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Infroduction - Effects of thermal stresses on cement integrity
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What happens to the subsurface wellbore and

formation?
- Reservoirs 1-4 km deep in the subsurface

- Wellbore and subsurface formations cyclically contract
and expand

O We investigate the thermal effects on the integrity of cement under in-situ conditions for CCS wells.
d To begin with, we present a novel technique to study effects of thermal shock under in-situ conditions.
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In-situ conditions governs thermal-induced de-bonding
De Andrade et al, 2015
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Heating and cooling (1.5°C/min) with steel rod in wellbore.
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Preliminary work: thermal effects without confinement

Quenching is a common practice to achieve thermal shocks on rock and cement
samples under no confinement.

- Portland CEM | 42.5, water-to-
cement ratio: 0.3, cured at 96%
humidity, 20°C, and ambient
pressure for 28 days.

Micro-fractures

- ¢p3 x 7 cm cement sample. Density
2.34 g/cm3.

- Heat the sample to 120°C.
- Quench it in 20°C water.

- Repeat the heating and
quenching for 6 cycles.

Intact sample After thermal shocks
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Thermal effects without confinement
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After thermal shocks, under no
confinement:

« Micro-fractures develops and voids in
cement are enlarged.

X-ray CT scan on

intact sample. « We are working on reconstructing the
Pores shown in microstructures of the cracks (aperture
blue. smaller than 30 um) in images.
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Thermal shocks impair the cement
integrity.

Conductivity increases.
Cement weakens.
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Novel technique: triaxial deformation setup to study thermal shocks
on cement under in-situ siresses and temperature
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Confining pressure up to 70
MPa, axial stress up to 424

MPa.
P indrical| € ﬁ’ - Internal furnace for
! 4 o temperature up to 150°C.

- Triaxial vessel filled with heat-
resistant oil that provides the
confining pressure.

Cold water through the sample using two pumps.

Three linear variable differential fransducers (LVDT)
measure axial and radial deformation.

- Three thermocouples measure temperature.
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« The sample assembly will be placed inside the triaxial vessel with in-situ stresses and temperature.
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Temperature [degC]

Proof-of-concept test

Injection of 20°C water through red Pfaelzer sst core for 8 mins. Hydrostatic stresses of 15 MPa.
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Temperature drops significantly at all locations.

AT/time is important - Cracks happen because
cement shrinks that create thermal stresses.

AT/time depends on flow rate and T of
injected water. SST is okay by increasing the
flow rate. How about cement - to drill a hole
for flow-through.

Thermal expansion coefficient, thermal
conductivity of the sample also affect on the
cracking behavior.
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Plan: Effects of thermal shocks on cement integrity

Procedure
- Investigate microstructure before experiments

- Measure initial permeability and mechanical properties

- Mount sample in triaxial pressure vessel (confining pressure
15 MPa, hydrostatic stress/high-overburden conditions)

- Heat up the vessel to 80 / 100 / 120°C
- Inject cold water (5 / 20°C) cyclically

- Take sample out and measure permeability and
mechanical properties after leakage pathways form

- investigate microstructure after experiments

Possible parameters to vary:
- Sample compositions

- AT (80 - 120°C)
- State of stress: confining pressure + axial load

- Flow rate (changes T profile)
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Future work CEMENTEGRITY

- Effects of in-situ conditions (temperature profile, state of stresses).

- Exposure of infact cement samples of different compositions to thermal shocks under
iN-situ conditions.

Cement TRL Description
S1 /: Proven technology 1.92 SG class G cement with 35% BWOC silica flour
S2 /: Proven technology 1.90 SG ultra low permeability class G cement with 35% BWOC silica flour
S3 3: Prototype tested 1.90 SG class G cement with 35% BWOC silica flour with COZ2 sequestering agent
S4 /: Proven technology 1.80 SG calcium aluminate based blend
S5 3: Prototype fested 1.90 SG Rock-based (Feldspar rich type of rock as a precursor) geopolymer for CCUS
- Exposure of composite cement samples (cement and t $0.64 cm
. . . . | stainless
casing) to thermal cycles under in-situ conditions. B steelfube
« Study of crack formation and de-bonding (micro-annulus)
In-situ
development. temperature

Composite sample with steel tubing as 2
the simulated casing. Flow cold water
through model casing.

and pressure
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