089)

ln_ICT_GDP -0.287 -0.219 -0.330 -0.258
(-4.446) (-3.034) (-3.734) (-3.271)

agri 0.054 0.071 0.093 0.083
(1.021) (1.573) (1.197) (0.802)

manuf 0.022 0.035 0.023 0.037
(0.765) (1.049) (0.817) (1.347)

serv 0.021 0.031 0.023 0.042
(0.777) (1.027) (0.884) (1.609)

urban 0.002 0.009 -0.001 0.007
(0.336) (1.663) (-0.148) (0.999)

Constant 23.517 14.117 25.986 35.371
(3.857) (2.556) (4.015) (4.187)

Observations 519 194 192 133
R-squared 0.774 0.830 0.796 0.754

Robust t-statistics in parentheses.
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A.3 Joint significance tests894

The assessment of statistical significance of the estimated coefficients displayed in Tables 3895

and A.1 is not straightforward, given that the key variables under consideration (ln(ITC) and896

ln(OS)) enter the RHS of the respective equations in three forms: as logs, as squared logs, and897

as an interaction term with ln(GDP). We therefore applied joint significance tests for all terms898

that include the independent variable of digitalization on the firm and household side (ln(ITC)899

and ln(OS)). Results for the firm side indicate joint significance of the ICT terms in the main900

estimation (GFE) and the GFE-2SLS estimation (Table A.7). For the household side, terms901

including OS are jointly significant in the main estimation and the 2S-SysGMM estimation902

(Table A.8).903

Table A.7: Joint significance test for the variables containing ln(ITC).
Joint significance test (ln(ICT), ln(ICT 2), ln(ICT)ln(GDP)

Model GFE 2S-SysGMM GFE-2SLS
F (2,23) / chi2 (3) 19.100 1.280 9.810
Prob>F 0.000 0.303 0.020

904

Table A.8: Joint significance test for the variables containing ln(OS).
Joint significance test (ln(OS), ln(OS2), ln(OS)ln(GDP)

Model GFE 2S-SysGMM GFE-2SLS
F (3,30) /chi2 (3) 6.150 4.810 4.480
ProbF 0.002 0.008 0.215
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A.4 List of countries entering the analysis905

Table A.9: Mean values of key variables and group membership by country.
Production Consumption

Country GDP pc CO2 ICT Group Obs EF CO2 OS Group Obs
Austria 42859.33 8.16 3992.28 2 23 3.86 33.50 1 15
Belgium 44358.29 10.08 1908.14 4 23 4.57 33 3 12
Canada 40369.74
Croatia 14036.60 2.34 19 2 10
Cyprus 23661.70 7.00 451.42 4 22 0.142
Czech Republic 20162.18 11.09 20191.77 2 23 3.79 16 2 14
Denmark 56190.81 9.23 21261.51 4 23 4.37 55.50 1 15
Estonia 16629.75 12.65 779.99 3 17 3.27 16 2 13
Finland 41967.74 10.76 1248.81 4 23 4.19 43 1 1
France 38942.28 5.60 2022.89 4 23 3.01 43 3 11
Germany 38366.68 9.80 2188.55 4 23 3.69 51 3 15
Greece 24730.65 8.10 1025.92 4 22 3.33 11 1 15
Hungary 13679.31 2.33 13.50 2 1
Ireland 47591.89 9.72 1072.39 2 22 3.10 34 3 1
Italy 34465.12 7.05 1547.05 4 23 3.14 10 3 14
Japan 41187.51 9.35 184735.70 1 21
Latvia 13203.98 3.53 354.00 4 22 1.76 14 2 13
Lithuania 13209.61 3.75 433.15 4 22 2.32 10 2 14
Luxembourg 105115.03 20.47 4668.63 4 23 10.94 49.50 1 15
Montenegro 6800.25 2.13 8 2 1
Netherlands 46960.18 10.02 2474.73 4 23 4.02 52 1 15
New Zealand 27366.64
North Macedonia 4581.50 1.97 4 2 10
Norway 88890.04 2.94 56 4 14
Poland 12909.50 2.72 20.50 2 13
Portugal 22137.11 5.34 607.68 1 17 2.74 10 3 15
Romania 8559.40 1.58 4 2 11
Serbia 5846.89 6.59 258.74 4 18 1.77 18 2 3
Slovakia 16989.15 6.55 1139.97 2 18 3.05 26.50 2 13
Slovenia 23419.01 3.43 21 2 13
Spain 29235.83 6.55 1559.98 4 22 2.55 18 1 15
Sweden 46318.83 5.44 34103.57 1 22 3.46 51.50 1 15
Switzerland 67860.24 4.01 72 3 1
Turkey 11253.18 1.84 7 2 10
United Kingdom 37285.18 8.09 1369.46 4 23 3.74 62 1 15
United States 41278.56 18.21 3628.55 4 23

Total number of countries for firm-side: 24. Total number of countries for household-side: 31
in GFE-TFE estimation, and 28 in 2S-SysGMM and GFE-2SLS (Finland, Hungary and Ireland
only have one observation of EF_carbon).
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