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Abstract

We develop a two-sector business cycle model in which aggregate demand affects total factor

productivity through variable capital utilization and shopping intensity. We estimate the

model by Bayesian means on a rich set of observables including the standard and utilization-

adjusted Solow residuals. We find that shopping demand shocks and technology shocks

are equally important in explaining variation in output, the Solow residual, and invest-

ment. While technology shocks induce nearly perfect comovement between the standard

and utilization-adjusted Solow residual, shopping demand shocks only increase the standard

Solow residual. When the model is estimated without using the utilization-adjusted Solow

residual, then technology shocks account for most of the variation in output and TFP, and the

two productivity measures comove very closely. Hence, positive demand shocks can appear

as technology enhancing if one uses the conventional measure of the Solow residual when in

reality there is no such change.

Keywords: goods market frictions, firm entry, endogenous variety, endogenous

productivity, Bayesian estimation
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1. Introduction

A traditional view of business cycles, which came to prominence after the Great De-

pression, is that they are characterized not by a loss of productive ability but instead by

insufficient employment of resources. John Maynard Keynes wrote in 1930 that the world

was ‘as capable as before of affording for every one a high standard of life...today, we have

involved ourselves in a colossal muddle.’ In line with this view, business cycles tend to be

characterized by a reduction in utilization. Figure 1 plots the 4 quarter percent change in the
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Solow residual and the utilization-adjusted measure. In the second quarter of 2020, total fac-

tor productivity declined by nearly 17% at an annualized rate. Adjusted for utilization from

the methodology in Basu, Fernald, and Kimball (2006), TFP actually grew by 1.46%. Over

the past four quarters in 2021Q1, TFP grew at 2.76%, and utilization-adjusted TFP great

at 0.15%. TFP also fell below its utilization-adjusted counterparted in previous recessions,

including the Great Recession, though the difference was less dramatic.
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Figure 1: 4 Quarter Percent Change

More generally, utilization-adjusted TFP, which better proxies technology, has substan-

tially different time series properties than the Solow residual. Two key features that stand

out are that the utilization-adjusted measure is less volatile and less correlated with output.

Table 1 shows that this feature generally holds across standard ways of decomposing the cycle

and trend, with the partial exception of the linear-quadratic filter. The estimation under the

growth filter is especially salient since it is a popular choice for constructing observable series

used in estimation.1

1To be consistent with the Kalman filter, observable series used in estimation cannot be obtained using a

filter which involves the use of future data. This rules out the standard HP filter and BK filter, though the

one-sided HP filter is still admissible. The Hamilton regression filter can be used for both description and

estimation.
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Hamilton Quadratic HP filter BK filter Growth

SR SRutil SR SRutil SR SRutil SR SRutil SR SRutil

SD(x) 2.48 2.08 3.57 3.54 1.28 0.93 1.16 0.86 0.85 0.80

RSD 0.77 0.64 0.87 0.87 0.81 0.59 0.84 0.63 0.76 0.72

Cor(x, Y) 0.73 0.15 0.52 0.31 0.79 0.00 0.76 -0.05 0.80 0.10

Table 1: Business cycle statistics under different filters. The time range is 1960Q1-2022Q4. The Hamilton

filter uses h = 8 quarters and lags p = 4. HP filter uses smoothing parameter λ = 1600, and BK filter uses

cutoff frequencies 6 and 32.

Indeed, in their seminal analysis, Basu, Fernald, and Kimball (2006) find that technology

fluctuates much less than TFP and that TFP may lag technology. Moreover, consumption

Granger-causes TFP whereas TFP does not Granger-cause consumption. Together, these

fact suggests that TFP depends on utilization of inputs and matching firms and consumers,

not just technology.

A long-standing problem in macroeconomics, motivated early on by Keynes’ General

Theory and exemplified by modern DSGE models like Smets and Wouters (2007), is to better

understand the sources of business cycle fluctuations. In particular, how can such cycles be

decomposed into demand, supply, and other factors? As the Solow residual depends on

technology and demand and is mediated by frictions, it is a prime observable series to use

for estimation. The purified measure of TFP, additionally, provides much more additional

information by stripping out the role of input utilization. Effectively, the model must try to

fit two very different productivity time series.

Accordingly, we develop a dynamic stochastic general equilibrium model in which search

frictions, imperfect competition, and variable capital utilization give rise to a productive

role of demand in both the consumption and investment sectors. These ingredients help

us delineate the extent to which goods market frictions matter alongside firms’ decisions to

utilize capital more intensively.

In the model, two imperfectly competitive sectors sell differentiated goods subject to

search frictions: a consumption (retail) sector and investment sector. Households shop for

consumption goods, supply labor, and save through equity shares of firms; capital goods
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suppliers employ labor to shop for investment goods and transform them into capital; and

the government purchases consumption goods alongside households.

The model incorporates the use of both variable and fixed factors of production. Pro-

duction in both the consumption and investment sectors requires some overhead labor and

capital. As Huo and Ŕıos-Rull (2018), capital is fixed in each location, whereas variable labor

can be dispatched to satisfy orders once customers arrive. Similarly, capital goods suppliers

employs variable labor used to shop for investment goods which are subsequently transformed

into capital. Accordingly, firms can adjust their productive capacity through employment

of overhead labor and capital, while also allowing short-run utilization adjustments through

dispatching variable labor and capital intensity. The elasticity of production with respect to

variable versus fixed factors will determine how important demand shocks are in explaining

variation in output. Changes to productive capacity are subject to investment adjustment

costs, which introduces a wedge between the cost of increasing acquiring new capital and

the value it brings to the firm, resulting in smoothing adjustments of the capital stock in

response to shocks.

Households have preferences of the type studied by Jaimovich and Rebelo (2009) type

over consumption and labor supply, augmented with disutility over shopping effort. These

preferences provide flexibility in the estimation to determine the strength of short-run wealth

effects on labor supply. We find that the model requires very little wealth effects to match

the data.

These features contrast with a standard real business cycle model, in which output is a

function of inputs and prices adjust so that all produced goods are consumed. While a New

Keynesian model provides a role for demand shocks to affect output due to price stickiness,

the mechanism is otherwise different. Whereas the (intratemporal) elasticity of substitution

and markup only affect dynamics through their interaction with nominal rigidities, here it is

a fundamental determinant of shopping for consumption and investment goods and, in the

extended model, setting up new product lines.

The most notable paper studying goods market frictions in a business cycle setting is Bai,

Rios-Rull, and Storesletten (2012). They also utilize a two-sector framework and consider

exogenous disturbances to preferences and productivity. As households cut back on shopping,

some fraction of capital and labor is unmatched, which lowers utilization and the Solow
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residual. The authors estimate the model by Bayesian means and find that preference shocks

explain most of the variation in output and the Solow residual. Additionally, demand shocks

and search frictions help explain variation in capacity utilization.

There are several major innovations with respect to Bai, Rios-Rull, and Storesletten

(2012). First, we include a much wider array of observable series in estimation, most notably

the utilization-adjusted Solow and the relative price of investment. Second, we allow for both

technology and demand shocks to be correlated in the consumption and investment struc-

tures. Third, we incorporate variable capital utilization: the use of capital depends on both

successful matching with consumers and intensity subject to higher depreciation. Fourth, we

also incorporate government purchases of consumption goods and endow government with

a shopping technology. Firms specialize in either servicing consumers or the government,

but they are free to change their decision each period. Finally, in the extended model, we

incorporate endogenous firm entry, which Bilbiie, Ghironi, and Melitz (2012) and subsequent

papers have shown help match second moments of labor hours and investment. Additionally,

it provides us an additional margin of overhead labor and capital.

To understand how the responses depend on the type of disturbance, first consider a

positive preference shock. Consumers spend more on existing varieties and shop more to

expand their basket of goods. Increased demand for labor pushes up wages and labor-

intensive entry costs. Productivity and firm revenue also rise due to improved matching

efficiency. Provided the shock is sufficiently persistent, the discounted value of firm profits

rises enough to promote entry. Aggregate firm profits increase from both higher sales of

incumbents and entry. In the absence of shopping effort, consumption variety expands by

less and there is no effect on firm productivity.

We estimate the baseline model by Bayesian means to data on nine series: output, con-

sumption, investment, labor supply, real wages, government consumption expenditures, the

relative price of investment, and the adjusted and unadjusted Solow residuals. For the ex-

tended model, we also use data on firm entry. These are the real series used by Lewis and

Stevens (2015), plus both Solow residuals and the relative price of investment.2 It also is a

2Lewis and Stevens (2015) study a monetary model and thus also include data on interest rates and

inflation. Moreover, Offick and Winkler (2019) also make use of aggregate profits. In general, a two-sector

model of the vein of Bilbiie, Ghironi, and Melitz (2012) cannot match the volatility of profits relative to
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superset of the variables used by Bai, Rios-Rull, and Storesletten (2012). The choice of these

series is intuitively reasonable. Consumption and output/investment are important series

for disentangling demand and technology shocks, as is the relative price of investment to

consumption. Demand shocks typically induce proportionately larger effects on consumption

relative to investment. The relative price of investment also helps disentangle different type

of demand and technology shocks. Data on investment directly disciplines the size of both

product creation and development of physical capital. The two types of Solow residuals are

also crucial in determining the extent of movements in technology and utilization.

There are stochastic disturbances to (intratemporal) consumption preferences, the dis-

count factor, consumption, shopping disutility, investment shopping efficiency, sector-specific

technology shocks, and labor supply (disutility) shocks. Each shock, other than that of labor

supply, follows an AR(1) process in logs. We specify labor supply as an AR(2) process to

capture both higher and lower frequency movements, as by Bai, Rios-Rull, and Storesletten

(2012). We also include measurement errors in wages, investment, and labor supply.

We find that demand shocks–especially those related to shopping–play an important role

in explaining the variation of output, the Solow residual, and, to a lesser extent, investment

within a 2-year horizon. Technology shocks play a more important role at longer horizons.

Labor supply shocks also drive substantial variation in output and investment but do not

matter for the Solow residual. Whereas all demand shocks stimulate shopping, labor supply,

and the Solow residual, intratemporal preference shocks tend to slightly lower the relative

price of investment. Finally, if the model is estimated without using the utilization-adjusted

Solow residual, then technology shocks explain a majority of variation of output and the

Solow residual even in short horizons. Moreover, both types of TFP are extremely correlated

with each other and similarly correlated with output, contrary to the data.

1.1. Related literature

Exploring endogenous sources of Solow residual fluctuations is related to the capacity

utilization literature. Early work includes Greenwood, Hercowitz, and Huffman (1988) and

Basu (1996) among others. Shapiro (1993), for instance, finds that much of the cyclicality of

TFP can be attributed to capital’s workweek, which is consistent with Table 1.

output, so measurement error ends up absorbing much of the variability in profits.
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We follow the practice in many estimated DSGE models of allowing for variable capital

utilization, but we also incorporate symmetric goods market frictions in the consumption and

investment sectors as in Bai, Rios-Rull, and Storesletten (2012). However, we model them

using endogenous variety and random search as in Huo and Ŕıos-Rull (2018). We believe this

approach most naturally incorporates search frictions in an imperfectly competitive setting

common to modern medium-scale DSGE models, and in the extended version also relates to

endogenous-entry models in the vein of Bilbiie, Ghironi, and Melitz (2012).

This paper connects closely with Huo, Levchenko, and Pandalai-Nayar (2023). They

develop a multi-sector multi-country model which yields an estimating equation that allows

one to adjust the Solow residual for utilization. The approach is very similar to Basu, Fernald,

and Kimball (2006) except for its multi-sector open-economy nature and explicit modeling of

the household sector. They find that the utilization-adjusted TFP is virtually uncorrelated

across countries even though the Solow residual has a moderate correlation. They use the

model to extract a utilization shock that captures the effects of all non-TFP shocks on

utilization rates. They find that TFP shocks account for very little GDP comovement whereas

utilization shocks generate 1/3 of the observed comovement. Our work, though restricted to

a domestic framework, can be understood as decomposing utilization into shopping frictions

and variable capital utilization and explicitly accounting for a variety of demand shocks.

In addition to the measure of utilization we use based on Fernald (2014), there are survey-

based direct measures of plant capacity utilization (i.e. Gorodnichenko and Shapiro (2011))

or electricity consumption (i.e. Burnside, Eichenbaum, and Rebelo (1995)). While these

direct measures are correlated with the indirect measure by Fernald (2014), they are not

appropriate to use as an economy-wide observable series for Bayesian estimation.

The model nests a two-sector real business-cycle model, as by Boldrin, Christiano, and

Fisher (2001). Whereas they utilize imperfect intersectoral factor mobility and habit forma-

tion to address asset-pricing puzzles in the one-sector model, our primary motivation is to

incorporate goods market frictions specific to the consumption sector. Additionally, we wish

to allow for sector-specific technology shocks.

We incorporate three core features used by Jaimovich and Rebelo (2009) in studying both

contemporaneous and news shocks in a two-sector real business cycle model. These consist of

variable capital utilization, investment adjustment costs, and preferences which parameterize
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short-run wealth effects on labor supply. Taken together, firms have an incentive to smooth

investment, and in the short run can satisfy greater production requirements by boosting

utilization. The rise in labor supply depends on the strength of short-run wealth effects. This

setup is thus more general than Bai, Rios-Rull, and Storesletten (2012), which uses additively

separable preferences, and Huo and Rı́os-Rull (2018), which assumes GHH preferences that

altogether eliminate short-run wealth effects.

Finally, the paper is inspired by Smets and Wouters (2007), who estimate an enriched

New Keynesian model on output, labor supply, consumption, investment, wages, inflation,

and the nominal interest rate. We include same real series and also incorporate together

data on government consumption, business formation, and both the unadjusted and adjusted

Solow residuals. Several shocks correspond closely: labor supply shocks play a similar role as

the wage markup shocks, and discount-factor shocks are related to the risk-premium shocks.

However, our framework provides a rich role for goods market frictions and endogenous

utilization. There are correlated demand shocks involving shopping as well as correlated

sector-specific technology shocks.

The structure of the paper is as follows. Sections 2 and 3 lay out the environment and

equilibrium. Section 4 discusses the quantitative results, and Section 5 concludes. The

appendices describe the data sources, derive and list equilibrium conditions, and provide

additional results from the estimation.

2. Environment

2.1. Quantity and price indices

There are two imperfectly competitive sectors, consumption and investment, where firms

produce horizontally differentiated varieties of goods. The consumption c and investment i

bundles take the form of Dixit-Stiglitz aggregators:

ct =

(∫ AC

0

c
(ε−1)/ε
j,t di

)(ε/(ε−1))

(1)

it =

(∫ AI

0

i
(εi−1)/εi
j,t di

)(εi/(εi−1))

(2)

where ε, εi are the elasticity of substitution parameters and AC ,AI are measures of the

potential set of goods. For simplicity, we assume the same elasticity of substitution across

sectors. Associated with (1) and (2) are the following welfare-based price indices:
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PC
t =

(∫
j∈ACt

(pcj,t)
1−εdi

)1/(1−ε)

P I
t =

(∫
j∈AIt

(pij,t)
1−εidj

)1/(1−εi)

where a retail firm j posts price pcj,t and an investment-goods firm posts price pijt. The

quantity Ptct =
∫
j∈Act

pj,tcj,tdj is the minimal cost of obtaining one unit of consumption, and

an analogous expression holds for the investment sector. Under a symmetric equilibrium,

1/(1 − ε) is the elasticity of the price index with respect to the range of goods and thus

measures the love of variety. It is also useful to define the relative prices ρCj,t = pcj,t/P
C
t and

ρIj,t = pij,t/P
I
t . Higher consumption diversity lowers the price indices and therefore raises the

relative prices.

2.2. Matching and production technology

There is a measure Nt of firms. Each period, firms can choose whether to produce

consumption goods or investment goods. Within the former, retailers can further specialize in

selling to households or government. There are thus three matching submarkets: consumers

and retailers, government and retailers, and between the firms and capital goods suppliers

for the investment good.

Each firm owns a measure 1 of locations, which may be matched with households or not.

The production function at each location is

F i(k, l1, l2) = Zi(uk)αlα1
1 l

α2
2

where α1 +α2 = 1−α and u is the capital utilization rate. Here, l1 represents fixed labor at

each location and l2 represents variable labor that can be dispatched to a location to satisfy

customer orders. Firms can increase utilization at the cost of higher depreciation, which is

allowed to vary by sector, according to the functions δC(·) and δI(·) which are increasing and

convex. We assume the functional form

δi(uit) = δK + βi1(u
i
t − 1) +

βi2
2
(uit − 1)2, i ∈ {C, I}

where δK is an exogenous rate of depreciation. We will restrict the parameterization, so that

in the steady state utilization equals unity in each sector, and thus δK is the economy-wide

steady-state depreciation rate of capital.
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Similar to Huo and Ŕıos-Rull (2018), there is a constant returns to scale matching function

between shopping effort and the measure of firms. If a shopper matches with a firm, then it

is randomly allocated to one of its locations. The aggregate number of shopper-firm matches

in submarket i is M i
t ⊂ Ai given by

M i
t = A(Sit)

ϕ(N i
t )

1−ϕ

Consider the submarket H where consumers and retailers meet: the quantity SH represents

aggregate household shopping effort

SHt =

∫ 1

0

si,tdi (3)

for individual search units sit. In the case of the submarket where the government shops for

retail goods G, we assume that there is a consolidated shopping entity so there is no need to

sum as in (3). Finally, in the submarket for investment goods I, one unit of labor provides ζ

shopping units. Total shopping effort is undertaken by a unit mass of capital goods suppliers

and is thus

SIt =

∫ Nt

0

ζlKit di

Define market tightness in submarket i as the ratio of firms per unit of shopping effort:

Qi
t = N i

t/S
i
t . The measure of matches for a particular firm is µN(Qt) =Mt/Nt = A(Qi

t)
−ϕ and

the measure of matches for a single unit of search effort is µS(Qt) =Mt/St = A(Qi
t)

1−ϕ. In the

household sector, the matches of an individual shopper with sj,t search units are sj,tA(Q
H
t )

1−ϕ.

Note that, upon aggregating,
∫ 1

0
si,tA(Q

H
t )

1−ϕdi = SHt A(Q
H
t )

1−ϕ = MH
t . Thus, the amount

of product variety of either consumption or investment goods depends on shopping effort and

market tightness. Implicitly, shopping allows consumers and firms to lower the price index.

2.3. Capital goods suppliers

Capital is created by specialized firms who transform investment goods into capital, and

then differentiates it into sector-specific capital goods. Capital goods suppliers employ labor

to purchase the investment goods, but this market subject to shopping frictions as described

above. These firms earn revenues by renting their capital at rate ri, i ∈ C, I and incur costs

from paying labor and purchasing differentiated investment goods. The detailed problem of

these agents is described in Section 3.2.
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2.4. Households

We adopt Jaimovich and Rebelo (2009) preferences between consumption and labor sup-

ply and include costly shopping effort:

u(c,X, s, L) =
1

1− σ
θ

(
c− χLψ

ψ
X

)1−σ

− κs

where κ and γ are level and elasticity parameters of shopping; and X is the geometric average

of current and past consumption,

X = cγX1−γ
−1

making preferences over consumption and hours non-separable over time. Setting γ = 1

yields preferences of the class discussed by King and Rebelo (1999), and setting γ = 0 yields

preferences proposed by Greenwood, Hercowitz, and Huffman (1988).

The budget constraint, in units of the investment good, is

PH
t ct + νtxt+1 + Tt = wtLt + (νt + dt)xt (4)

The left-hand side of (4) describes the expenses: households consume a basket of goods ct at

price PH
t , purchase equity shares xt+1 at price νt, and pay lump-sum taxes Tt. The right-hand

side describes the sources of income: households earn wages wtLt, dividends dtxt, and have

claims on current equity νtxt.

2.5. Government

The government consists of two separate departments. A fiscal authority chooses gov-

ernment expenditures each period according an AR(1) process: Gt = ρgGt−1 + εgt , where

εGt is i.i.d. and normal. A procurement department allocates this expenditure among con-

sumption goods and chooses shopping effort. The government’s period utility function over

consumption and shopping effort is

ug(g, s) = g − κs.

Each period, the government consumes a subset of goods of measure SgtA(Q
g
t )

1−ϕ. Analo-

gously to the consumer, the government has a price P g
t which satisfies P g

t gt =
∫
i∈Agt

pitgit.

Though we assume the government pays the same prices as consumers for individual goods,

the price index generally differs in tandem with the measure of varieties.
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Figure 2 summarizes the role of multiple sectors and search frictions in the environment.

Figure 2: Role of multiple sectors and search frictions.

3. Equilibrium

3.1. Household problem

Consumers choose consumption ct, shopping effort st, shares of equity xt, and work hours

Lt to maximize utility, given the laws of motion for firms and capital specified below. For

convenience, we let the composite Γt = ct − χtL
ψ
t

ψ
Xt and note that agents internalize the

dynamics of Xt. The relationship

PH
t ct =

∫ stA(QHt )1−ϕ

0

pcjtcjtdj (5)

implicitly defines the consumption basket as a function of search effort st and individual

consumption cit. Given (5), the problem of the household is

max
cit,Lt,st,xt

∞∑
t=0

βtbt

 1

1− σ
θt

(
ct(cit, st)− χt

Lψt
ψ
Xt

)1−σ

− κtst


subject to

PH
t ct(cit, st) + νtxt+1 + Tt = wtLt + (νt +Dt)xt (6)

Xt = cγtX
1−γ
t−1 (7)
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Let λt be the Lagrangian multiplier on (6) and µt be the multiplier on (7). (Appendix B.1)

solves the household problem in detail where the following relationships are obtained:

λtP
H
t = btθtΓ

−σ
t − µtγ

(
Xt−1

ct

)1−γ

(8)

btθtΓ
−σ
t χtL

ψ−1
t Xt = λtwt (9)

btκtst =
PH
t λtct
ε− 1

(10)

µt =
btθtΓ

−σ
t χtL

ψ
t

ψ
+ βEt

{
µt+1(1− γ)cγt+1X

−γ
t

}
(11)

νt = βEt
{
λt+1

λt
(νt+1 +Dt+1)

}
(12)

The Lagrangian multiplier in (8) summarizes the influences of the intertemporal shock bt,

intratemporal shock θt, risk aversion and habit formation, and the welfare-based price index

P h
t . Equation (9) is the standard labor supply condition. Equation (10) is novel and ties

shopping effort to the level of the consumption basket and the shopping disutility. Equation

(11) governs the optimal change of wealth effects over time. Equation (12) is the standard

asset-pricing condition for equity: the value of a share equals future price and dividends

adjusted by the intertemporal marginal rate of substitution.

Several insights can be obtained from equation (10). First, the value of shopping depends

on an imperfect ability to substitute among goods, as s → 0 as ε → ∞. Second, the

consumption level has opposing effects on shopping effort. Consumption expenditure is a

prerequisite for shopping effort, but it also tends to reduce shopping effort through wealth

effects. The force of this latter channel depends on the inverse intertemporal elasticity of

substitution σ and the habit stock parameter h.

3.2. Capital goods suppliers’ problem

The capital goods supplier searches for investment goods, transforms them into capital,

and then costlessly differentiates them into specific capital goods for each sector. The supplier

chooses how much to invest, the amount of workers involved in shopping, the allocations of
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capital, and the utilization rates.

max
lkt,it,u

C
t ,u

I
t ,kt+1

∞∑
t=0

βtλt[r
C
t u

C
t k

C
t + rIt u

I
tk

I
t − wtlt − P I

t it] s.t.

P I
t it =

∫ ltζA(QIt )
1−ϕ

0

pijtijtdt (13)

kt+1 ≤ (1− δC(uCt ))k
C
t + (1− δI(uIt ))k

I
t + it − Φ

(
it
kt

)
kt (14)

kt = kCt + kIt (15)

Equation (13) links the choice of individual investment units and shopping effort to the

aggregate investment good. Equation (14) is the law of motion for capital accounting for

sector specific depreciation rates and quadratic adjustment costs

Φ(x) =
ψK
2

(x− δk)2

Finally, (15) says that that each type of capital must add up to the total capital stock.

Let λt be the Lagrange multiplier on (13) and µt the multiplier on (14). (Appendix B.2)

solves the problem in detail where we obtain the following optimality conditions:

qt =
P I
t

1− Φ′
(
it
kt

) (16)

qtδ
i′(uit) = rit, i ∈ {C, I} (17)

qt = βEt
{
λt+1

λt

[
rit+1u

i
t+1 + qt+1

(
1− δi(uit) + Φi′

(
it+1

kt+1

)
it+1

kt+1

− Φi

(
it+1

kt+1

))]}
(18)

wtlt =
P I
t it

εi − 1
(19)

where qt ≡ ηt/λt is the relative price of capital. (16) is the standard pricing equation

for capital, where adjustment costs create a wedge between the cost of obtaining capital

P I
t and the value it brings to the firm out of steady state. (17) says that capital good

suppliers increase utilization up to the point that the additional rental income just offsets the

higher depreciation. (18) is the Euler equation with respect to capital. Since capital good

suppliers can costlessly differentiate capital either toward the investment or consumption

sectors, the Euler equation can be expressed equivalently in terms of either one. Optimal

capital accumulation guarantees that the rate of return on capital net of depreciation is the

same in both sectors. (19) gives the optimal employment of workers to shop for investment

goods.
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3.3. Firms

Firms choose whether to operate in the consumption or investment sector, which involve

separate submarkets. Given demand for yi units of goods at a location, the firm in submarket

i needs to dispatch variable labor equal to

hi(yi, k, l1) =

(
yi

Zi(uk)αlα1
1

)1/α2

The demand schedule can be described as yi = (ρj)
−εy due to CES preferences over varieties.

The variable labor that the firm needs upon installing k and l1 in each location is l2 =

A(Qi)−ϕhi(yi, k, l1). This fact implies that the necessary inputs to satisfy demand are

Zi(uk)αlα1
1 l

α2
2 = (A(Qi)−ϕ)α2yi

The problem of a firm which specializes in selling to consumers is

max
cit,pit,l1t,l2t,lkt,it,kt+1

∞∑
t=0

βtλt[A(Q
H
t )

−ϕcitpit − wt(l1t + l2t)− rCt u
C
t k

C
t ] s.t.

cit =

(
pit
PC
t

)−ε

ct (20)

(A(QH
t )

−ϕ)α2cit ≤ ZC
t (utkt)

αlα1
1t l

α2
2t (21)

Equation (20) is the demand curve and equation (21) is the input requirement to satisfy

demand, which depends on technology, goods market frictions, and the utilization of capital.

The problem is solved by first obtaining the cost-minimizing input choice and then obtaining

the profit-maximizing price given the cost-minimizing bundle. Given output y, the cost

minimization problem of the retailer is

minw(l1 + l2) + rCuCk s.t.

A(Qh)−ϕci ≥ y

ZC(uCk)αlα1
1 l

α2
2 = (A(Qh)−ϕ)α2ci

Substitute the production constraint into the input requirement and let y = yα2 to rewrite

the problem as

minw(l1 + l2) + rCuCk s.t.

ZCcα2−1
i (uCk)αlα1

1 l
α2
2 ≥ y

15



First order conditions are

[l1] : w =
α1y

l1
MC (22)

[l2] : w =
α2y

l2
MC

[k] : rC =
αy

uCk
MC (23)

The ratio of the two labor demand conditions implies l1 = α1/(1− α)l and l2 = α2/(1− α)l.

The standard pricing condition for a monopolistic competitor yields

p =
ε

ε− 1
MC (24)

Multiplying both numerator and denominator of (22) − (B.10) by NH and using the

pricing rule (24) yields

w =
(1− α)C

ε
ε−1

LH
, rC =

αC
ε
ε−1

uCKH
(25)

where LH and KH is the total retail labor and capital used in selling to households. Since a

condition analogous to (25) holds for retailers selling to the government, summing yields

w =
(1− α)Y C

ε
ε−1

LC
, rC =

αY C

ε
ε−1

uCKC

The relationship between retail output for consumers in terms of inputs satisfies

C = NHpA(QH)−ϕci

= NHpA(QH)−ϕ
ZC(uCkH)α(lH1 )

α1(lH2 )
α2

(A(QH)−ϕ)α2

= (A(QH)−ϕ)1−α2pZC(uCKH)α(LH)1−α
αα1
1 α

α2
2

(1− α)1−α
(26)

Similarly,

G = (A(QG)−ϕ)1−α2pZC(uCKG)α(LG)1−α
αα1
1 α

α2
2

(1− α)1−α
(27)

Using LH/LG = KH/KG = C/G, we find that tightness is equalized across submarkets.

Lemma 1.

QH = QG
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Thus, C/G = SH/SG. For intuition, consider that firms face the same labor and capital

costs regardless of whether they sell to consumers or the government, enjoy the same price-

setting power (elasticity of substitution), and are free to switch among them. In order for

both markets to be active, they must have the same tightness. The profit of a firm selling to

consumers satisfies pyh/ε. Multiplying by NH and rearranging yields the profit equation for

the household sector:

d =
C

εNH

Hereafter, we use QC to refer to the common market tightness. Similarly, the profit of a

firm selling to the government sector is G/(εN g). The free mobility condition says that firms

switch sectors until profits are equalized:

d =
C

εNH
=

G

εNG
⇔ NG

NH
=
G

C

In the steady state, NG/NH = gc.

The problem of the investment firm can be examined symmetrically. Skipping steps, we

find that the input choices satisfy

w =
(1− α)I

εi
εi−1

LI
, rI =

αI
εi
εi−1

uIKI

We can write investment output as

I = N IqA(QI)−ϕij

= A(QI)−ϕ
ZI(uIkI)α(lI1)

α1(lI2)
α2

(A(QI)−ϕ)α2

= (A(QI)−ϕ)1−α2qZI(uIKI)α(LI)1−α
αα1
1 α

α2
2

(1− α)1−α

3.4. Government

The government faces a static problem of choosing consumption of each variety and

shopping effort so as to maximize utility given allowable expenses G:

max
Sg ,gi

g(gi, S
g)1−η − κSg s.t.

P (sg)g(gi, S
g) = G

The first order conditions are

[gi] :
∂g

∂gi
[1− λgP g] = 0 (28)

[sg] :
∂g

∂Sg
− κ− λg

∂Pg

∂Sg
= 0 (29)
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The first order condition (28) implies g−η = λgP g. Using the quantity aggregator for the

government and the price index, we find

∂g

∂Sg
=

(
ε

ε− 1

)
ρgiAQ

1−ϕgi

∂Pg

∂Sg
= AQ1−ϕpigi

Plugging these into (29), we find

κ =

[
ε

ε− 1
ρgA(Qg)1−ϕgi − A(Qg)1−ϕρggi

]
=

[
ρgA(Qg)1−ϕgi

ε− 1

]
Multiplying both sides by Sg, we can rearrange this in terms of shopping effort and the

government consumption bundle:

Sg =
g1−η

(ε− 1)κ
(30)

The only role of (30) is to determine the composition of g and P g given government purchases:

G = P gg. Given that government purchases follow an exogenous process, and that P g and g

are not otherwise linked to variables of interest, (30) is not relevant for the estimation. Thus,

it would have been equivalent to consider more general preferences, such as constant relative

risk aversion.

3.5. Aggregation

In the aggregate, the total number of shares xt = 1, so that νt represents the stock market

capitalization after paying out dividends. Given a unit measure of firms, dt also represents

aggregate profits.

We can aggregate consumption and investment in physical capital as Ct = PH
t ct and

It = P I
t it. As capital goods suppliers are perfectly competitive, revenues equal input costs:

rCt u
C
t K

C
t + rIt u

I
tK

I
t = wtL

K
t + It

=
εi

εi − 1
It

The spread between investment and rental income exactly covers the labor search costs

required in shopping for investment goods.
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Then we can write aggregate retail consumption by summing (26) and (27) and using

Lemma 1:

Y C = (A(QH)−ϕ)1−α2pZC(uCKC)α(LC)1−α
αα1
1 α

α2
2

(1− α)1−α

I = (A(QI)−ϕ)1−α2qZI(uIKI)α(LI)1−α
αα1
1 α

α2
2

(1− α)1−α

Sector-specific total factor productivity is Z i = Y i/(Ki)α(Li)1−α), or

ZC = pZC(A(QC)−ϕ)1−α2(uC)α
αα1
1 α

α2
2

(1− α)1−α

ZI = qZI(A(QI)−ϕ)1−α2(uI)α
αα1
1 α

α2
2

(1− α)1−α

The profit share in each sector is the inverse of the elasticity of substitution, so that

aggregate profits satisfy

d = Y C/ε+ I/εi.

We aggregate (6) across households:

Yt = Ct + It + νtNE,t + Tt = wtLt +Ntdt + rKt (u
C
t K

C
t + uItK

I
t +KE

t )

Using the government budget constraint, Gt = Tt, we obtain

Yt = Ct + It + νtNEt +Gt

3.6. Steady state

Appendix C.3 derives the main steady-state relationships in the model. Here, we discuss

a few major properties. A steady state equilibrium requires that investment just offsets

depreciation: I = δKK and the Euler equation for capital implies rKE = r + δK .

The shares of profits in the consumption and investment sectors is

NCd

Y C
=

1

ε
N Id

I
=

1

εi
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The composition of firms in each sector is

NC =
rKεi − δKα(εi − 1)

rKεi + δKα(ε− εi)

N I =
αδK(ε− 1)

rKεi + δKα(ε− εi)

The share of capital in each sector to the overall capital stock is

ϕI ≡ KI

K
=
εi − 1

εi

αδK

r + δK

ϕC ≡ KC

K
=
εir

K − αδK(εi − 1)

εi(r + δK)

The labor share in the investment shopping sector is

ϕLK ≡ LK

L
=

αδK

αδK + (1− α)(r + δK)(εi − 1)

Thus, the labor shares in consumption and investment satisfy

LC

L
= ϕC(1− ϕLK),

LI

L
= ϕI(1− ϕLK),

Aggregate profits equal d given the fact that there is a unit mass of firms. The profit share

of output is

d

Y
=

rKεi + αδK(ε− εi)

rKεεi + αδK(ε− εi)

If we let δK → 0, then output coincides with retail sales, and the profit share approaches

1/ε. Moreover, if ε = εi, then the consumption and investment sectors have an overall profit

share of 1/ε.

3.7. The unadjusted and adjusted Solow residuals

The Solow residual is the ratio of aggregate output to share-weighted inputs K1−ωLω,

where ω is the labor share of income. Even though the elasticity of output with respect to

labor is 1− α in each sector, some labor also accrues to workers searching for differentiated

investment goods.

We now proceed to derive the Solow residual writing output, using the expenditure ap-

proach, and substituting the corresponding production functions for each sector:

Y = Y C + I

= (A(QH)−ϕ)1−α2pZC(uCKC)α(LC)1−α
αα1
1 α

α2
2

(1− α)1−α

+ (A(QI)−ϕ)1−α2qZI(uIKI)α(LI)1−α
αα1
1 α

α2
2

(1− α)1−α
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We define the Solow residual and the Solow residual adjusted for utilization along both

the extensive margin (shopping effort) and intensive margin (capital utilization rate). To

control for changes in relative prices, we use base-year prices p∗ and q∗. Specifically, we

define

Y obs = (A(QH)−ϕ)1−α2p∗ZC(uCKC)α(LC)1−α
αα1
1 α

α2
2

(1− α)1−α

+ (A(QI)−ϕ)1−α2q∗ZI(uIKI)α(LI)1−α
αα1
1 α

α2
2

(1− α)1−α

Y util,obs = (A(Q∗H)−ϕ)1−α2p∗ZC(KC)α(LC)1−α
αα1
1 α

α2
2

(1− α)1−α

+ (A(Q∗I)−ϕ)1−α2q∗ZI(KI)α(LI)1−α
αα1
1 α

α2
2

(1− α)1−α

since u∗C = u∗I = 1. Here Q∗ and u∗ denote fixing goods market tightness and capital

utilization at their steady state values respectively. In this way, we control for movements

in variables unrelated to technology to produce a purified Solow residual and measure the

relative contribution of goods market frictions and capital utilization to observed movements

in TFP. We define the Solow residual and utilization-adjusted Solow residuals as follows:

Z =
Y obs

K1−ωLω
, Zutil =

Y util,obs

K1−ωLω

where ω is the steady-state labor share of income. The steady-state labor share of income

satisfies

ω ≡ wL

Y
=

rK(ε− 1)
αδK(ε−εi)

εi
+ rKε

αδK

rK(εi−1)
+ 1− α

αδK

rK(εi−1)
+ 1

(31)

Several special cases are worth considering. First, consider εi → ∞. Then the labor share

approaches

(1− α)
rK(ε− 1)

rKε− αδK

No labor is employed in shopping for investment goods, so the share 1 − α is deflated by

the average markup between the two sectors. In particular, as δK → 0, the labor share

approaches (1 − α)(ε − 1)/ε. If both ε, εi → ∞, then of course the labor share approaches

1−α. Finally, if ε = εi at a finite value, then the labor share is both deflated by the average

markup but also inflated by the role of workers shopping for investment goods.
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4. Quantitative analysis

4.1. Bayesian estimation

The use of Bayesian estimation is natural for three reasons. First, with important excep-

tions, there are few direct ways of identifying the shocks.3 Estimating the relative contri-

butions of the shocks is an important objective and is implementable via the forecast error

variance decomposition. Second, the are several parameters which are very important for

the transmission mechanism but uninformed by prior studies or steady-state targets, espe-

cially the matching function elasticity ϕ. Third, we can quantify parameter uncertainty by

incorporating probability bands in the impulse responses.

I discuss the procedure very briefly as An and Schorfheide (2007) and Herbst and Schorfheide

(2015) provide detailed expositions. First, I set a joint prior distribution P (Θ). Level pa-

rameters do not affect the first-order dynamics, and thus are excluded from Θ. I also fix

several parameters. I set β = 0.99, consistent with an annual real interest rate of 4%,

δK = 0.025, which is consistent with 10% annual depreciation of physical capital. Moreover,

I set δ = 0.025, which approximates an average product destruction rate of 9% from Bernard,

Redding, and Schott (2010).

The steady-state labor share (31) plays a key role in the estimation strategy. Following

Bai, Rios-Rull, and Storesletten (2012), we ensure that the steady-state labor share ω matches

the target in the data. Specifically, given calibrated values of δ, δK and r together with draws

of ε and εi, we choose α so that it matches a labor share of income of 62%.4 Since the

substitution elasticities ε and εi are random variables from a Bayesian perspective, so is α.

3Major exceptions include the approach of Basu, Fernald, and Kimball (2006) for technology shocks, that

of Greenwood, Hercowitz, and Huffman (1988) for investment-specific productivity shocks, and substantial

work in identifying monetary policy, government spending, and news shocks. A few key references are Romer

and Romer (2004) and Swanson (2015) for monetary policy shocks, Blanchard and Perotti (2002) and Ramey

(2011) for government spending shocks, and Barsky and Sims (2011) for news shocks, but there are many

more.
4I measure labor share of income using the FRED code LABSHPUSA156NRUG. The average between

1948 and 2009 is 62%.
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Parameter Value Interpretation

β 0.99 Discount factor

δ 0.025 Firm exit rate

δK 0.025 Capital depreciation rate

α Value consistent with ω = 0.62 Elasticity of sectoral output with respect to capital

Table 2: Calibrated parameters. Here α is implicitly a random variable, since ε is a random variable and α

varies with ε so as to match a labor income share of 62%.

Before proceeding, we verify that the model implies reasonable ratios of major quantities

with respect to output. We examine the labor, rental, and profit shares of income; the

consumption and investment shares; the composition of firms; and the capital share of output

and labor in investment goods shopping.

wL/Y rKK/Y d/Y NI NC C/Y G/Y I/Y K/(4Y ) ϕLK

0.62 0.16 0.22 0.066 0.934 0.689 0.194 0.116 1.164 0.026

Table 3: Ratios of expenditure sources, income sources, and the capital stock relative to output. For the

latter, output has been annualized by multiplying by 4. Here we set ε = 4.3 and εi = 8.0.

In general, the ratios are empirically realistic, with a consumption share of output near

70%, a profit share of 22%, and a capital-stock-to-GDP in excess of 1. Again, the only

targeted quantity here is the labor share of income. Less than 3% of labor is used for

investment shopping

To prevent stochastic singularity and obtain a well-defined likelihood function, we need

to ensure that no observable series can be expressed as a function of others. A necessary

condition is that there are as many shocks as observables series, as explained by Ruge-Murcia

(2007).5 As Offick and Winkler (2019), we add measurement errors to wages and investment.

Additionally, we include measurement error in labor hours.

5To grasp the problem of stochastic singularity, consider a simple real business cycle model with an

unobserved technology series and consumption and output used as observables. In the reduced form VAR(1)

solution, the shocks in each equation are just multiples of each other. This finding, in turn, implies that

certain ratios of observed variables are constant. Thus, one observable can be inferred deterministically from
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The shock structure is as follows:

� General and independent sector-specific technology shocks

uZC = ϵZ + ϵZC

uZI = ϵZ + ϵZI

ZC = ρZCZC,−1 + uZC

ZI = ρZIZI,−1 + uZI

� Correlated shopping demand shocks

uζ = ϵshop + ϵζ

uκ = γshopϵshop + ϵκ

ζ = ρζζ−1 + uη

κ = ρκκ−1 − uκ

� Labor supply follows an AR(2) process

χ = ρ1,χχ−1 + ρ2,χχ−2 + ϵχ

� Other shocks are independent AR(1) processes

x = ρxx−1 + εx for x ∈ {θ, b, G}

The baseline model has 10 shocks (ϵZ , ϵZC , ϵZI , ϵshop, ϵζ , ϵκ, ϵθ, eχ, ϵb, ϵG) for 9 observable

variables (C, TI, Y, L, w,G,Z,Zutil, qp). Table 4 summarizes main specification of the esti-

mation.

the other. However, this relationship does not hold in the data, so fitting the data is impossible without

another stochastic disturbance.
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Estimation feature

Time period 1960Q1-2022Q4

Filtering Hamilton regression filter (h = 8, p = 4)

Observables (C, TI, Y, L, w,G,Z,Zutil, qp)

Shocks (ϵZ , ϵZC , ϵZI , ϵshop, ϵζ , ϵκ, ϵθ, eχ, ϵb, ϵG)

Measurement error (σw,ME, σTI,ME, σL,ME)

Table 4: Specifications for estimation

The composite Θ of parameters to estimate excludes those which do not affect the first-

order dynamics and those calibrated directly. It is conceptually useful to decompose Θ into

three blocks:

Θ1 = (ψ, γ, σ, ϕ, ε, εi, h, α2,ΦC ,ΦI , γshop)

Θ2 = (ρZC , ρZI , ρζ , ρκ, ρ1,χ, ρ2,χ, ρθ, ρA, ρb, σZ , σZC , σZI , σshop, σζ , σκ, σθ, σχ, σb, σG)

Θ3 = (σw,ME, σTI,ME, σL,ME)

Start updating from here

and Θ = Θ1 ∪Θ2 ∪Θ3. Here, Θ1 are the standard model parameters which affect first-order

dynamics, Θ2 are the autoregressive and conditional-standard deviation parameters of the

shocks, and Θ3 are the measurement errors.

The next step is to recast the model in linear state space form. Accordingly, Table C.7

summarizes the log linear system. For a linearized model, the likelihood function can be

computed using the Kalman filter, which generates optimal predictions and updates of the

unobservable variables given the data. We first maximize the posterior density, and then

use the Metropolis Hastings algorithm to sample the posterior distribution. We simulate

500, 000 draws with a burn-in of 20%, which suffices given the rapid convergence to the

posterior distribution.

4.2. Taking the model to the data

In contract to a one-sector model, a multisector model of the type studied here raises

the problem of aggregating sectoral quantities into economy-wide quantities, such as output

and the Solow residual. Though we use the investment basket as the numeraire, quantity
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movements are not generally independent of the choice of numeraire. For instance, if there is a

positive shock to ZC , the relative price of consumption goods falls. In terms of the investment

good, consumption may fall even though the actual units purchased rises. However, if the

consumption good were the numeraire, this effect does not exist and instead investment goods

rise in price. Thus, a ZC shock is contractionary with the investment good as the numeraire

and expansionary with the consumption good as the numeraire. The reasoning is symmetric

with a positive ZI shock.

Of course, quantity movements ought to be invariant to the choice of numeraire. We

overcome this issue by using base-year prices as in Bai, Rios-Rull, and Storesletten (2012)

and Huo and Rı́os-Rull (2018). 6 We also need to make a second adjustment, some changes

in the consumption and investment baskets Ct and It occur because of product variety. by

Bilbiie, Ghironi, and Melitz (2012) argue for removing variety effects since CPI data does

not correspond to a welfare-based price index like Pt.

To be concrete, we measure output using base-year prices p0 and q0:

Y = p0Y
C + q0I

Moreover, since we log linearize around a steady state, we set the base-year prices at steady-

state values: p = p∗ and q = q∗. Finally, we include measurement errors. The log-linearized

6Duernecker, Herrendorf, Valentinyi, et al. (2017) discuss the measurement problem carefully in the con-

text of a multisector growth model and demonstrate that a chain-weighted (Fisher) index generates quantity

movements independent of both the numeraire and the use of current-period or base-period prices. How-

ever,the indices are first-order equivalent.
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measurement equations we get are as follows:

Cobs = C − p

Gobs = G− p

Iobs = I − q + εI,ME

Y obs = Y C
Y (Y C − p) + IY (I − q)

Y util,obs = Y C
Y (Y C,util − p) + IY (I

util − q)

SRobs = Y obs − (1− ω)K − ωL

SRutil,obs = Y util,obs − (1− ω)K − ωL

qp = q − p

Lobs = L+ ϵL,ME

wobs = w + ϵw,ME

4.3. Posterior distribution and identification

Table 5 show prior and posterior distributions, obtained by the Metropolis-Hastings algo-

rithm, for all structural parameters and shocks. The estimated parameters are well identified

with meaningfully different prior and posterior means, and low standard errors with the ex-

ception of the share of variable labor in the consumption sector (varshare) and variance of the

investment-sector shopping technology (ϵζ). Notably, the intratemporal preference process

(θ) and sector-specific productivity processes (ZC , ZI) are estimated to be highly persistent

with AR(1) coefficients equal to 0.954, 0.909 and 0.895, respectively. Other shock processes,

including household shopping disutility, investment shopping efficiency, intertemporal util-

ity, labor supply, and government spending are moderatly persistent. Taken together, the

estimated shock processes suggests that most shocks can evenly compete in explaining fore-

cast errors at longer time horizons, while we expect the relative importance of technology

shocks and intratemporal preference shocks to grow over time. The estimated variance of

the common technology shocks are slightly higher compared to the sector-specific compo-

nents, suggesting specifying a common component to technology processes is important in

explaining the data.

Turning to the structural parameters, the share of variable labor in the consumption sec-

tor is estimated to be 34.9 percent, which gives a substantial role to pre-installed factors in
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affecting the extensive margin of utilization. The posterior means for elasticity of substitution

across varieties are 12.9 and 13.6 for the consumption and investment sectors, respectively,

suggesting that variable shopping intensity in both sectors is relevant. The intertemporal

elasticity of substitution is estimated to be 1.71 which is within a reasonable range of es-

timates obtained in the literature. The elasticity of rental rate with respect to utilization

have posterior means of 0.94 and 0.50 for the consumption sector and investment sector re-

spectively, indicating that the intenstive margin of utilization adjustments play an important

role. Notably, the estimated value of γ, which measures role of wealth effects on labor supply,

is very small at 0.075. Wealth effects play very little role on labor supply, and the estimated

preferences are approximately those obtained under a Greenwood–Hercowitz–Huffman spec-

ification. This finding is consistent with the literature on news shocks in business cycle

models such as Schmitt-Grohé and Uribe (2012) . The elasticity of the matching function

with respect to aggregate search intensity is estimated to be 0.25.
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Parameter Distribution Prior Mean Posterior Mean Prior Std Posterior Std

ψ Gamma 2.389 3.195 0.4 0.329

ϵ Gamma 3.8 12.85 1.0 1.175

εi Gamma 3.8 13.596 1.0 1.311

σ Gamma 1.5 1.712 0.25 0.321

ψC Beta 0.5 0.942 0.15 0.032

ψI Beta 0.5 0.501 0.15 0.11

varshare Beta 0.5 0.349 0.2 0.162

γ Beta 0.25 0.075 0.15 0.075

ϕ Beta 0.5 0.249 0.25 0.065

ψK Gamma 1.57 7.359 1.5 2.324

λ1 Beta 0.6 0.888 0.2 0.027

λ2 Beta 0.0 −0.027 0.2 0.066

ρθ Beta 0.6 0.954 0.2 0.027

ρZC Beta 0.6 0.895 0.2 0.024

ρZI Beta 0.6 0.909 0.2 0.02

ρb Beta 0.6 0.821 0.2 0.139

ρκ Beta 0.6 0.831 0.2 0.028

ρζ Beta 0.6 0.832 0.2 0.031

ρg Beta 0.6 0.885 0.2 0.023

eχ Inverse Gamma 0.01 0.04 0.004 0.005

eκ Inverse Gamma 0.01 0.009 0.004 0.002

eθ Inverse Gamma 0.01 0.039 0.004 0.01

eshop Inverse Gamma 0.01 0.053 0.004 0.013

eζ Inverse Gamma 0.01 0.008 0.004 0.002

eb Inverse Gamma 0.01 0.007 0.004 0.002

eZ Inverse Gamma 0.01 0.01 0.004 0.0

eZC Inverse Gamma 0.01 0.004 0.004 0.0

eZI Inverse Gamma 0.01 0.006 0.004 0.001

eg Inverse Gamma 0.01 0.016 0.004 0.001

eLME Inverse Gamma 0.01 0.026 0.004 0.001

eTIME Inverse Gamma 0.01 0.05 0.004 0.002

ewME Inverse Gamma 0.01 0.033 0.004 0.002

Table 5: Prior and posteriors for model parameters.
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4.4. Forecast error variance decomposition

We next examine the portion of the forecast error variance that can be attributed to each

structural shock at a particular horizon. Figure 3 decomposes the forecast error variance

among the 10 shocks 1 quarter, 1 year, 2 year, and 10 year time horizons. Whereas the first

three horizons correspond to short-run effects, the last can be regarded as a medium-run

effect. Variation in output is driven predominantly by the common component of shopping

efficiency and production technology as well as labor supply. Intratemporal prefrence shocks

play a smaller role, and sector-specific technology shocks are negligible. Given that the pro-

duction technology processes were estimated to be highly persistent, their relative importance

increases at longer time horizons, disfavoring the role of shopping efficiency. A similar pat-

tern holds for investment, except that the relative importance of shopping efficiency actually

increases from 1 quarter to 1 year due to the sluggish response of investment from adjustment

costs.

Interestingly, shopping efficiency explains nearly half of the variance in the Solow residual

at 1 quarter, and continues to explain over one-third of the variance at all time horizons.

Shopping efficiency affects the total demand that firms observe, and thereby influences ca-

pacity utitilization which in turn affects the Solow residual. This is the way in which demand

can influence the naive measure of technology—the Solow residual. If, however, we use the

utilization-adjusted Solow residual time series, then we see that this demand channel dis-

sapears and the variance is entirely explained by common production technology and the

consumption-sector production technology. This interpretation is particularly clear in Figure

4 where the shocks are bundled into four categories: shopping demand, standard demand,

technology, and labor supply. Here we see that the utilization adjusted Solow residual is

entirely explained by technology shocks, while the unadjusted Solow residual is equally ex-

plained by technology and demand shocks and all time horizons.

4.5. Historical decomposition

Figure 5 shows the historical contribution contribution of each of the 10 shock processes

in explaining deviations of output and the Solow residual from their steady-state values. To

simplify interpretation, 6 bundles the shocks into the four categories defined earlier. This

allows us to examine the contribution of shocks in concrete episodes such as the Volcker

recession, dotcom bust, Great Recession, and pandemic recession.
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Figure 3: Forecast error variance decomposition across all 10 shock processes. Bar plots may not sum to 1

because of measurement errors, which are not displayed.

Firstly, shopping demand plays a more prominent role in historical deviations compared

to standard demand channels. Moreover, shopping demand was important in every recession

over the sample period. The same cannot be said about technology shocks. In particular,

technology shocks actually play a positive role in output deviations throughout late 1990s

and early 2000s, in spite of the 2001 recession. Rather, shopping technology and labor supply

shocks are required to explain the recession in 2001. A similar pattern holds for the most

recent recession in 2020—technology shocks are in fact positive whereas a combinantion of

demand shocks and labor supply shocks account for the sharply negative output gap.

The Solow residual is primarily driven by technology and shopping efficiency shocks with

small roles attributed to labor supply and intratemporal preference shocks. During some re-

cessions, for example the 2007 financial crisis, both technology and shopping efficiency shocks

are needed to explain the negative output gap. In other periods however, such as the 2001

recession and the 2020 recession, technology shocks are positive so shopping demand shocks

are essential in explaining the business cycle troughs. We observe that shopping demand
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Figure 4: Forecast error variance decomposition across 4 categories of shocks: Shopping Demand = Common

Shopping + Investment Shopping + Shopping Disutility, Standard Demand = Discount Factor + Intratem-

poral Preference, Labor Supply = Labor Supply, Technology = Consumption Tech + Investment Tech +

Common Tech

shocks consistently move in the same direciton as the Solow residual with one exception in

the mid 1990s. The utilization-adjusted Solow residual, however, is entirely explained by

technology shocks. This suggests that accounting for utilization adjustments, particularly in

response to changes in demand, is important in correctly accounting for movements in the

unadjusted Solow residual.
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Figure 5: Historical decomposition across all 10 shock processes. Time period is 1960Q1-2022Q4. The solid

black curve in each panel is the observable series filtered by the Hamilton method with values p = 4 and

h = 8. Positive shocks are stacked on top of the horizontal axis, whereas negative shocks are stacked below.
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Figure 6: Historical decomposition across 4 categories of shocks: Shopping Demand = Common Shopping +

Investment Shopping + Shopping Disutility, Standard Demand = Discount Factor + Intratemporal Prefer-

ence, Labor Supply = Labor Supply, Technology = Consumption Tech + Investment Tech + Common Tech

4.6. Impulse responses

Figures 7 and 8 show the impulse response functions for 1 standard deviation shocks to

common technology and shopping efficiency shocks, respectively. The impact on consump-

tion, investment, labor supply, output, and the Solow residual from both shocks are similar

qualitatively and in magnitude. Both output and the Solow residual rise by over 1 percent on

impact, then gradually revert to their steady state values. The mechanism is, however, dif-

ferent. A production technology shocks directly raises the efficiency of production, reflected

in the utilization-adjusted Solow residual rising by nearly 1 percent, in both the consumption

and investment sector having a first-order effect on output. A shopping demand shock, on

the other hand, has no significant effect on the adjusted Solow residual. Rather, it causes

households to increase their shopping intensity, increasing matching with firms and input

utilization.
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Figure 7: Mean posterior impulse respond in black line. Shaded region represents 90% highest posterior

density interval.
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Figure 8: Mean posterior impulse respond in black line. Shaded region represents 90% highest posterior

density interval.

Figures 9,10, and 11 show the impulse response functions for 1 standard deviation shocks

to investment shopping efficiency, investment production technology, and intratemporal pref-

erences respectively. A positive shock to the investment sector, either through improved

shopping efficiency or production technology, increases investment, output, and the Solow

residual on impact. From intertemporal substitution, consumption initially falls to reallocate
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resources but then gradually rises as the rate of return to investment declines and the shock

dies down. Whereas an investment-specific technology shock directly raises the utilization-

adjusted Solow residual, the one to investment shopping efficiency operates by making it

easier to acquire and bundle capital goods.

The intratemporal preference shock increases consumption on impact, and consequently

crowds out investment, though the posterior bands are wide. Nevertheless, total output,

labor supply and the Solow residual all increase. Households boost shopping effort alongside

consumption, which causes the Solow residual to rise. The adjusted Solow residual diminishes

by a negligible amount, reflecting composition bias but no change in technology. The rise in

output can be interpreted in terms of both the increase in labor supply and boost in the Solow

residual, which dominates the small decrease in the capital stock. Alternatively, the rise in

consumption dominates the fall in investment, both because the response is percentage-wise

much bigger and also because consumption is a larger share of output.
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Figure 9: Mean posterior impulse respond in black line. Shaded region represents 90% highest posterior

density interval.

Figure 12 show the impulse response functions for 1 standard deviation shocks to govern-

ment expenditure. Although increased government spends crowds out private consumption

and investment, there is still a small increase in total output on impact.

In summary, the demand shocks increase search effort in the private consumption sector,

output, and the Solow residual without significantly affecting the utilization-adjusted Solow

residual. Hence, positive demand shocks can appear as technology enhancing if one uses the

36



0 10 20 30 40

0.100%

0.050%

0.000%

0.050%

0.100%

0.150%

C_obs

0 10 20 30 40

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

TI_obs

0 10 20 30 40

0.025%

0.050%

0.075%

0.100%

0.125%

0.150%

0.175%

0.200%

0.225%
Y_obs

0 10 20 30 40
0.020%

0.010%

0.000%

0.010%

0.020%

0.030%

0.040%

0.050%
L

0 10 20 30 40

0.000%

0.050%

0.100%

0.150%

0.200%
SR_obs

0 10 20 30 40

0.000%

0.020%

0.040%

0.060%

0.080%

0.100%

0.120%

0.140%
SR_util_obs

0 10 20 30 40
0.150%

0.100%

0.050%

0.000%

0.050%

0.100%

0.150%

0.200%

S_H

0 10 20 30 40

0.70%

0.60%

0.50%

0.40%

0.30%

0.20%

0.10%

0.00%

p_I_obs

A 1 standard-deviation shock to e_ZI

Figure 10: Mean posterior impulse respond in black line. Shaded region represents 90% highest posterior

density interval.
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Figure 11: Mean posterior impulse respond in black line. Shaded region represents 90% highest posterior

density interval.

conventional measure of the Solow residual, when in reality there has been zero change in

the production technology.

Note that the common technology and shopping shocks are unique in generating positive

comovement among consumption, investment, labor supply, output, and the Solow residual.

Intratemporal preference shocks, for instance, crowd out investment slightly, and shocks to

the productivity of investment or investment shopping temporarily induce a fall in consump-

tion due to intertemporal substitution. Thus, it is intuitive that these two series together
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Figure 12: Mean posterior impulse respond in black line. Shaded region represents 90% highest posterior

density interval.

dominate the forecast error variance decomposition of output and the Solow residual. How-

ever, general technology shocks induce a nearly identical comovement between the measured

and adjusted Solow residuals, whereas the shopping shocks generate very different patterns.

Since the time series’ properties of the two series are quite different, common shopping de-

mand shocks play an important role in the variance decomposition.

We have followed Bai, Rios-Rull, and Storesletten (2012) in keeping prices flexible. This

choice simplifies the analysis and focuses attention on goods market frictions as a role for

the transmission of demand shocks to productivity. However, under sticky prices, technology

shocks tend to be contractionary in the short run, which accords with the empirical evidence

found by Basu, Fernald, and Kimball (2006). Thus, generating the positive comovement

between consumption, investment, labor supply, and output would require a greater short-run

role for demand shocks. In effect, by assuming flexible prices, we have tilted the playing field

in favor of technology shocks, and show that demand shocks nevertheless play an important

role if one considers information on the adjusted Solow residual.

4.7. Estimation without including the adjusted Solow residual as an observable

To highlight the importance of using a utilization-adjusted measure of the Solow in the

estimation, we re-estimate the model using only the standard Solow residual. Figure (13)

shows the forecast error variance decomposition for all 10 shock processes and Figure (14)

shows the decomposition where shocks are aggregated. Without using the utilization-adjusted
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Solow residual, technology shocks explain a majority of variation of output and the Solow

residual even in short time horizons. Moreover, both types of TFP are extremely correlated

with each other and similarly correlated with output, contrary to the data. Shopping demand

shocks no longer play a role in determining investment either.
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Figure 13: Forecast error variance decomposition. Model is estimated without utilization-adjusted Solow

residual.

39



Q1 Q4 Q8 Q40
0

0.5

1

Q1 Q4 Q8 Q40
0

0.5

1

Q1 Q4 Q8 Q40
0

0.5

1

Q1 Q4 Q8 Q40
0

0.2

0.4

0.6

0.8

Labor_supply

Shopping_demand

Standard_demand

Technology

Conditional forecast error variance decomposition: aggregated
Output Solow residual: utilization adjusted

Solow residual Investment

Figure 14: Forecast error variance decomposition across 4 categories of shocks: Shopping Demand = Common

Shopping + Investment Shopping + Shopping Disutility, Standard Demand = Discount Factor + Intratem-

poral Preference, Labor Supply = Labor Supply, Technology = Consumption Tech + Investment Tech +

Common Tech. Model is estimated without utilization-adjusted Solow residual.

Finally, if the model is estimated without using the utilization-adjusted Solow residual,

then technology shocks explain a majority of variation of output and the Solow residual even

in short horizons. Moreover, both types of TFP are extremely correlated with each other

and similarly correlated with output, contrary to the data.

5. Conclusion

The utilization-adjusted TFP series leads TFP and is less correlated with output than

the latter. We estimate a two-sector business cycle model featuring imperfect competition,

variable capacity utilization, and shopping frictions on a rich set of observables including

the standard Solow residual as well as a utilization-adjusted Solow residual. Including both

Solow residual series provides distinct information about TFP that allow us to assess the

importance of goods market frictions in shaping business cycles. We find that demand shocks
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play an important role in explaining observed variation in both output and total factor

productivity. Both shopping and technology shocks generate positive comovement among

consumption, investment, labor supply, output, and the Solow residuals. However, shopping

shocks generate positive movements in the measured TFP without having a significant effect

on the utilization-adjusted version, whereas with technology shocks the two series track

each other closely. Intratemporal preference shocks, in turn, raise consumption, output,

labor supply, and the Solow residual, but crowd out investment, which limits their role in

contributing to business cycles. Including the utilization-adjusted Solow residual is essential

for identifying the productive role of demand shocks.
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Appendix A. Data appendix

Table A.6 describes the raw data sources used in both the motivation and estimation.

Each series used as an observable ranges from 1960Q1 to 2022Q4.

ID Description Source

LABSHPUSA156NRUG Labor share of income University of Groningen

PCND Personal consumption: non-durable BEA

PCESV Personal consumption: services BEA

HOANBS Nonfarm business hours worked BLS

CPIAUCSL Consumer price index BLS

GDPC1 Real GDP BEA

GDPIC1 Real gross private domestic investment BEA

CNP160V Civilian non-institutional population BLS

Table A.6: Data sources used in motivating evidence and estimation.

Appendix B. Additional derivations

Appendix B.1. Solution to household problem

Let λt be the Lagrangian multiplier on the budget constraint and µt be the multiplier

on the composite term Xt. To simplify the exposition, let Γt = ct − χ(Lψt /ψ)X. We also

recognize that CES preferences over varieties implies for any given level of consumption ct

the demand curve for an individual variety is (ct/ci,t)
1/ε = ρi,t.

The problem facing the household is to choose its level of consumption, shopping effort,and

labor hours, and shares of equity. The first order conditions are

[ct] : btθtΓ
−σ
t − PH

t λt − µtγ(Xt−1/ct)
1−γ = 0 (B.1)

[Xt] : − btθtΓ
−σ
t χ

Lψt
ψ

+ µt − βEtµt+1(1− γ)cγt+1X
−γ
t = 0 (B.2)

[cit] : (btθtΓ
−σ
t − µtγ(Xt−1/ct)

1−γ)
∂ct
∂cit

− stA(Q
H
t )

1−ϕpitλt = 0 (B.3)

[s] : (btθtΓ
−σ
t − µtγ(Xt−1/ct)

1−γ)
∂ct
∂st

− btκ− λt
∂(Ptct)

∂st
= 0 (B.4)

[Lt] : − btθtΓ
−σ
t χtL

ψ−1
t Xt + λtwt = 0

[xt+1] :− λtνt + βEtλt+1{(νt+1 + dt+1)} = 0 (B.5)
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Rearranging (B.2) yields

µt =
btθtΓ

−σ
t χtL

ψ
t

ψ
+ βEt

{
µt+1(1− γ)cγt+1X

−γ
t

}
Combine (B.1) and (B.3) to find

∂ct
∂cit

= stA(Q
h
t )

1−ϕρit

To characterize the behavior of shopping and consumption we need two auxiliary expressions,

∂ct
∂st

=
ε

ε− 1
A(QH

t )
1−ϕρi,tcit

∂(Ptct)

∂st
= A(QH

t )
1−ϕpitcit

which shows the marginal impact of shopping effort on the consumption basket and total

expenditure respectively.

Equation (B.1) equates the marginal utility of market consumption to the marginal utility

of wealth. Equation (B.4) says that the benefit of extra search equals the foregone leisure

value. The benefit of extra search is the net utility from switching expenditure from existing

goods to new goods. Equation (9) equates the wage to the marginal rate of substitution

between consumption and leisure.

Substituting (B.1) into (B.4), and making use of the two auxiliary equations, obtains

btκt = PH
t λt

ε

ε− 1
A(QH

t )
1−ϕρitcit − λtA(Q

H
t )

1−ϕpitcit

= PH
t λt

(
A(QH

t )
1−ϕρitcit

ε− 1

)
Multiplying both sides by st we obtain

btstκ = PH
t λt

ct
ε− 1

(B.6)

where the last equality follows from evaluating the expression for total expenditure Ptct =∫ stA(QHt )1−ϕ

0
pi,tci,tdi and using the demand curve for individuals varieties. Several insights

can be obtained from equation (B.6). First, the value of shopping depends on an imperfect

ability to substitute among goods, as s → 0 as ε → ∞. Second, the consumption level has

opposing effects on shopping effort. Consumption expenditure is a prerequisite for shopping

effort, but it also tends to reduce shopping effort through wealth effects. The force of this
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latter channel depends on the inverse intertemporal elasticity of substitution σ and the habit

stock parameter h.

Equation (B.5) can be rearranged into a standard Euler equation for equity:

νt = βEt
{
λt+1

λt
(νt+1 + dt+1)

}
Appendix B.2. Solution to capital goods supplier’s problem

To tackle this problem, first substitute (13) into the objective. Let ηt be the Lagrangian

multiplier on (14). Then we use the following relations, analogous to the household problem:

∂it
∂lt

=
εi

εi − 1
ζA(QI

t )
1−ϕρIjtijt (B.7)

∂P I
t it
∂lt

= ζA(QI
t )

1−ϕpijtijt

Let λt be the Lagrange multiplier on(13) and µt the multiplier on (14). The first-order

conditions to the problem are:

[lt] : − wtλt − λt
∂(P I

t it)

∂lt
+ ηt

(
1− Φ′

(
it
kt

))
∂it
∂lt

= 0 (B.8)

[it] : − λtP
I
t + ηt

(
1− Φ′

(
it
kt

))
= 0 (B.9)

[uit] : λtr
i
tk
i
t − ηtδ

i′(uit)k
i
t = 0, i ∈ {C, I}

[kt+1] : − ηt + βEt
{
λt+1r

i
t+1u

i
t+1 + ηit+1

(
1− δi(uit) + Φi′

(
iit+1

kit+1

)
iit+1

kit+1

− Φi

(
it+1

kt+1

))}
= 0

(B.10)

Using (B.9) in conjunction with the special relations (B.7) and (B.8) yields

wt = P I
t

εi
εi − 1

ζA(QI
t )

1−ϕρIjtijt − ζA(QI
t )

1−ϕpIjtijt

=
εi

εi − 1
ζA(QI

t )
1−ϕpIjtijt − ζA(QI

t )
1−ϕpIjtijt

=
1

εi − 1
ζA(QI

t )
1−ϕpIjtijt

Now, multiply both sides by lkt and use (13) to find

wtlt =
P I
t it

εi − 1
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Appendix B.3. Proof of lemma

We start with the equations for household and government consumption:

C = pZC(A(Qh)−ϕ)1−α2(KCh)α(LCh)1−α
αα1
1 α

α2
2

(1− α)1−α

G = pZC(A(Qg)−ϕ)1−α2(KCg)α(LCg)1−α
αα1
1 α

α2
2

(1− α)1−α

Taking ratios yields

C

G
=

(
Qh

Qg

)−ϕ(1−α2)(KCh

KCg

)α(
LCh

LCg

)1−α

=

(
Qh

Qg

)−ϕ(1−α2) C

G

using (25). Rearranging yields Qh = Qg.
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Appendix C. Details on equilibrium

Appendix C.1. Equilibrium conditions (baseline)

Variety effect: household
pt

PHt
= (A(SHt )ϕ(NH

t )1−ϕ)1/(ε−1)

Variety effect: investment
1

P It
= (A(ζLKt )ϕ(NI

t )
1−ϕ)1/(εi−1)

Profits: consumption dt =
Y Ct
εNC

t

Profits: investment dt =
It

εiNI
t

Labor intratemporal optimality
wt

PHt
=
χtL

1/ψ
t

θtΓ
−σ
t

Capital accumulation Kt+1 = (1− δC(uCt ))k
C
t + (1− δI(uIt ))k

I
t + it

Household shopping κtS
h
t =

θtΓ
−σ
t ct

ε− 1

Consumption marginal utility Pht λt = btθtΓ
−σ
t

Utility component Γt = ct − hct−1

Euler equation (capital) qt = βEt
{
λt+1

λt

[
rit+1u

i
t+1 + qt+1

(
1− δi(uit) + Φi

′
(
it+1

kt+1

)
it+1

kt+1
− Φi

(
it+1

kt+1

))]}

Capital utilization rit = δ′i(uit), i = {C, I}

Rental rate (consumption) rCt =
αY Ct

ε
ε−1

uCt K
C
t

Rental rate (investment) rIt =
αIt

εi
εi−1

uItK
I
t

Free mobility
NH
t

NG
t

=
Ct

Gt

Tightness: consumption QCt = NH
t /S

H
t

Tightness: investment QIt = NI
t /(ζL

K
t )

Retail production Y Ct = (A(QCt )
−ϕ)1−α2pZCt (uCt K

C
t )α(LCt )

1−α αα1
1 αα2

2

(1− α)1−α

Investment It = (A(QIt )
−ϕ)1−α2ZIt (u

I
tK

I
t )
α(LIt )

1−α αα1
1 αα2

2

(1− α)1−α

Firm composition 1 = NH
t +NG

t +NI
t

Aggregate accounting Y Ct + It = wtLt + dt + rCt u
C
t k

C
t + rIt u

I
t k
I
t

Employment in investment shopping wtL
K
t =

It

εi − 1

Capital composition Kt = KC
t +KI

t

Labor composition Lt = LCt + LIt + LKt
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Appendix C.2. Log linearized system of baseline and no-entry models

Table C.7 describes the log linearized system for the baseline model.
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Label Equation

Variety effects: household (ε− 1)(p− PH) = ϕS + (1− ϕ)NH

Variety effects: investment (εi − 1)q = ϕ(ζ + LK) + (1− ϕ)N I

Consumption aggregation C = PH + c

Profits: consumption d = Y C −NC

Profits: investment d = I −N I

Investment value w + LI = I

Factor prices w + LC = Y C

Labor intratemporal b+ θ − σΓ + χ+X + (ψ − 1)L = λ+ w

Capital accumulation K = (1− δK)K−1 + δK(I−1)

Composite utility component Γ = ψ

ψ−Lψ
c− L

ψ

ψ−Lψ
(ψL+X + χ)

Household shopping effort SH = PH + λ+ c− b− κ

Consumption multiplier b+ θ − σΓ =
(
1− (1+r)γ

r+γ
L
ψ

ψ

)
(PH + λ) + (1+r)γ

r+γ
L
ψ

ψ (µ+ (1− γ)(Xt−1 − c))

Relative price of capital q = P I +ΨKδ
K(I −K)

Variable X X = γc+ (1− γ)X−1

Euler equation (X) µ = r+γ
1+r (b+ θ − σΓ +X + ψL) + 1−γ

1+rE(µ
′ + γ(c′ −X))

Euler equation (capital) q = E{λ′ − λ+ r+δK

1+r (r′ + u′ − u) + q
1+r}

Optimal utilization ri = Ωiui i ∈ {C, I}

Rental rate (consumption) rC = Y C − uC −KC

Rental rate (investment) rI = I − uI −KI

Tightness: consumption QC = NH − SH

Tightness: investment QI = N I − ζ − LK

Free mobility NH −NG = Y C −G

Retail production Y C = p+ ZC + (1− α2)(−ϕQ) + α(uC +KC) + (1− α)LC

Retail (utilization-adjusted) Y C,util = p+ ZC + α(KC) + (1− α)LC

Investment I = q + ZI − ϕ(1− α2)Q
I + α(uI +KI) + (1− α)LI

Investment (utilization-adjusted) Iutil = ZI + αKI + (1− α)LI

Household consumption C = NH −NC + Y C

Composition of firms N = ϕNC
[
(1/(1 + gc))N

H + (gc/(1 + gc))N
G
]
+ (1− ϕNC)N I

Aggregate expenditure Y = (r+δ)ε[r+(1−α)δK ]C+[δKα(ε−1)(r+δ)+δ(r+δK)]TI
(r+δ)ε[r+(1−α)δK ]+δKα(ε−1)(r+δ)+δ(r+δK)

Aggregate income Y = (r+δK)[(r+δ)(ε−1)+δ](w+L)+(r+δ)(r+(1−α)δK)(N+d)
(r+δ)ε[r+(1−α)δK ]+δKα(ε−1)(r+δ)+ δ(r+δK)

Total investment TI = δKα[(ε−1)(r+δ)+δ]I+δ(r+(1−α)δK)(ν+NE)
δ(r+(1−α)δK)+δKα[(ε−1)(r+δ)+δ]

Employment in investment shopping w + LK = I

Labor composition L = (1− ϕLK)(ϕCLC + ϕILI) + ϕLKLK

Capital composition K = ϕCKC + ϕIKI

Stochastic processes x = ρxx−1 + εx for x ∈ {ZC , ZI , θ, b, κ, ζ, χ}

Table C.7: Log linearized system of baseline model. The table omits the symbol ,̃ which denotes log deviations

from steady state and abuse notation by using the equality sign = rather than the approximation sign ≈

for first-order approximations.
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The system can be simplified as follows by eliminating LI and KI using the following

relations:

w + LI = I

w + LI = Y C − (uC − uI)− (KC −KI)

These yield the following simplified expressions for KI :

KI = I − Y C + uC − uI +KC
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Label Equation

Variety effects: household (ε− 1)(p− PH) = ϕS + (1− ϕ)NH

Variety effects: investment (εi − 1)q = ϕ(ζ + LK) + (1− ϕ)N I

Consumption aggregation C = P + c

Profits: consumption d = Y C −NC

Profits: investment d = I −N I

Labor in retail w + LC = Y C

Capital accumulation K = (1− δK)K−1 + δKI−1

Composite utility component Γ = ψ

ψ−Lψ
c− L

ψ

ψ−Lψ
(ψL+X + χ)

Labor intratemporal b+ θ − σΓ + χ+X + (ψ − 1)L = λ+ w

Household shopping effort SH = PH + λ+ c− b− κ

Consumption multiplier b+ θ − σΓ =
(
1− (1+r)γ

r+γ
L
ψ

ψ

)
(PH + λ) + (1+r)γ

r+γ
L
ψ

ψ (µ+ (1− γ)(Xt−1 − c))

Variable X X = γc+ (1− γ)X−1

Euler equation (X) µ = r+γ
1+r (b+ θ − σΓ +X + ψL) + 1−γ

1+rE(µ
′ + γ(c′ −X))

Relative price of capital q = P I +ΨKδ
K(I −K)

Euler equation (capital) q = E{λ′ − λ+ r+δK

1+r (r′ + u′ − u) + q
1+r}

Optimal utilization ri = Ωiui i ∈ {C, I}

Rental rate (consumption) rC = Y C − uC −KC

Rental rate (investment) rI = I − uI −KI

Free mobility NH −NG = C −G

Tightness: consumption QC = NH − SH

Tightness: investment QI = N I − ζ − LK

Tightness equalization NH − SH = NG − SG

Retail production Y C = p+ ZC + (1− α2)(−ϕQ) + α(uC +KC) + (1− α)LC

Retail (utilization-adjusted) Y C,util = p+ ZC + αKC + (1− α)LC

Investment I = ZI − ϕ(1− α2)Q
I + α(uI +KI) + (1− α)LI

Investment (utilization-adjusted) Iutil = q + ZI + αKI + (1− α)LI

Composition of firms 0 = ϕNC
[
(1/(1 + gc))N

H + (gc/(1 + gc))N
G
]
+ (1− ϕNC)N I

Aggregate expenditure Y = Y CY (Y C) + IY (I)

Aggregate income Y = (r+δK)[(r+δ)(ε−1)+δ](w+L)+(r+δ)(r+(1−α)δK)(N+d)
(r+δ)ε[r+(1−α)δK ]+δKα(ε−1)(r+δ)+ δ(r+δK)

Employment in investment shopping w + LK = I

Labor composition L = (1− ϕLK)(ϕCLC + ϕILI) + ϕLKLK

Capital composition K = ϕCKC + ϕIKI

Stochastic processes x = ρxx−1 + εx for x ∈ {ZC , ZI , θ, b, χ, κ, ζ,G}

Table C.8: Simplified log linear representation of the baseline model. The table omits the symbol ˜, which

denotes log deviations from steady state and abuse notation by using the equality sign = rather than the

approximation sign ≈ for first-order approximations.
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Appendix C.3. Key steady-state derivations

In this appendix, we compute all relevant steady-state ratios for the model. The Euler

equation for capital implies that the steady real interest rate is

r = uiri − δi(ui), i = {C, I}

and steady state capital utilization must satisfy

ri = δ′i(ui) = βi1 + βi2(u
i − 1), i = {C, I}

We normalize the steady state utilization rate to unity which implies that

ri = βi1 = r + δK , i ∈ {C, I}

We can let rK denote the common rental rate in the steady state. Therefore βi1 is determined

by the rate of time preference and depreciation rate, while βi2 is a free parameter, which will

capture the sensitivity of utilization to the relative price of capital.

The law of motion for capital in the steady state requires I = δKK. The shares of profits

in the consumption and investment sectors is

NCd

Y C
=

1

ε
,

N Id

I
=

1

εi

The number of retail firms satisfies

NC =
Y C

Y C + Iε/εi

As expected, NC → 1 as εi → ∞ and → 0 as ε → ∞. Moreover, the firm ratio coincides

with the output shares if the markups are the same.

We calculate the share of investment to consumption. Optimal capital demand in each

sector ensures

rKKI = αI(εi/(εi − 1))−1

rKKC = αY C(ε/(ε− 1))−1

rK(KC +KI) = α

(
Y C

ε/(ε− 1)
+

I

εi/(εi − 1)

)
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Summing over the different types of capital, we have

rKK = α

(
Y C

ε/(ε− 1)
+

I

εi/(εi − 1)

)
(C.1)

Using the steady state condition for capital and utilization,

I = δKK =
δK

rK
α

(
Y C

ε/(ε− 1)
+

I

εi/(εi − 1)

)
and using the steady state extensive margin of investment to retail output we obtain

I

Y C
=

δKα
(
ε−1
ε

)
rK − δKα

(
εi−1
εi

)
The ratio of investment to retail output rises with the depreciation rate δK and output

elasticity α, falls with the interest rate r, and falls with the retail markup and rises with the

investment markup. Under perfect competition (ε→ ∞, εi → ∞), the entry sector vanishes,

and I/Y C → δKα/(rK − δKα).

It immediately follows that the ratio of capital to retail output is

K

Y C
=

α
(
ε−1
ε

)
rK − δKα

(
εi−1
εi

) (C.2)

Additionally, we can find the mass of consumption and investment firms directly in terms

of parameters:

NC =
rKεi − δKα(εi − 1)

rKεi + δKα(ε− εi)

N I =
αδK(ε− 1)

rKεi + δKα(ε− εi)

We now calculate the share of each sector’s capital. Combining the steady state interest

rate, payments to capital, and capital stock we have

ϕI ≡ KI

K
=
εi − 1

εi

αδK

r + δK

Similarly,

ϕC ≡ KC

K
=
ε− 1

ε

α

rK
Y C

K

=
εir

K − αδK(εi − 1)

εi(r + δK)
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We can now calculate the investment share of output IY ≡ I/Y

IY =
1

1 + 1/(I/Y C)

=
αδKεi(ε− 1)

rεεi + αδKε− αδKεi + δKεεi

From this, we find the output ratios of total investment and retail Y C
Y = Y C/Y :

Y C
Y = 1− I

Y

The share of household consumption CY ≡ C/Y

CY =
1

1 + gc

Y C

Y

Aggregate profits equal d given the fact that there is a unit mass of firms.

d

Y
=
NCd+N Id

Y

=
Y C

Y

1

ε
+
I

Y

1

εi

=
rKεi + αδK(ε− εi)

rKεεi + αδK(ε− εi)

If we let δK → 0, then output coincides with retail sales, and the profit share approaches

1/ε. Moreover, if ε = εi, then the consumption and investment sectors have an overall profit

share of 1/ε.

The income approach to output implies Y = wL+ rK(uCKC + uIKI) +Nd, so that the

joint share of rental and labor income to output is therefore 1− d/Y .

Total labor income satisfies

wL = (1− α)

(
ε− 1

ε
Y C +

εi − 1

εi
I

)
+

I

εi − 1
(C.3)

Combining (C.3) with (C.1) yields so that

wL

rKK
=

1− α

α
+

I

rKK(εi − 1)

which in the steady state satisfies

wL

rKK
=

1− α

α
+

δK

(r + δK)(εi − 1)
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The ratio of wage to total factor income is

wL

wL+ rKK
=

(1− α)(r + δK)(εi − 1) + δKα

(r + δK)(εi − 1) + δKα

The labor share in the investment shopping sector is

ϕLK ≡ LK

L
=

αδK

αδK + (1− α)(r + δK)(εi − 1)

Thus, the labor shares in consumption and investment satisfy

LC

L
= ϕC(1− ϕLK),

LI

L
= ϕI(1− ϕLK),

Within the consumption, investment, and entry sectors, the capital-labor ratio is the same.

The steady-state labor share of income satisfies

ω ≡ wL

Y
=

wL

wL+ rKK

wL+ rKK

Y

= (1− α)

(
1− d

Y

)
=

rK(ε− 1)
αδK(ε−εi)

εi
+ rKε

αδK

rK(εi−1)
+ 1− α

αδK

rK(εi−1)
+ 1

Several special cases are worth considering. First, consider εi → ∞. Then the labor share

approaches

(1− α)
rK(ε− 1)

rKε− αδK

No labor is employed in shopping for investment goods, so the share 1 − α is deflated by

the average markup between the two sectors. In particular, as δK → 0, the labor share

approaches (1 − α)(ε − 1)/ε. If both ε, εi → ∞, then of course the labor share approaches

1−α. Finally, if ε = εi at a finite value, then the labor share is both deflated by the average

markup but also inflated by the role of workers shopping for investment goods.

We can turn to steady-state relations on the household side. We can normalize b = θ =

χ = 1 in the steady state. We also use c = X. From the definition of Γ, we have

Γ = c

(
1− Lψ

ψ

)
The consumption first order condition implies

Γ−σ = PHλ+ µγ
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The Euler for X in steady state becomes

µ

(
r + γ

1 + r

)
=
Lψ

ψ

(
PHλ+ µγ

)
We can solve for labor supply. The first order condition for labor supply in the steady state

yields

Γ−σLψX = λwL

Using C = PHc, we have

wL

C
=

Γ−σLψ

λPH

We can in turn write wL/C directly in terms of parameters:

wL

C
= (1 + gc)

wL

Y C

= (1 + gc)
wL

rKK

rKK

Y C

= (1 + gc)

[
1− α

α
+

δK

(r + δK)(εi − 1)

]
(r + δK)α ε−1

ε

r + δK − δKα εi−1
εi

Now it remains to simplify Γ−σLψ/(λPH). Using the Euler for X, we obtain

Γ−σLψ

λPH
=

ψµ

λPH

(
r + γ

1 + r

)
We can further simplify:

ψµ

λPH

(
r + γ

1 + r

)
= Lψ

(
1 +

µγ

λPH

)
so that

µ

λPH
=

Lψ

ψ r+γ
1+r

− Lψγ

and hence

wL

C
=

ψ r+γ
1+r

Lψ

ψ r+γ
1+r

− Lψγ

It follows that

L =

(
ψ r+γ

1+r
wL
C

ψ r+γ
1+r

+ γ wL
C

)1/ψ

This part not updated!
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Appendix C.4. Sequential computation of steady state

We can obtain the wage directly from (??) Now, given a guess for C and P c, we imme-

diately recover a consumption bundle c = C/P c as well as Γ. Government purchases satisfy

G = gcC. Hence, retail output satisfies Y C = C + G. Household shopping effort can be

obtained from the first order condition:

Sc =
θΓ−σc

κ(ε− 1)

K can be pinned down using (C.2). Given K, investment in physical capital satisfies

I = δKK, and L can be obtained from the capital-labor ratio (??). Given L and K,

we immediately recovery Ki and Li for i ∈ {C, I, E}. The number of entrants satisfies

NE = ZE(KE)α(LE)1−α, and we recover the total stock of firms from N = (1 − δ)/δNE.

The ratio of firms producing for households and the government satisfies N g/N c = gc. Thus,

N g = (gc/(1 + gc))N and N c = (1/(1 + gc))N .

The firm value ν satisfies ν = (Y C/N)δ/[(r + δ)ε].

Given N c and Sc, we calculate household tightness Qc = N c/Sc. We can check our guesses

for C and P by using discrepancies in the retail production function and labor supply:

L1 = C − pZ(AQ−ϕ)1−α2
(1− α)1−α

αα1
1 α

α2
2

L2 = L1/ψ − θΓ−σ

χP

1− α

α
(r + δK)

(
ZIα

r + δK

)1/(1−α)

This procedure implicitly defines a loss function: L(C,P ) : R2+ → R2.

In the case σ = 1, the income and substitution effects cancel out, and we can characterize

the steady state in closed form. It is most straightforward to solve for labor supply.

While (??) does not have a closed form expression, one is available under logarithmic

preferences: σ = 1. Then, note that ΓP = c(1−h)P = C(1−h). Using this, and multiplying

both sides by K we get

L1+1/ψK

L
=
θ

χ

1− α

α

K

C

r + δK

1− h

K

L

Canceling out K/L and replacing K/C, we obtain

L =

(
θ

χ

1− α

r + (1− α)δK
r + δK

1− h

(
ε− 1

ε
+

δ

(r + δ)ε

)
(1 + gc)

)1/(1+1/ψ)
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Together with the closed form expression for the wage, we obtain the capital stock:

K =
α

1− α

wL

r + δK

Shopping effort simplifies to

S =
θ

κ(1− h)(ε− 1)

Remaining quantities follow easily by using the ratios in Appendix C.3.

Appendix C.5. Derivation of select log linearized equations

1. Utility component Γt

In levels, we have Γt = ct−χt(L
ψ
t /ψ)Xt. Applying a first-order Taylor series expansion

yields

ΓΓ̃t = cc̃t −
χL

ψ
X

ψ
(ψL̃t + X̃t + χ̃t)

Then using c = X, we have

Γ̃t =
ψc̃t

ψ − χL
ψ
− χL

ψ

ψ − χL
ψ
(ψL̃t + X̃t + χ̃t)

2. Variable Xt

Xt = cγtX
1−γ
t , so that

X̃t = γc̃t + (1− γ)X̃t−1

3. Euler equation for X In levels, we have

µt =
btθtΓ

−σ
t χtL

ψ
t

ψ
+ βEt{µt+1(1− γ)cγt+1x

−γ
t }

Log linearizing, simplifying and dividing by u yields

µ̃t =
Γ
−σ
L
ψ

ψµ
(b̃t + θ̃t − σΓ̃t + χ̃t + ψL̃t) + β(1− γ)γEt(µ̃t+1 + c̃t+1 − x̃t)

Finally, from the steady state, we note that Γ
−σ
L
ψ

ψµ
= (ρ+ γ)/(1 + ρ), so that

µ̃t =
ρ+ γ

1 + ρ
(b̃t + θ̃t − σΓ̃t + χ̃t + ψL̃t) + β(1− γ)γEt(µ̃t+1 + c̃t+1 − x̃t)
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4. Consumption marginal utility λt

Ptλt = btθtΓ
−σ
t

P̃t + λ̃t = b̃t + θ̃t − σΓ̃t

5. Relative price of capital

Here we use the normalization Pt = 1.

qt

(
1− Φ′

K

(
It
Kt

))
= 1

qt

(
1−ΨK

(
It
Kt

− δk
))

= 1

qeq̃t
(
1−ΨK

(
δKeĨt−K̃t − δK

))
= 1

q̄eq̃t −ΨKδ
KeĨt−K̃t+q̃t +ΨKδ

Keq̃t−P̃
I
t = 1

q̃t = ΨKδ
K(Ĩ − K̃)

6. Depreciation function

Let us also turn to depreciation as a function of utilization, omitting the i index for

simplicity:

δ(ut) = δE + β1(ut − 1) +
β2
2
(ut − 1)2

Hence, in log deviations we have

δKeδ̂t = δK + β1(ue
ũt − 1) +

β2
2
(ueũt − 1)2

Using u = 1 and applying the first-order approximation, we have

δK(1 + δ̃t) = δK + β1ũt +
β

2
ũ2t

δE δ̃t = β1ũt

Now, using β1 = r + δK , we have

δ̃t =
r + δK

δK
ũt

7. Euler equation for capital
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It’s useful to simplify the adjustment cost term. Note that

Φ′
K

(
I

K

)
I

K
= ΨK

(
I

K
− δK

)
I

K

= ΨKδ
K
(
eĨ−K̃ − 1

)
δKeĨ−K̃

= ΨK(δ
K)2

(
e2(Ĩ−K̃) − eĨ−K̃

)
= ΨK(δ

K)2(Ĩ − K̃)

= δK q̃

Moreover,

ΦK

(
I

K

)
=

ΨK

2

(
I

K
− δK

)2

=
ΨK

2

(
δKeĨ−K̃ − δK

)2
=

ΨK

2
(δK)2

(
Ĩ − K̃

)2
= 0

Hence, we can write

qeq̃t = βEt
{
eλ̃t+1−λ̃t [(r + δK)er̃

K
t+1+ũ

i
t+1 + qeq̃t+1(1− δKeδ̃

K
t + δK q̃t+1)]

}
qeq̃t = βEt

{
(r + δK)eλ̃t+1−λ̃t+r̃Kt+1+u

i
t+1 + (1− δKeδ̃

K
t + δK q̃t+1)qe

λ̃t+1−λ̃t+q̃t+1

}
(1 + r)q̃t = Et

{
(1 + r)(λ̃t+1 − λ̃t + (r + δK)(r̃Kt+1 + ũit+1) + q̃t+1 − δK δ̃Kt

}
(1 + r)q̃t = Et

{
(1 + r)(λ̃t+1 − λ̃t + (r + δK)(r̃Kt+1 + ũt+1 − ũt) + q̃t+1

}
q̃t = Et

{
(λ̃t+1 − λ̃t) +

r + δK

1 + r
(Ỹ C

t+1 − K̃C
t+1 − ũt) +

q̃t+1

1 + r

}
8. Utilization

The utilization equation is

qtδ
i′(ut) = rKit , i ∈ {C, I}

The quadratic relationship between utilization and depreciation implies that

δi
′
(u) = β1 + βi2(ut − 1)
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We rewrite optimal utilization as

q̄eq̃
i
t(β1 + βi2(ūe

ũt − 1)) = rKer̃
K
i,t , i = {C, I}

β1 + βi2(ue
ũt − 1) = rKer̃

K
i,t−q̃t

β1 + βi2ũt = r(1 + r̃Ki,t − q̃t)

Now we use rK = β1 = (r + δK) to simplify:

βi2ũt = (r + δK)(r̃Kit − q̃t)

so that

r̃Kit − q̃t = Ωiũt

where the composite parameter Ωi satisfies Ωi = βi2/(r + δK)

9. Aggregate income

We decompose aggregate income and apply steady-state ratios:

Yt = Ntdt + wtLt + rKt (u
CKC

t + uIKI
t +KE

t )

Ỹt =
Nd

Y
(Ñt + d̃t) +

wL

Y
( ˜wtLt) +

rKK

Y
r̃Kt (

˜uCt K
C
t + ˜uItK

I
t + K̃E

t )

Ỹt =
(r + δK)[(r + δ)(ε− 1) + δ][(1− α)(w̃t + L̃t) + α(K̃t + r̃Kt )] + (r + δ)(r + (1− α)δK)(Ñt + d̃t)

(r + δ)ε[r + (1− α)δK ] + δKα(ε− 1)(r + δ) + δ(r + δK)

Ỹt =
(r + δK)[(r + δ)(ε− 1) + δ](w̃t + L̃t) + (r + δ)(r + (1− α)δK)(Ñt + d̃t)

(r + δ)ε[r + (1− α)δK ] + δKα(ε− 1)(r + δ) + δ(r + δK)

where we apply r̃Kt + K̃t = w̃t + L̃t.
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