

DAMIG-350GDL Welding Machine

www.daewoopowerproducts.com

Manufactured under license of Daewoo International Corporation, Korea

INDEX

1.SAFETY	3
2.APPLICATION	5
3.DESCRIPTION OF THE MACHINE	5
4. DEVICE CONNECTION - WELDING POLARITY SETTING	5
5.MIG/MAG WELDING PROCESS	8
6. PANEL OPERATION	10
7. ERROR CODE	22
8. ELECTRICITY SAFETY GUIDELINES	23
9. ELECTRICAL DIAGRAM	24
10. TECHNICAL DATA OF THE DEVICE	
10. EXPLODED VIEW	
EXPLODED VIEW	
WARRANTY	29

Please read carefully this user manual before using this machine. Keep it for the future use.

1. SAFETY

It is imperative that you read the following signs and safety rules to protect your own and other people's health and life.

Read the instructions before starting the device. Use only original equipment supplied by the manufacturer.

Some components may explode. Always use a face shield and protective clothing with long sleeves.

Static voltage can damage electronic components.

Use approved face shields and welding shields. Always use protective clothing designed for welders. Metal splinters can damage your eyes. Always use safety glass.

Electric shock can result in death. Do not touch electrical components when the device is connected to power. Use dry and complete protective gloves and protective clothing.

Gases and vapors can be hazardous to health. Welding gases and fumes are emitted during the welding process. Inhalation of these substances can be hazardous to health.

Eye protection with welding filters. Depending on the current used, use protective shields with appropriate filters.

Moving parts of the device can cause injuries.

Continuous operation for too long can cause device to overhear. Wait until the device cools down.

Damaged technical gas cylinders may explode. The cylinders contain high pressure gas. Make sure that cylinders are handled and stored in accordance with health and safety and fire protection requirements.

Welded parts may burn.

The protruding wire from the torch is sharp and can cause skin puncture.

Danger of fire and explosion. During welding work, a fire may result. The welding station must be remote and protected against flammable and explosive materials.

The magnetic field can disrupt the functioning of pacemakers. Consult a doctor before starting work.

Do not weld at height without proper protection.

A device falling or falling over may cause injury.

- Before starting work, specify the place where the device is to be operated.

- The device should be connected to the network so that it can be freely manipulated at all times.

- The power cord should not be taut during operation.

- Do not use the device on a surface that may cause it to tip over.

- To move the device, use only the handle on the front of the device. Do not pull on the welding or power cord.

- Moving and transporting the device and cylinders with technical gases should be carried out separately. Only carry the machine using the factory carrying handles.

- Incorrect use is prohibited.

ATTENTION!

The heating test was carried out at ambient temperature and the duty cycle (load factor) at 25°C was determined as a result of the simulation.

The device is intended for conducting professional welding works in industrial conditions by personnel having valid qualification certificates in accordance with applicable standards.

WARNING: This Class A equipment is not intended for use in residential areas where electricity is supplied through the public low voltage network system. There may be potential difficulties in ensuring electromagnetic compatibility at these locations due to conducted and radiated disturbances. The device should be operated in accordance with the Regulation of the Minister of Economy of April 27, 2000. on health and safety at work during welding (Journal of Laws No. 40 item 470).

Keeping this user manual and following the guidelines outlined in it will allow for proper maintenance of the device in the future. The following warnings are intended to ensure user safety and environmentally friendly operation. Read the entire manual carefully before installing and using the device.

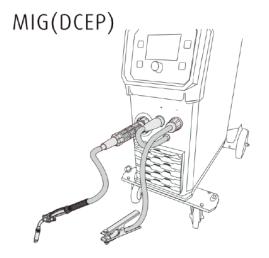
- After opening the packaging, check that the device has not been damaged during transport. If in doubt, contact our service department.

- The device should only be used by a trained employee or consumer.

- When installing the appliance, you should entrust all electrical activities to a qualified electrician.

2. APPLICATION

The devices are used for manual arc welding in the GMAW (Gas Metal Arc Welding), GTAW (Gas Tungsten Arc Welding) and SMAW (Shielded Metal Arc Welding) methods.


3. DESCRIPTION OF THE MACHINE

The devices are modern inverter sources offering very high welding versatility. Their main advantage is the possibility of welding using single or double pulse current in MIG or MAG mode. Thanks to the use of modern IGBT technology and high-quality components, they are ideal for works related to the automotive industry, steel constructions, welding of aluminum alloys and others.

Reliability, a wide range of applications (the ability to carry out work in three welding methods: MIG / MAG, TIG-LIFT DC, MMA) make the device satisfy even the most demanding users.

4. DEVICE CONNECTION - WELDING POLARITY SETTING

MIG/MAG WELDING

Select the correct welding polarity as shown above.

Positive polarity welding (MIG / MAG gas shielded solid wire welding)

Welder's current plug connected to the positive + socket (EURO)

Earth handle connected to the negative socket -

Flux-cored(DCEN)

Welding with negative polarity - (welding with flux cored wire - FCAW)

Welder's current plug connected to the negative socket - (EURO) Earth clamp connected to the positive socket + WARNING!

To start working with self-shielding wire, change the polarity inside the device - on the wire feeder.

BEFORE YOU WORK:

- Check the voltage, number of phases and frequency of the power supply before connecting the device to the mains.

- Power supply voltage parameters are given in the chapter with technical data and on the rating plate of the device.

- Check the connection of the grounding wires of the device to the mains.

- Ensure that the power supply network can provide coverage of the input power demand for this device under normal operating conditions. The fuse size, the parameters of the power cord are given in the technical data and on the rating plate. Connection and replacement of the power cord and plug should be made by a qualified electrician.

- Remove all flammable materials from the welding area.

- Use appropriate protective clothing for welding: gloves, apron, work boots, mask or visor with appropriate certificates.

DEVICE CONNECTION FOR THE MIG / MAG METHOD

- To extend the service life and ensure reliable operation of the device, observe the following rules:

- The device should be placed in a well-ventilated room with free air circulation.
- Do not place the device on wet ground.

- Use an electrode wire with diameter and spool weight in accordance with the manufacturer's instructions (D200, max. 15 kg). Check the technical condition of the device and welding cables on an ongoing basis.

EN

Welding wire spool assembly:

The device is equipped with professional wire feeder, it has 4 rolls feeder enabling work with 2 handles max 4mb when welding with steel wire and with 3mb when welding with aluminum alloy wire, The welding wire holder allows the installation of reels with a diameter of 300mm-15kg.

- Lift the side cover of the semi-automatic housing.

- Ensure that the rollers fitted in the drive unit match the type and diameter of wire used. Rolls should be used for steel wires with "V" shaped grooves, while for aluminum wires with "U" type grooves.

- Apply welding wire spools to the spool clamping mechanism, paying attention that the unwinding direction of the wire is consistent with the direction of the wire's entry into the drive unit. Lock the spools before slipping by tightening the nut on the spool mounting body.

- The end of the wire should be straightened or cut off a bent section.

- To feed wire into the feeder, release the pressure of the feed rollers.

- Insert the end of the wire into the guide located at the back of the feeder and route it over the drive roller by inserting it into the welding gun stub.

- Tighten the wire in the drive roller groove and tighten.

- Remove the gas nozzle from the burner and unscrew the contact tip.

- Turn the device on.

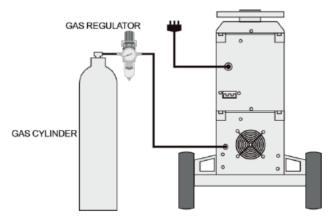
- Unwind the welding gun cable so that it is straight. ATTENTION! Do not drive the welding torch ends towards the face or other people.

- Press the welding button on the welding gun and hold it until the wire appears behind the torch.

- When the end of the welding wire passes through the connector in the torch, release the button approx. 5 cm and replace the contact tip and gas nozzle.

- Adjust the clamping force by turning the knob, clockwise-increases the clamping force, to the leftdecreases the clamping force. Too low clamping force will cause the drive roller to slip. Too much pressure increases the feed resistance and deforms the wire.

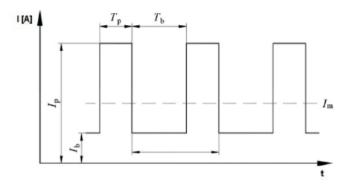
We recommend placing the wire into the welding gun with the valve on the shielding gas cylinder closed. This will reduce its unnecessary losses.


Installation of shielding gas cylinders:

- A cylinder with a suitable shielding gas must always be properly secured against falling over. If possible, attach to an approved welding carriage with the MIG / MAG device. The trolley is not standard equipment of the set.

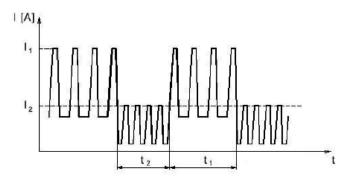
- Connect the semi-automatic machine to the cylinder with a suitable hose.

- Unscrew the regulator valve before starting to weld. Always close the cylinder valve after welding.


5. MIG/MAG WELDING PROCESS

Arc welding in gas shields (marked MIG / MAG) is one of the most commonly used processes in the production of welded structures. The abbreviation MAG (Metal Active Gas) includes in its description types of active protective gases. The abbreviation MIG (Metal Inert Gas) refers to inert gas shields. The semi-automatic welding process involves fusing the edges of the work piece and the consumable electrode material with the heat of an electric arc glowing between the electrode in the form of a solid wire and the welded part, in an inert or active gas shield.

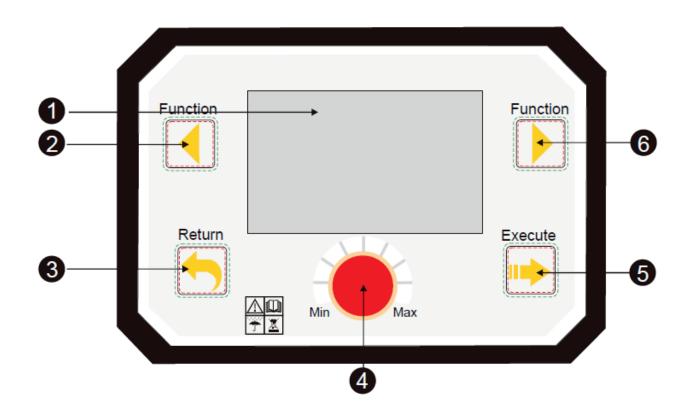
The main protective gases used for MIG welding are inert gases such as argon, helium and MAG active gases: CO2, H2, O2, N2 and NO, used separately or as additives to argon or helium. The fusible electrode is in the form of a solid wire, usually 0.6 1.2 mm in diameter, and is fed in mm, and is fed in m / min upwards. Welding torches can be cooled by liquid or shielding gas. Welding is carried out mainly with direct current with positive polarity, as semiautomatic, mechanized welding, direct current with positive polarity, as semi-automatic, mechanized, automatic or robotic welding using specialized equipment. The shield of the welding arc glowing between the consumable electrode and the material being welded ensures the formation of the weld under very favorable thermal and chemical conditions. This type of welding can be used to make high-quality joints of all metals that can be joined by arc welding. These include: carbon and low alloy steels as well as corrosion resistant steels. Welding can be carried out in workshop and field conditions in all positions.


SINGLE PULSE MODE

MIG PULSE is an advanced form of welding that uses the best of the forms of the transfer of molten electrode material to the work piece. Unlike short circuits, pulse welding does not produce spatter and there is a risk of cold "leakage". Welding positions in the pulse are not limited because they are derived from globular or spray forms, and their use is definitely more efficient. By cooling the spray arc process, pulsed MIG is able to extend the welding range, and smaller heat input does not cause a problem with burning thin materials. MIG PULSE is one of the best welding processes for a wide range of applications and types of metal.

DOUBLE PULSE MODE

Welding with the MIG / MAG method with double pulse we get a high level of face appearance (husk effect). In addition, the use of automatic wire feed affects welding performance. The MIG / MAG method with double pulse allows the regulation of current pulsation (pulse balance) and adjustment of the wire feed speed. Thanks to this, we improve the appearance of the weld. When MIG / MAG welding with double pulse, current pulses occur in two ranges. The sequential system of our devices automatically combines two levels of pulses.


The benefits of using the MIG MAG method with double pulse are:

- **1.** MIG / MAG double pulse welding is faster than TIG welding.
- 2. MIG / MAG double pulse welding achieves high aesthetics like the TIG method.
- 3. MIG / MAG double pulse welding results in less deformation than TIG.

6. PANEL OPERATION

A. DESCRIPTION OF THE CONTROL PANEL

1. LCD display

2. Function selection button, to select the previous menu, holding for 5 seconds to save the current setting in memory.

3. Button to return to the previous menu. (additionally held for 5 seconds to return to the factory settings (RESET)).

4. Adjustment knob,

Turn - Select and Adjust.

Press - Confirm and Switch to next.

5. Button for Confirmation or Enter.

6. Function selection button, to select the next menu, holding for 5 seconds to recall memories; The device has 18 memory programs.

B. LANGUAGE SELECTION

The device allows you to set the following control languages: English, German, Dutch, French, Spanish.

Turn the red knob of the font panel to select the language then press for confirmation.

C. CHOICE OF WELDING METHOD

This page allows you to select welding methods as below: Synergy, MIG, LIFT-TIG, MMA

Turn the red knob of the font panel to select the welding mode then press for confirmation.

SYNERGY - synergic settings. The user selects the basic welding parameters such as the type of material, thickness of the material to be welded, diameter of the welding wire. Other parameters of the device are selected automatically using the database of uploaded programs.

MIG mode - welding using individual user settings. The system suggests the selection of key welding parameters, indicating the thickness of the welded material when adjusting them. This information suggests to the user that the settings are correct.

LIFT-TIG - TIG lift mode (ignition of the arc by rubbing) - welding with a tungsten electrode in an inert gas shield. In order to carry out welding by this method, it is necessary to retrofit the device TIG torch with shielding gas control in the handle as in the photo below. **This handle is not a standard equipment of the set.**

MMA MODE - welding with coated electrode. In addition to welding current adjustment, the user can additionally set ARC-FORCE, HOT START and enable or disable the VRD protection system.

ARC FORCE - Stabilizes the arc regardless of fluctuations in its length, reduces the amount of spatter.

HOT-START - a function that makes welding easier. When the arc strikes, the welding current is temporarily increased to heat up the material and electrode at the point of contact, and to properly shape the penetration and weld face at the initial stage of welding.

VRD - the device has a VRD (Voltage Reduction Device) system, which for welding mode MMA with electrodes reduces the open circuit voltage, which significantly increases the user's safety. In special cases of using electrodes with high arc ignition current, problems with its initiation may occur.

D. Synergy function (MIG/MAG)

In the SYNERGY mode, the user only selects the basic welding parameters such as the type of material, the thickness of the material to be welded, and the diameter of the welding wire (0.8mm, 1.0mm and 1.2mm available). Other parameters of the device are selected automatically using the database of uploaded programs.

The SYNERGY mode only allows continuous welding, it has no possibility to adjust the PULS and dual PULS settings.

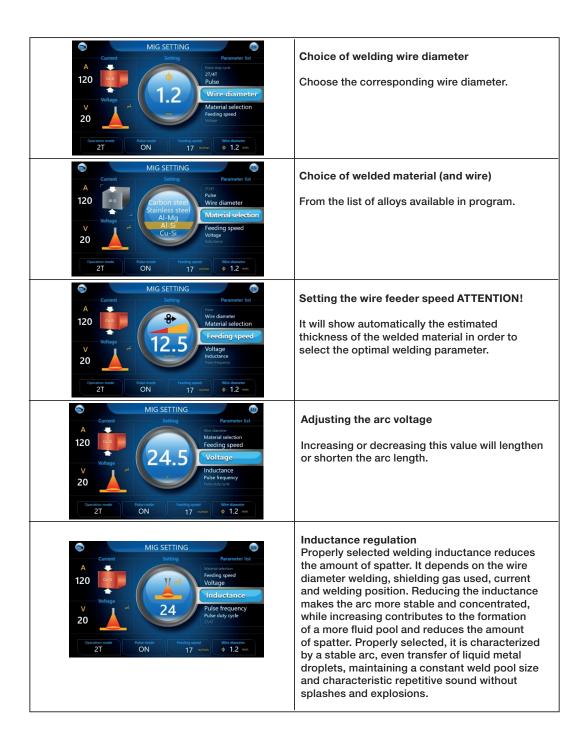
You can manually correct the synergic settings.

NOTE: If the material type and thickness settings are changed, the system will return with the remaining parameters to the factory default values.

SYNERGY SETTING Current Setting Parameter list 120 Image: Setting setting Image: Setting setting setting Voltage Image: Setting	Step 1-Choice of material The user selects the welded material (and welding wire) from the list of alloys available in the program.
SYNERGY SETTING Current A 120 Votage Vota	Step 2-Selecting the thickness of the work piece The user chooses the thickness of the welded material. The device automatically selects the intensity on this basis welding current, arc voltage and feeder speed.
Synercy setting Carrent A 120 A Voltage V 20 V 20 V 20 V 20 V 21 Parameter list Material selection Thickness 0.8 wire 0.10 wire 0.10 wire 0.2 wire 0 wire	Step 3 Selecting the welding wire diameter You choose the welding wire diameter you plan to use. ATTENTION! The device automatically reduces or increases its maximum power depending on the wire diameter.
SYNERGY SETTING A 120 Voltage V 20 V	Step 4 Selecting the welding wire diameter You choose the welding wire diameter you plan to use. ATTENTION! The device automatically reduces or increases its maximum power depending on the wire diameter.
SYNERGY SETTING Current A 120 Voltage Volta	Step 5 Selecting the welding wire diameter You choose the welding wire diameter you plan to use. ATTENTION! The device automatically reduces or increases its maximum power depending on the wire diameter.

EN

According to the programmed welding parameters, the welding wire diameters selected by the user directly influence the welding current and voltage, and wire feeder speed. For example, choosing a 0.8mm wire will automatically limit the maximum welding current to e.g. 140A, choosing a 1.0mm wire will allow welding 200A current. These actions are aimed at optimizing the welding process and avoiding problems associated with burning the wire too quickly just after the contact tip in a situation where it is no longer possible to increase the feeder speed.

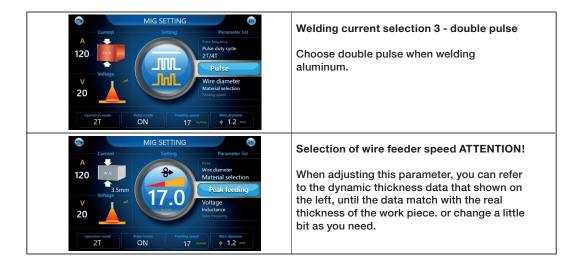

The inability to set the maximum welding current is not a software error and results from the welding wire diameter selected.

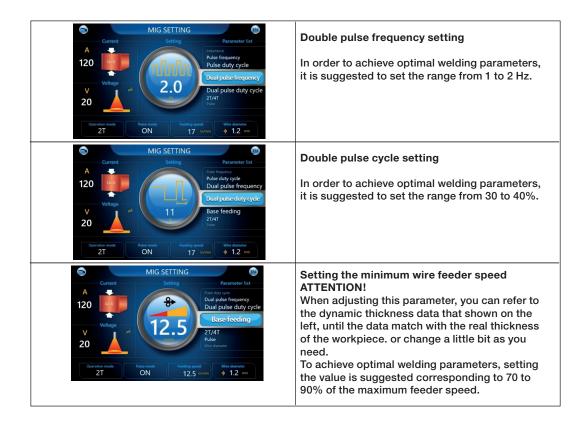
E. MIG/MAG OPERATION

In MIG welding mode, the user sets all welding parameters one after the other. The system suggests the selection of optimal welding parameters by indicating at their adjustment thickness of the welded material (see table - setting the wire feeder speed). This information suggests to the user that the settings are correct. Depending on the welding style (forced positions, fast welding with higher current or slower current with lower intensity), these settings may require a slight adjustment by the user.

MIG SETTING Parameter list Parameter list Pulse drugs you Pulse mode Pulse you Pulse drugs you Pulse drugs you Pulse drugs you Pulse mode Pulse you Pulse you	Handle mode button operation 2-step, 4-step welding and spot welding selection
MIG SETTING A 120 V 20 V 21 V	Welding current selection: - continuous (without pulse) - single pulse (see chapter WELDING MIG / MAG WITH PULSE) - double pulse (see chapter WELDING MIG / MAG WITH DOUBLE PULSE)

F. MIG / MAG WELDING WITH PULSE


In order to start welding in MIG / MAG PULS mode, the settings should be made as in the previous chapter. Additional welding parameters in pulse welding mode are presented in the following tables:



G. MIG / MAG WELDING WITH DOUBLE PULSE

To start welding in MIG / MAG mode, double PULSES should be pre-set as in the BASIC MIG / MAG SETTINGS chapter. Additional welding parameters in mode double pulse current welding is shown in the table below:

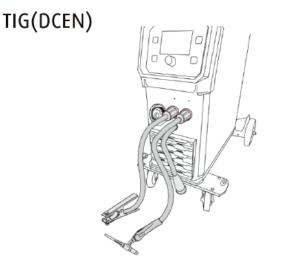
H. SAVE AND RECALL FUNCTION

The device is equipped with a memory bank that allows you to save 18 user programs. The method of saving and reading data stored in the device cache is described below:

ЭМИ	G PARAMETER LI	ST	
Thickness 3.5mm		Save in job 18	
21/41 2T	Pulse ON	Wire diameter 1.2mm	Holding the button < for 5 seconds
Material selection	Feeding speed 7.5	Voltage 18.2V	
Inductance 0%	Pulse frequency 192Hz	Pulse duty cycle 25%	will call the save page out, then select the job number and confirm.
MMA Current 100A	Hot start current	Force current 50A	
TIG Correct		OFF	
S MIC	G PARAMETER LIS	ST	
Thickness 3.5mm	Call d	ata from job 18	
2T/4T 2T	Pulse	Wire diameter	Holding the button $>$ for 5 seconds
Material selection	Feeding speed 7.5	Voltage 18,2V	
Inductance 0%	Pulse frequency 192Hz	Pulse duty cycle 25%	will call the save page out, then select the job number and confirm.
MMA Current 100A	Hot start current	Force current 50A	
TIG Current			

I. MIG Setting Chart

MIG Welding Current-Wire Diameter And Plate Thickness Chart							
Wire diameter	Plate thickness	1mm	2mm	3mm	4mm	5mm	6mm
AL-Si1.0/(4043) (DCEP)	Wire speed (M/min)	2.0	4.2	5.8	7.0	8.5	10.0
	Welding current (A)	24	58	85	107	133	160
	Arc voltage	16.0	18.3	19.2	21.0	22.5	23.6
	Wire speed (M/min)	1.5	3.0	4.5	6.5	7.8	9.0
AL-Si1.2/(4043) (DCEP)	Welding current (A)	27.0	64	100	143	173	200
	Arc voltage	16.5	17.8	19.5	22.5	24.5	25.3
AI-Mg1.0/(5356) (DCEP)	Wire speed (M/min)	2.5	6.0	8.0	11.0	12.5	14.0
	Welding current (A)	30	70	95	130	148	167
	Arc voltage	14.8	18.3	19.8	22.8	23.4	23.9
Al-Mg1.2/(5356) (DCEP)	Wire speed (M/min)	2.2	4.0	5.3	7.5	8.5	9.5
	Welding current (A)	33	65	89	128	141	152
	Arc voltage	15.7	17.2	17.7	19.3	20.0	21.2
	Wire speed (M/min)	2.8	5.3	7.0	8.5	10.0	11.3
AL1.0/(1070) (DCEP)	Welding current (A)	37	77	107	133	160	179
	Arc voltage	16.9	18.9	21.0	22.5	23.6	24.1
AL 6: 1 0//1070)	Wire speed (M/min)	1.7	3.2	4.0	5.8	6.9	8.0
AI-Si 1.2/(1070) (DCEP)	Welding current (A)	30.0	68.0	88.0	127.0	152.0	178.0
	Arc voltage	16.7	18.0	18.8	21.6	22.9	24.9
Cu-Si1.0/(CuSi)	Wire speed (M/min)	4.0	9.0	12.0	14.0	16.0	18.0
(DCEP)	Welding current (A)	70.0	156.0	200.0	237.0	260.0	290.0
	Arc voltage	19.0	23.8	25.5	27.0	29.0	31.0
	Wire speed (M/min)	2.8	5.4	6.8	8.5	9.4	10.2
Cu-Si1.2/(CuSi) (DCEP)	Welding current (A)	72.0	153.0	194.0	220.0	241.0	264.0
	Arc voltage	19.7	23.5	25.6	28.5	29.6	30.8
Instruction : 4xxx means AI-Si wire, 5xxx means AI-Mg wire, 1xxx AL wire, AI and AI-Si wire both use AI-Si Function.							


both use AI-Si Function.

TIG Welding

In the TIG (Tungsten Inert Gas) method, the electric arc strikes under an inert gas (argon) shield, between the welded element and the non-fusible electrode made of pure tungsten or tungsten with additives.

The TIG method is especially recommended for aesthetic and high-quality joining of metals, without laborious mechanical treatment after welding. However, this requires proper preparation and cleaning of the edges of both welded elements. The mechanical properties of the additive material should be similar to the properties of the welded parts. The role of shielding gas is always played by pure argon, supplied in quantities depending on the welding current set.

Selection of welding current

TIG welding is an additional option. The user can only adjust the welding current.

WELDING POLARITY IN THE TIG METHOD

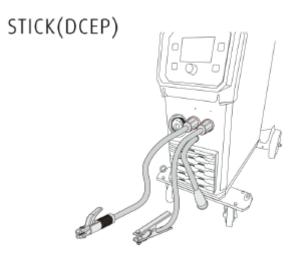
Negative polarity is used for most TIG welding operations. The welding gun is connected to the negative pole, while the earth gun is connected to the positive pole. In this way, the electrode consumption is reduced, the amount of heat accumulated in the welded material increases.

INFLUENCE OF ARC IN THE TIG LIFT METHOD

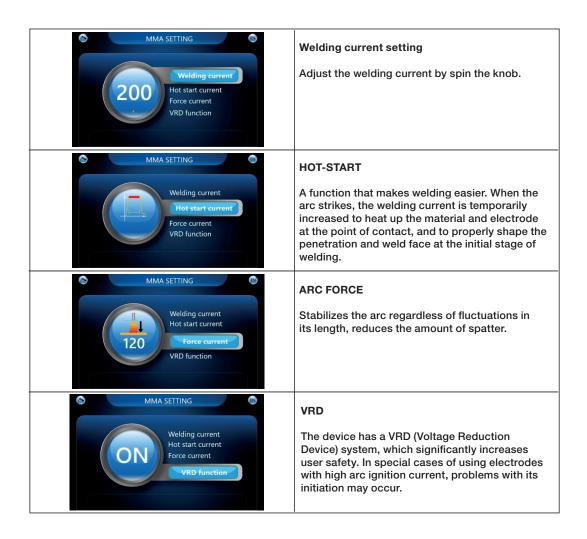
To ignite the welding arc in the TIG LIFT method, unscrew the valve on the handle, press the button, then gently rub the tungsten electrode against the work piece and raise the torch lightly so that the arc ignites. Releasing the switch button ends the welding process (2T).

An example of a welding gun for the TIG lift method with a valve in the torch.

ATTENTION!

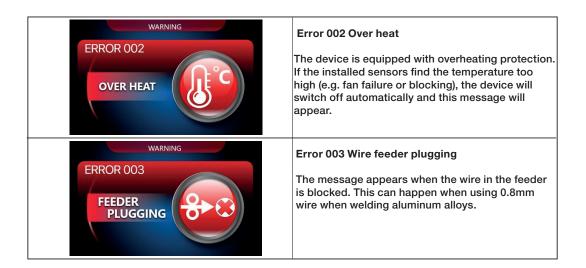

The TIG torch is not standard equipment of the set.

MMA WELDING


Arc welding is also called the MMA (Manual Arc Welding) method and is the oldest and most versatile arc welding method.

The MMA method uses a coated electrode, consisting of a metal core covered with a lagging. An electric arc is created between the end of the electrode and the material being welded. Arc ignition is created by touching the electrode with the end of the work piece. The welder feeds the electrode as it melts into the work piece so as to maintain a constant arc length and at the same time moveits melting end along the welding line. The melting coating of the electrode gives off protective gases that protect the liquid metal from the influence of the surrounding atmosphere, and then solidifies and forms a slag on the surface of the lake, which protects the coagulating weld from cooling too quickly and harmful environmental influences.


Connect the welding and mass leads to the appropriate output connectors of the welder, according to the polarity recommended by the manufacturer of the electrodes you intend to weld.



7. ERROR CODE

In special cases, the following messages may appear on the display indicating a problem with the operation of the device. Errors on the display will appear until the defect is removed.

8. ELECTRICITY SAFETY GUIDELINES

WORKING CONDITIONS

Optimal ambient temperature between -10 ° C and 40 ° C. Avoid welding in sunny conditions and when it is raining, do not allow water to get inside the device. Avoid working in flammable, aggressive or dust environments.

WORK SAFETY

Properly installed device with over voltage, over current protection and protection against excessive temperature will automatically turn off under conditions beyond those specified as standard. However, prolonged use (e.g. over voltage) may damage the welding machine. Therefore, the following guidelines should be followed:

PRECAUTIONS

1) Ensure good ventilation

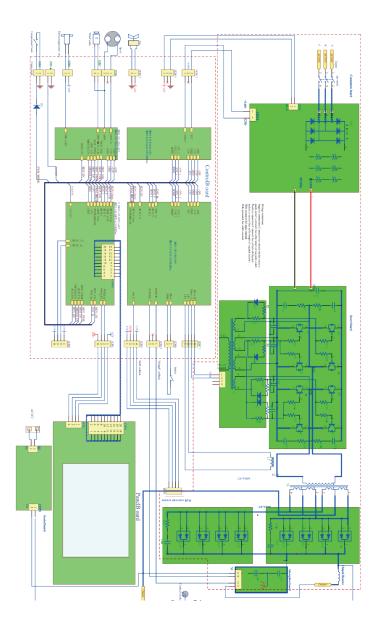
The welder is a small device, through which a large current flows, and natural ventilation does not provide the necessary cooling. Therefore, to maintain stability, the welder is equipped with an internal cooling system. The operator should check that the ventilation opening is not blocked. The distance between the welder and the work piece should not be less than 0.3m. The operator should always pay attention to the ventilation of the device, because it depends not only on the obtained quality and welding results, but also on the service life of the device.

2) Preventing overloading

Operators should observe (the load determined as the maximum permissible load for a given current) whether the welding current does not exceed the highest electric current permissible for the load. Electrical overload can significantly reduce the service life of the welder and even lead to the burning of its components.

3) Over voltage prevention

The values given in the supply voltage line in the "Technical data" table should be kept. Under normal operating conditions, the automatic voltage compensation circuit ensures that the voltage

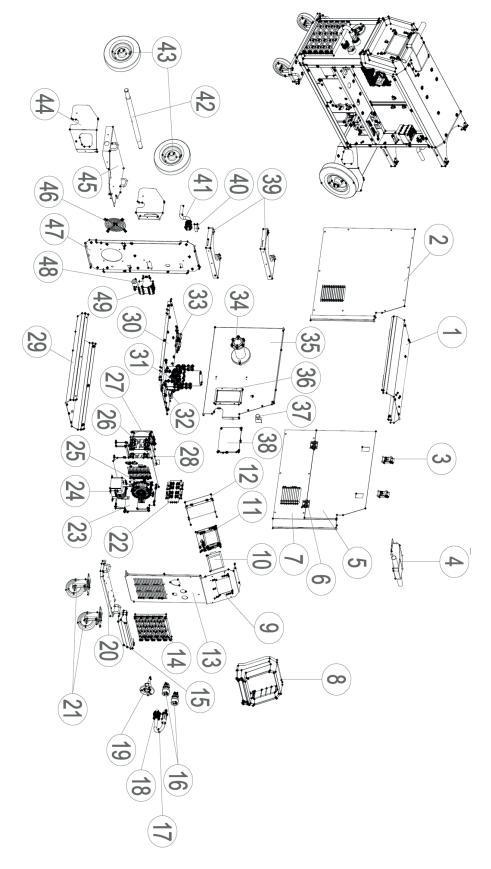


remains within the permissible range. Supply voltage higher than the permissible value may damage the welder.

Operators should be fully aware of this threat and be able to take the appropriate steps.

4) If the standard load is exceeded, the welder can enter protection mode and suddenly stop working. This means that the standard load has been exceeded, thermal energy has tripped the thermal switch, which caused the device to stop. The indicator light on the welder's control panel lights up. In this situation, do not unplug the power plug to allow the fan to cool the welding machine. Turning the lamp off means that the temperature drops to a normal level. You can continue working.

9. ELECTRICAL DIAGRAM


EN

10 . TECHNICAL DATA OF THE DEVICE

Characters			
Rated input voltage[V]		400	
Frequency[Hz]		50/60	
Security[A]		20	
	MMA	30-300	
Output current range[A]	TIG	10-300	
	MIG/MAG	40-350	
	MMA	21.2-32	
Output voltage	TIG	10.4-22	
	MIG/MAG	16-31.5	
Duty cycle[%]		30% 350 [A]	
(at ambient temperatur	e 25°C)	60% 248 [A]	
		100% 192 [A]	
Rated input power [kVA]		13.9	
Power factor		0.93	
Work piece thickness[mm]	0.5-8	
Feeder type		4R	
Welding wire diameter[mm]		0.8/1.0 Carbon steel Stainless steel 1.0/1.2 aluminum alloy Copper alloy Flux Cored wire	
Insulation class		F	
Protection class		IP21	
Net weight [kg]		44.2	
Dimensions [mm]		810X510X800	

11 . EXPLODED VIEW

Number	part item 💌			
1	top cover			
2	right side board			
3	door bolt			
4	handle			
5	door board			
6	hinge			
7	left dowside board			
8	upper panel plastic shell			
9	upper panel			
10	circuit board			
11	circuit board panel			
12	PCB shell			
13	down board			
14	wind outlet shield			
15	down cover			
16	euro quick socket			
17	euro quick connector			
18	cable locknut			
19	copper head assembly			
20	front weel support			
21	front weel			
22	panel board			
23	circuit board			
24	reactance			
25	main transformer			
26	commutated board			
27	fan			
28	core			
29	base board			
30	middle partition board			
31	wire feeder			
32	PCB board switch			
33	PCB board - drive board			
34	wire coil roller			
35	partition board cross			
36	partition board anti dust cover			
37	quick wire feed button			
38	control panel			
39	back panel			
40	36V socket			
41	power cord			
42	roller axis			
43	back wheeler			
44	gas cylinder shelf R,L board			
45	gas cylinder shelf			
46	fan shelf			
47	back panel			
48	radio tube			
49	circuit breaker			

EC Declaration of Conformity

We GBR Corp. LTD, Room 1002, 10/F., David House, 8-20 Nanking Street, Jordan, Kowloon, Hong Kong, China, declare under our sole responsibility that this product is in conformity and accordance with the following standards and regulations.

Declare that the product detailed below:

WELDING MACHINE Model Name:DAMIG-350GDL

The undersigned is responsible for the compilation of technical documentation. Satisfies the requirement of the Council Directives: EMC Directive: No. 2014/30/EU Low Voltage Directive: NO. 2014/35/EU

and conforms to the norms: -EN 50445: 2008 -EN 60974-1:2018+A1:2019 -EN IEC 60974-10:2014+A1:2015 -EN 61000-3-11: 2000 -EN 61000-3-12: 2011

Signature and Stamp on undersigned responsible:

Date: 28-01-2022

可的

WARRANTY CARD

Product model	Date of sale
Serial number	Company
Username	Client's signature

The product is in good conditions and fully complete. Read and agree the terms of the warranty.

GUARANTEE

The warranty period starts from the date of sale of the products and covers 2 years for all power products.

During the warranty period, free failures caused due to the use of poor-quality materials in the production and manufacturer workmanship admitted fault are removed. The guarantee comes into force only when warranty card and cutting coupons are properly filled. The product is accepted for repair in its pure form and full completeness.

WARRANTY DOES NOT COVER

• Mechanical damage (cracks, chips, etc.) and damage caused by exposure to aggressive media, foreign objects inside the unit and air vents, as well as for damage occurred as a result of improper storage (corrosion of metal parts);

• Failures caused by overloading or product misuse, use of the product for other purposes. A sure sign of overload products is melting or discoloration of parts due to the high temperature, simultaneous failure of two or more nodes, teaser on the surfaces of the cylinder and the piston or destruction of piston rings. Also, the warranty does not cover failure of the automatic voltage regulator due to incorrect operation;

• Failure caused by clogging of the fuel and cooling systems;

• Wearing parts (carbon brushes, belts, rubber seals, oil seals, shock absorbers, springs, clutches, spark plugs, mufflers, nozzles, pulleys, guide rollers, cables, recoil

starter, chucks, collets, removable batteries, filters and safety elements, grease, removable devices, equipment, knives, drills, etc.);

- Electrical cables with mechanical and thermal damage;
- Product opened or repaired by a non-authorized service center.
- Prevention, care products (cleaning, washing, lubrication, etc.), installation and configuration of the product;
- Natural wear products (production share);
- Failures caused by using the product for the needs related to business activities;
- If the warranty card is empty or missing seal (stamp) of the Seller;
- The absence of the holder's signature on the warranty card.

	1
DAEWOO	DAEWOO
Product	l Product
_ 🎢 Model	Model
_ Company	Company
Date of sale	Date of sale
	Product Model Company Date
