Electron-phonon interactions

https://cs2t.de

S

С

Christian-Albrechts-Universität zu Kiel

CAU

- **Fabio Caruso**
- August 22nd, 2023
 - Selb **Summer School** of the CRC 1242

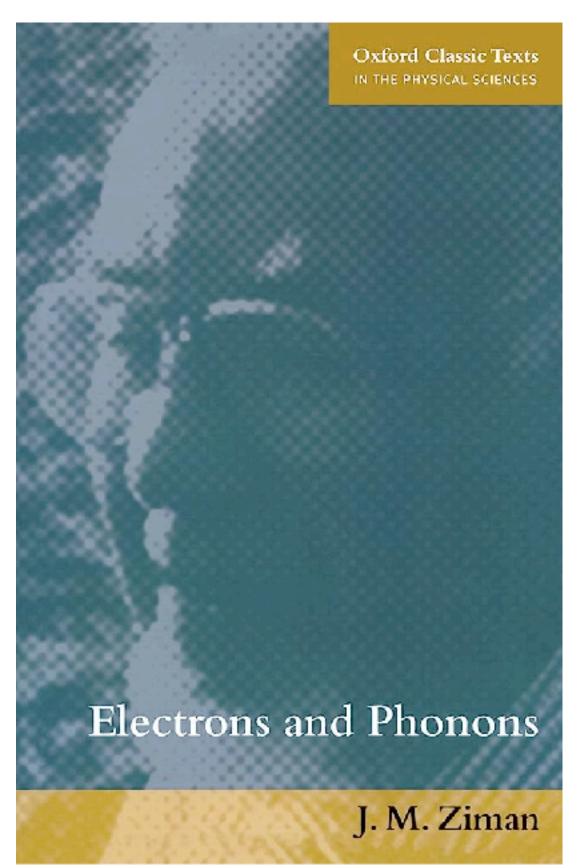
Funded by

Deutsche Forschungsgemeinschaft German Research Foundation

Solid-State

Further readings

Fundamentals



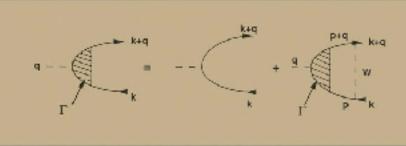
J. M. Ziman, Electrons and Phonons, Oxford University Press (1960)

Many-body formalism

PHYSICS OF SOLIDS AND LIQUIDS

Many-Particle Physics

THIRD EDITION



Gerald D. Mahan

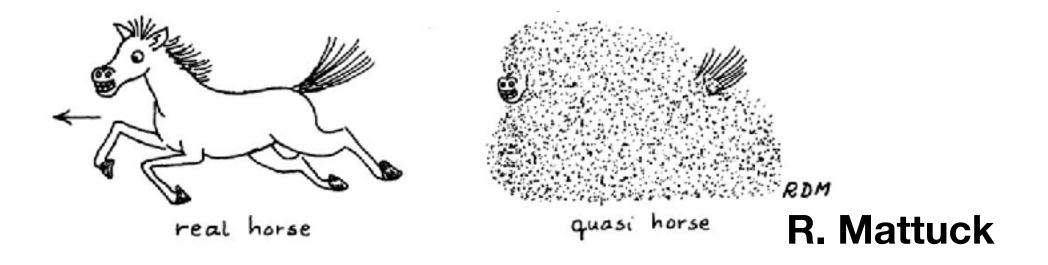
G. D. Mahan, Many-Particle Physics, Springer (2000)

Latest developments: Reviews

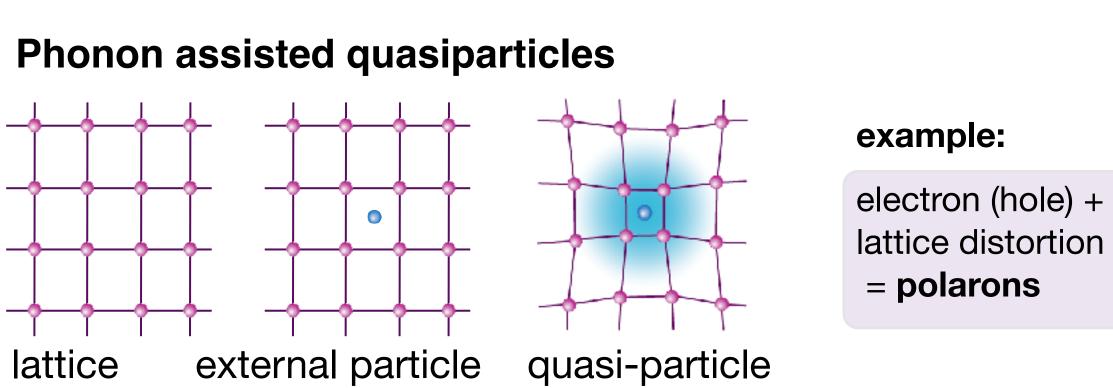
F. Giustino, Electron-phonon interactions from first principles Rev. Mod. Phys. **89**, 015003 (2017)

C. Franchini et al., Polarons in Materials, Nat. Rev. Mater. **6**, 560 (2021)

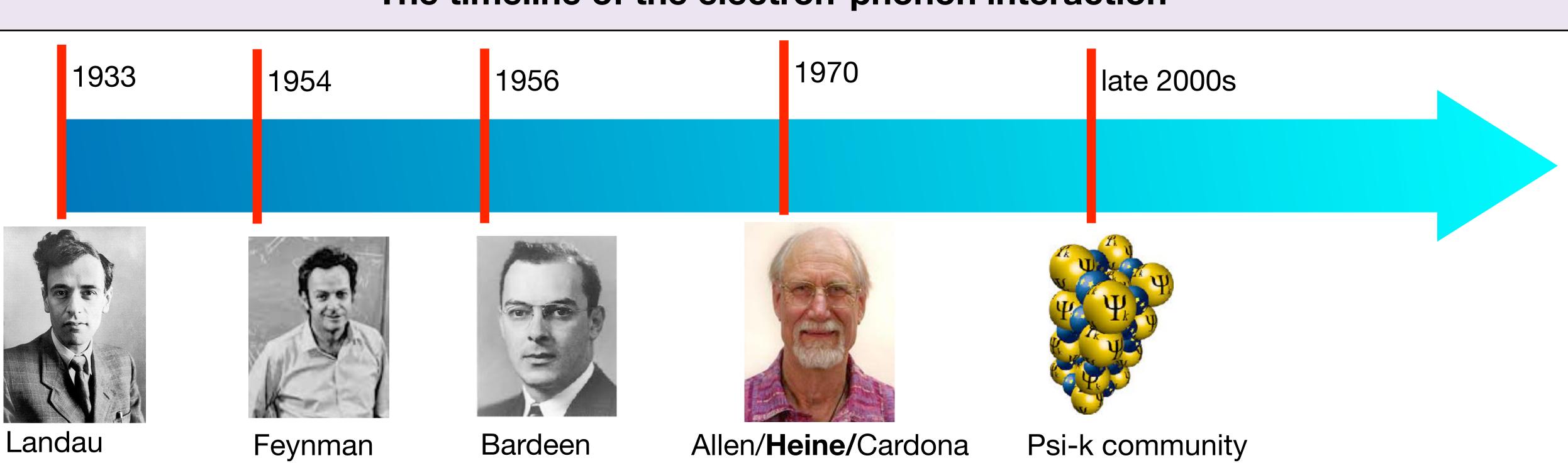
Quasiparticles and phonons



L. Landau, Electron motion in crystal lattices, Phys. Z. Sowjetunion **3**, 664 (1933)



The timeline of the electron-phonon interaction



(1933) Landau: The polaron problem (1954) Feynman: (1956) Bardeen-Cooper-Schrieffer: BCS Theory of superconductivity (1970) Allen-Heine-Cardona: Theory of the temperature dependence of the band structure (~2005) Psi-k community: and many more

- Exact solution of the polaron problem via a variational principle

 - Ab-initio calculation of the electron-phonon interaction

Year	Theoretical and computational models	Polaron properties
1933 (REF. ⁶)	Dielectric theory: charge moving in a dielectric crystal	Auto-localization due to lattice
1946–1948 (REFS ^{4,306–308})	Self-consistent theory of a large polaron	Enhancement of effective mass
	Landau–Pekar model	Localization of the wavefunction
1950s ^{7,8,85,86}	Quantum-mechanical variational theory of large polarons	Effective mass, energy, mobility
	Fröhlich large polaron Hamiltonian (continuum approximation)	Intermediate electron-phonon i
1955–2017 (REFS ^{11,12,93,161,162})	All-coupling continuum polaron theory	Energy, effective mass, mobility
	Feynman variational path-integral formalism	
1956 (REF. ⁹⁵), 1980s ^{94,96}	Monte Carlo calculations	Large polaron ground-state ene
1958 (REFS ^{309,310}), 1959 (REFS ^{9,10})	Holstein small polaron theory	Small polaron conduction mech
	Holstein small polaron Hamiltonian (lattice approximation)	Effective mass, energy
1963–2000s ^{87–89,311}	Exact solution of the two-site Holstein polaron	Dynamical characteristics
1969 (REF. ¹⁴⁸), 2000 (REFS ^{149,150})	Emin–Holstein–Austin–Mott theory	Small polaron hopping
1980 (REF. ¹⁴⁶), 1985 (REFS ^{119,147})	Marcus theory	Polaron hopping
1994 (REF. ¹⁰¹)	Exact diagonalization	Small polaron frequencies
1997 (REF. ³¹²)	Hartree–Fock	Small polaron density of states
1998–2000 (REFS ^{58,59})	Diagrammatic Monte Carlo	Energy, effective mass, phonon o density
1999 (REF. ¹⁵⁷)	Random walk Monte Carlo	Dispersive transport and recom
2001 (REF. ¹⁰⁴), 2010 (REF. ⁵⁶)	Analytical variational approach (variational LDB many-polaron wavefunction) ¹⁰³	Many-polaron (large) optical cor
2001 (REF. ⁶⁰)	Path-integral Monte Carlo	Large polaron energy (2D and 3I
1995 (REF. ⁶⁵), 1997 (REF. ⁶⁶), 2003 (REF. ⁶⁷)	Dynamical mean-field theory	Small polaron energy, mass, spec properties
2010 (REF. ¹⁵⁴), 2018 (REF. ¹⁵⁵)	First-principles molecular dynamics of small polarons	Polaron configurations
2002 (REF. ⁶¹), 2006 (REF. ¹⁶⁶)	Hybrid functionals	Small polaron spin density
2006 (REF. ⁹²)	Analytical approximation for the Green's function	Energy, mass, dispersion, spectra
2006 (REFS ^{117,118}), 2009 (REF. ³¹³)	DFT+U	Small polaron migration, DOS, b
2007–2010 (REFS ^{68,69})	Multiscale modelling and kinetic Monte Carlo	Charge transport
2014 (REF. ¹⁵¹)	Random phase approximation	Small energy and hopping
2009 (REF. ⁶²), 2011 (REF. ¹³²)	Generalized Koopmans' density functional	Small polarons states
2015 (REF. ⁶⁴)	Density-functional perturbation theory	Fröhlich electron-phonon verte
2016 (REF. ¹⁰²)	Renormalization group (large polaron)	Energy, effective mass
2019 (REFS ^{13,70})	Ab initio theory of polarons	Formation and excitation energinal large polarons)

e deformation

>

on

n interaction

y (large polaron)

nergy

chanism

distribution, spectral

mbination

onductivity

3D)

ectral and transport

tral weight

bipolaron

ex

gies wavefunction (small and

Compendium of theoretical works in the study of polarons

Electron-phonon coupling in condensed matter: a very active (and rapidly evolving) field of research

from C. Franchini et al., Nat. Rev. Mater. 6, 560 (2021)

The electron-phonon coupling (EPC) Hamiltonian: the basics

Electron in a solid: $\psi_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{q}\mathbf{r}}$ (Bloch theorem) Single particle Hamiltonian : $\hat{h} = -\frac{\nabla^2}{2} + \hat{v}_{eff}(\{R\})$ effective single-particle potential (e.g., the Kohn-Sham potential) $\hat{v}_{eff}(\{R_I\})$ a function of all the nuclear coordinates In presence of a phonon $\{\mathbf{R}_I\} \rightarrow \{\mathbf{R}_I + \mathbf{u}_I\}$ Tailor expansion for small displacements: $v_{\text{eff}}(\{R_I + u_I\}) = v_{\text{eff}}(\{R_I\}) + \Delta^{(1)}v_{\text{eff}} + \Delta^{(2)}v_{\text{eff}} + \dots$ $\Delta v_{\rm eff} = \sum_{I} \frac{\partial v_{\rm eff}}{u_{I}} \qquad u_{I} \qquad \text{some algebra}$

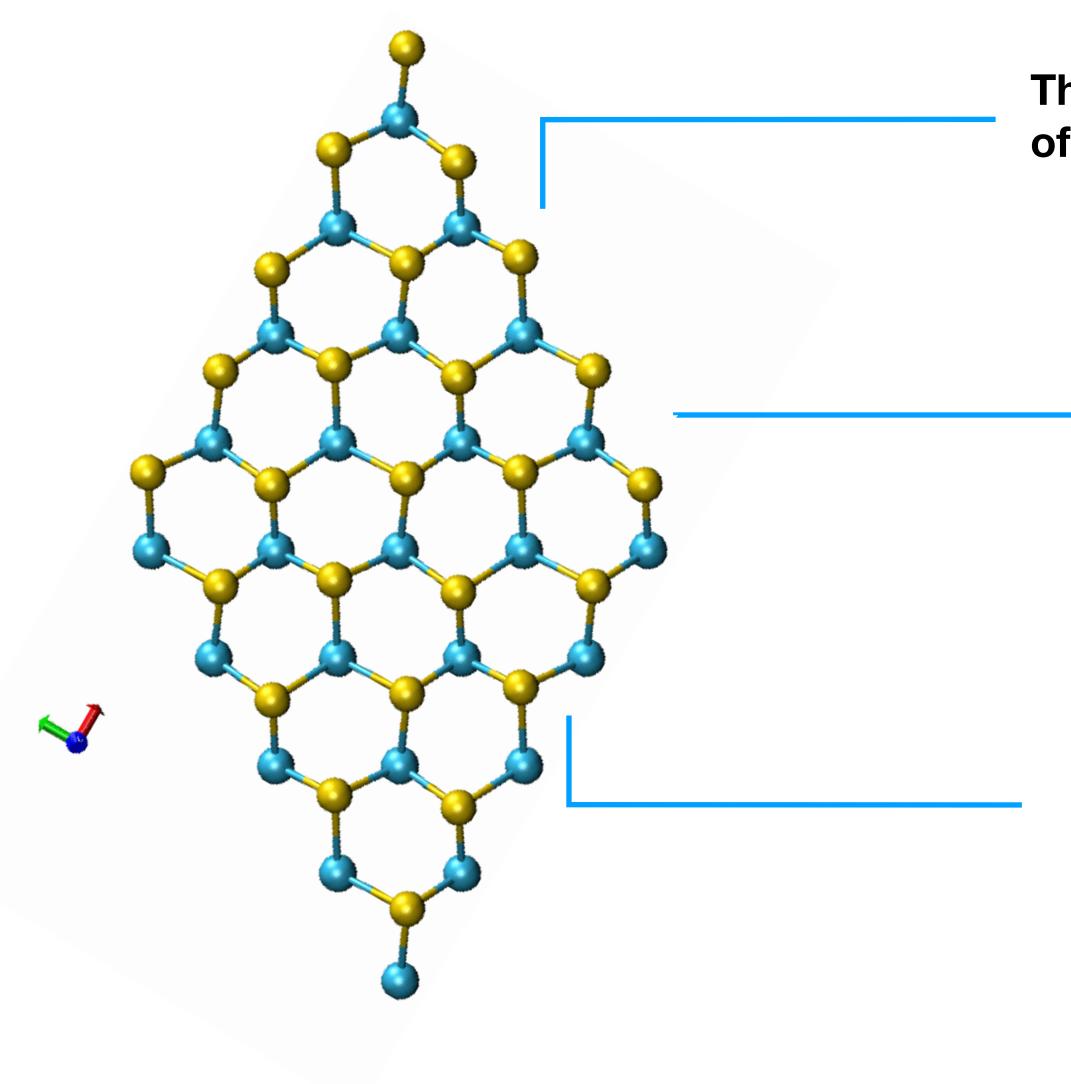
- EPC matrix element. $g_{mn}^{\nu}(\mathbf{k},\mathbf{q}) = \langle \psi_{m\mathbf{k}+\mathbf{q}} | \Delta v_{\text{eff}} | \psi_{n\mathbf{k}} \rangle$
- Phonon creation/annihilation operators $\hat{a}_{\mathbf{q}\nu}^{\dagger}, \hat{a}_{\mathbf{q}\nu}$
- Electron creation/annihilation operators $\hat{c}_{n\mathbf{k}}^{\dagger}, \hat{c}_{n\mathbf{k}}$

The electron-phonon interaction Hamiltonian

$$\hat{H}_{e-ph} = N_p^{-\frac{1}{2}} \sum_{mn\nu} \sum_{\mathbf{kq}} g_{mn}^{\nu}(\mathbf{k},\mathbf{q}) \hat{c}_{m\mathbf{k}+\mathbf{q}}^{\dagger} \hat{c}_{n\mathbf{k}} [\hat{a}_{\mathbf{q}\nu} + \hat{a}_{-\mathbf{q}\nu}^{\dagger}]$$

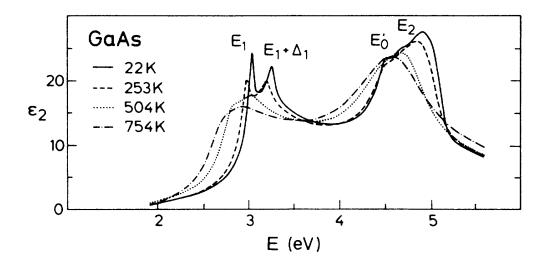
Linear change of the electronic Hamiltonian due to a phonon perturbation

Derivation: F. Giustino, Rev. Mod. Phys. 89, 015003 (2017)

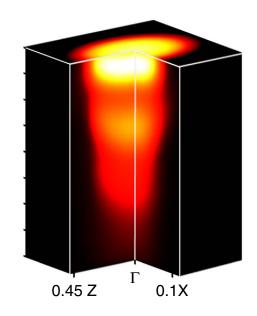


Outline

The temperature dependence of the band structure



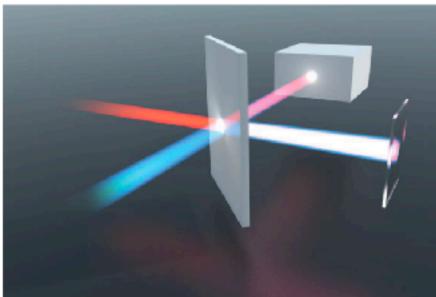
Polaronic satellites in angle-resolved photoemission spectroscopy (ARPES)



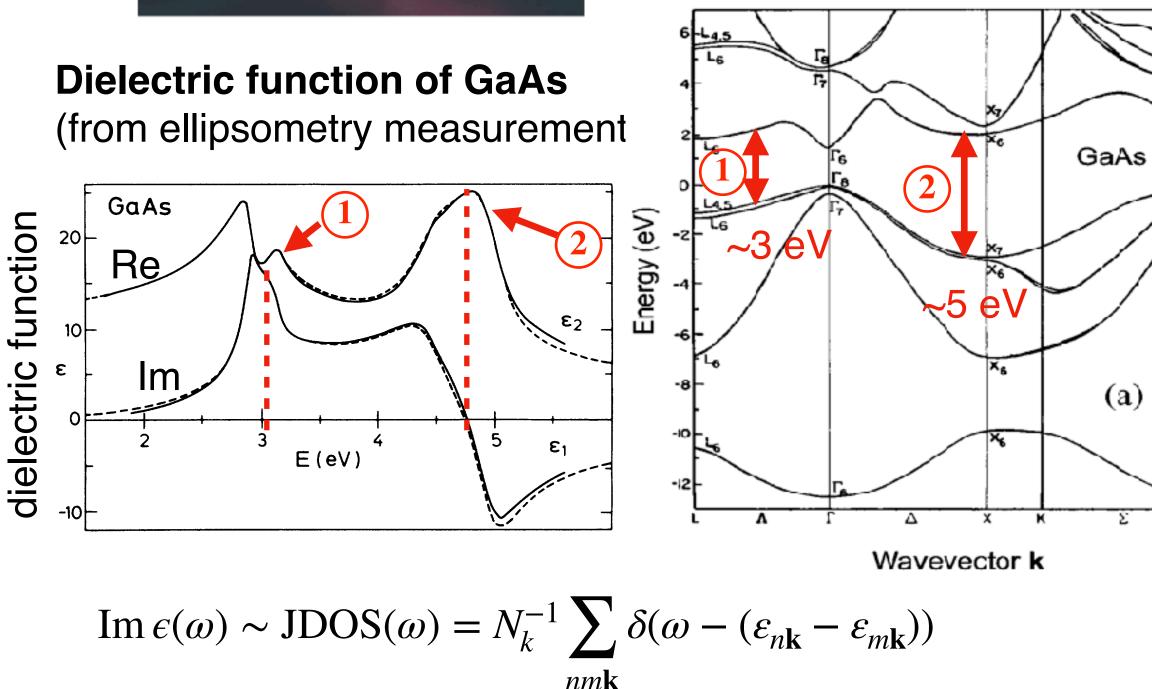
Phonon-assisted optical absorption in semiconductors

The temperature dependence of the band structure

Temperature-depedent of optical measurements of semiconductors

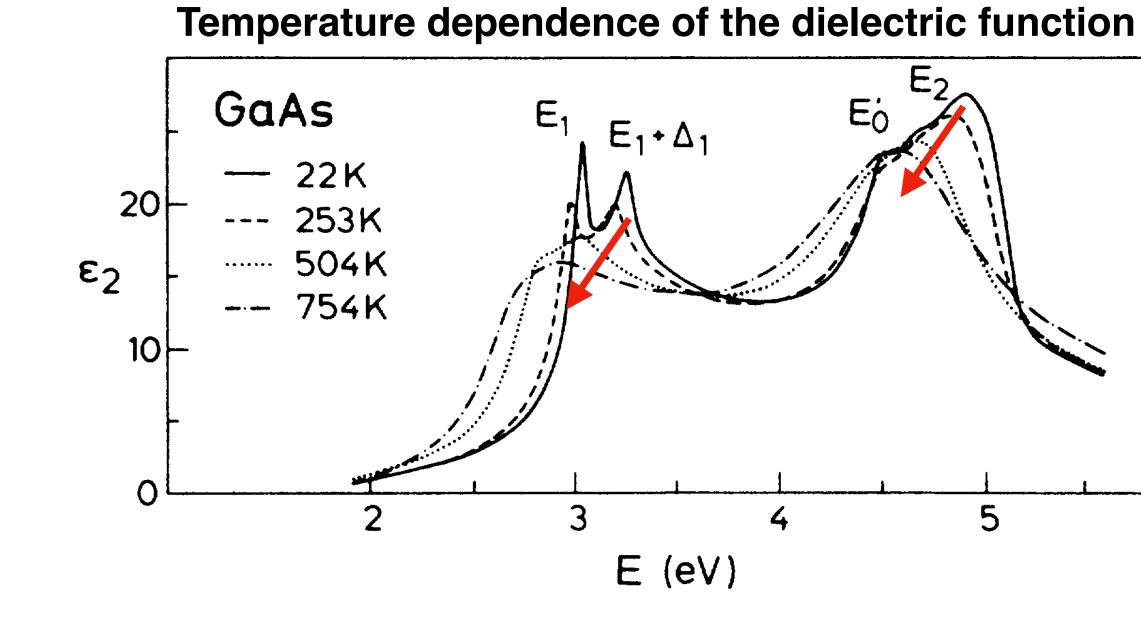


Signatures of electron-phonon coupling in optical measurements



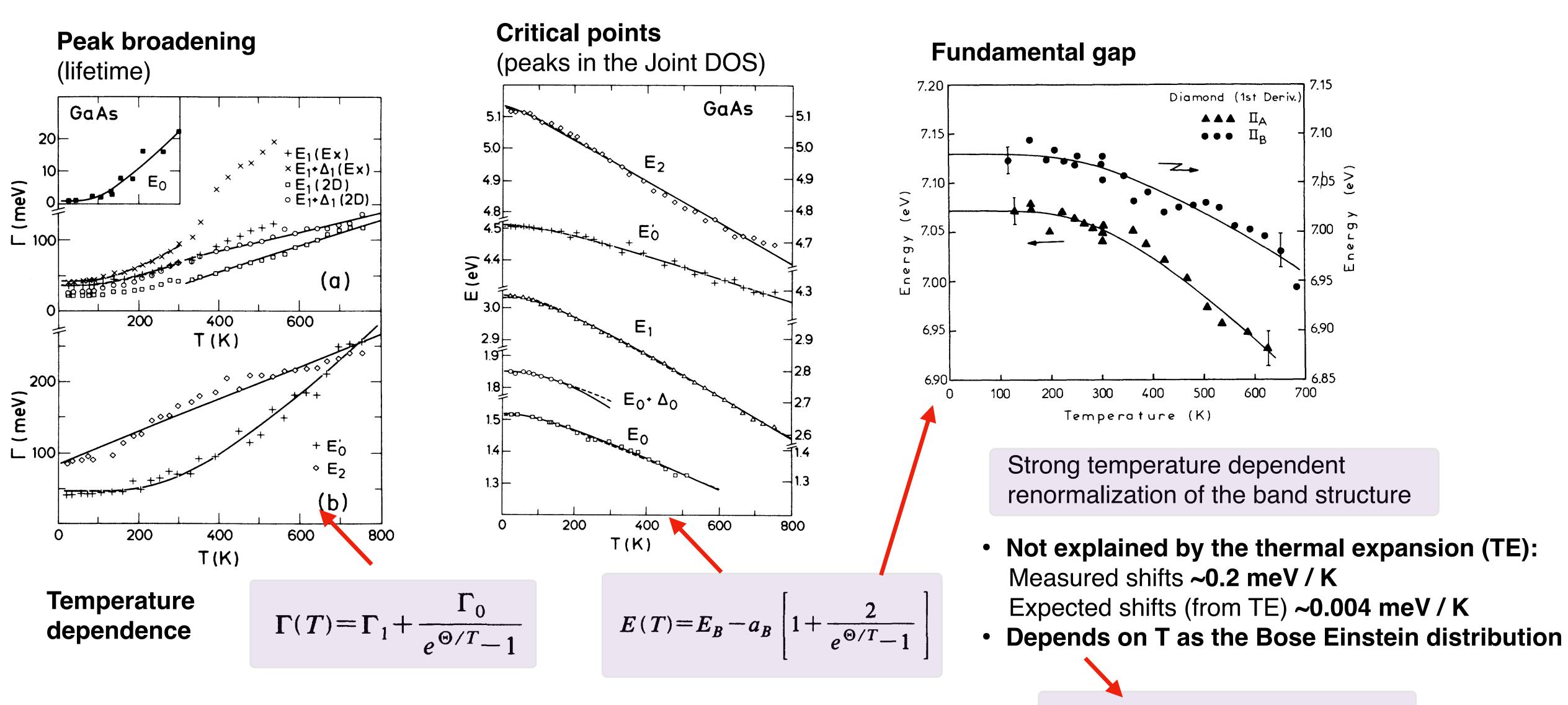
peaks in Im $\epsilon \rightarrow$ transitions from occupied to empty states

Lautenschlager et al., Phys. Rev. B **35**, 9173 (1987)



Temperature dependence of the band structure

Temperature-depedent of optical measurements of semiconductors



Lautenschlager et al., Phys. Rev. B **35**, 9173 (1987) Logothetidis et al., Phys. Rev. B 46, 4483 (1992)

Electron-phonon interaction

Perturbative treatment of the electron-phonon interaction: the Fan-Migdal term

$$\hat{H}_{e-ph} = \sum_{l} \underbrace{\frac{\partial v_{eff}}{u_l}}_{u_l} \underbrace{u_l}_{u_l} = \underbrace{$$

... some algebra:

$$\varepsilon_{n\mathbf{k}}^{\mathrm{FM}} = \frac{1}{N_p} \sum_{\mathbf{q}\nu} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{2n_{\mathbf{q}\nu}(T) + 1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}}$$

tive
$$\varepsilon_{n\mathbf{k}} = \varepsilon_{n\mathbf{k}}^{(0)} + \varepsilon_{n\mathbf{k}}^{(1)} + \varepsilon_{n\mathbf{k}}^{(2)} + \dots$$

on $\psi_{n\mathbf{k}} = \psi_{n\mathbf{k}}^{(0)} + \psi_{n\mathbf{k}}^{(1)} + \psi_{n\mathbf{k}}^{(2)} + \dots$

o the electrons

 $\langle u_I \rangle_T$

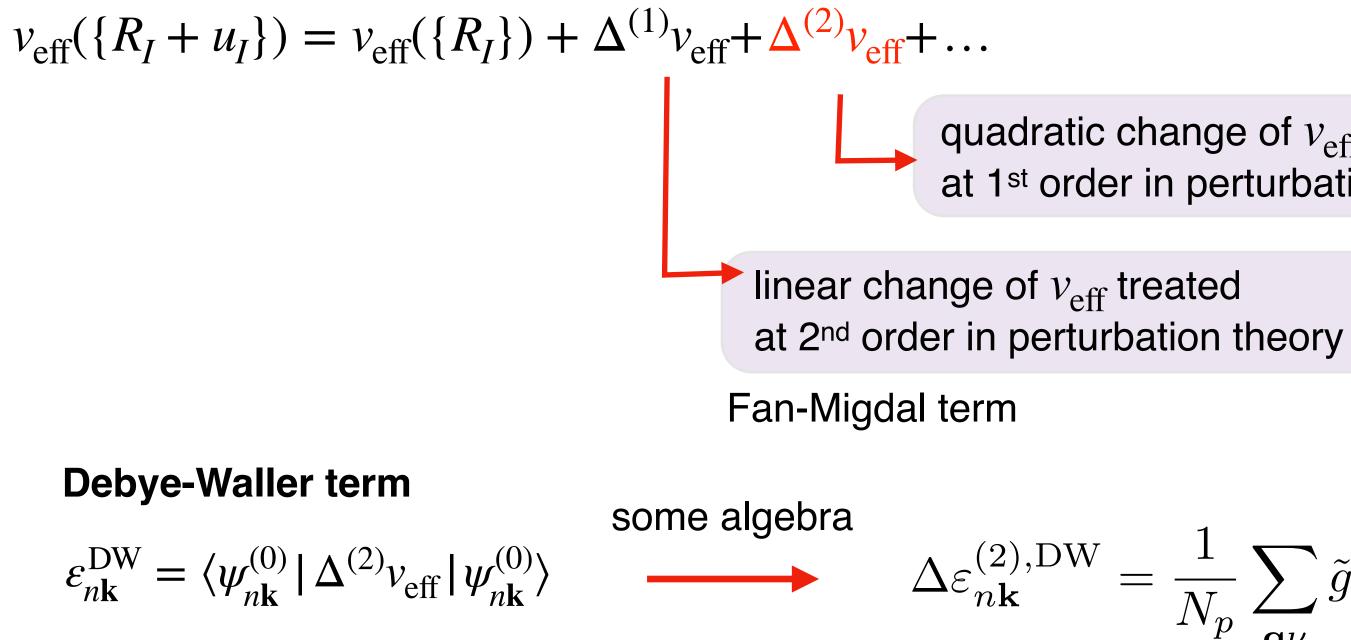
average displacement at temperature T

$$\langle u_I^2 \rangle_T$$

mean squared displacement

Fan-Migdal term Phonon-assisted renormalization of the electron energy levels

Perturbative treatment of the electron-phonon interaction: the Debye-Waller term



Temperature dependence of the band structure in Allen-Heine-Cardona theory

$$\Delta \varepsilon_{n\mathbf{k}}^{\text{AHC}} = \Delta \varepsilon_{n\mathbf{k}}^{\text{FM}}(T) + \Delta \varepsilon_{n\mathbf{k}}^{\text{DW}}(T)$$

Review: X. Gonze et al., Ann. Phys. (Berlin) 523, 168 (2011)

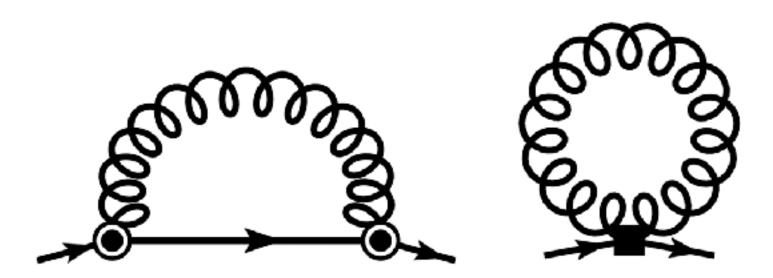
Debye-Waller term

quadratic change of v_{eff} treated at 1st order in perturbation theory

... also quadratic in the perturbation

quadratic dependence on the phonon displacement (the perturbation)

second-order $\Delta \varepsilon_{n\mathbf{k}}^{(2),\mathrm{DW}} = \frac{1}{N_p} \sum_{\mathbf{q}\nu} \tilde{g}_{nn}^{\nu\nu} (\mathbf{k}, \mathbf{q}, -\mathbf{q}) (2n_{\mathbf{q}\nu} + 1)$



Temperature-dependence of the AHC correction to the bands and zero-point motion renormalization

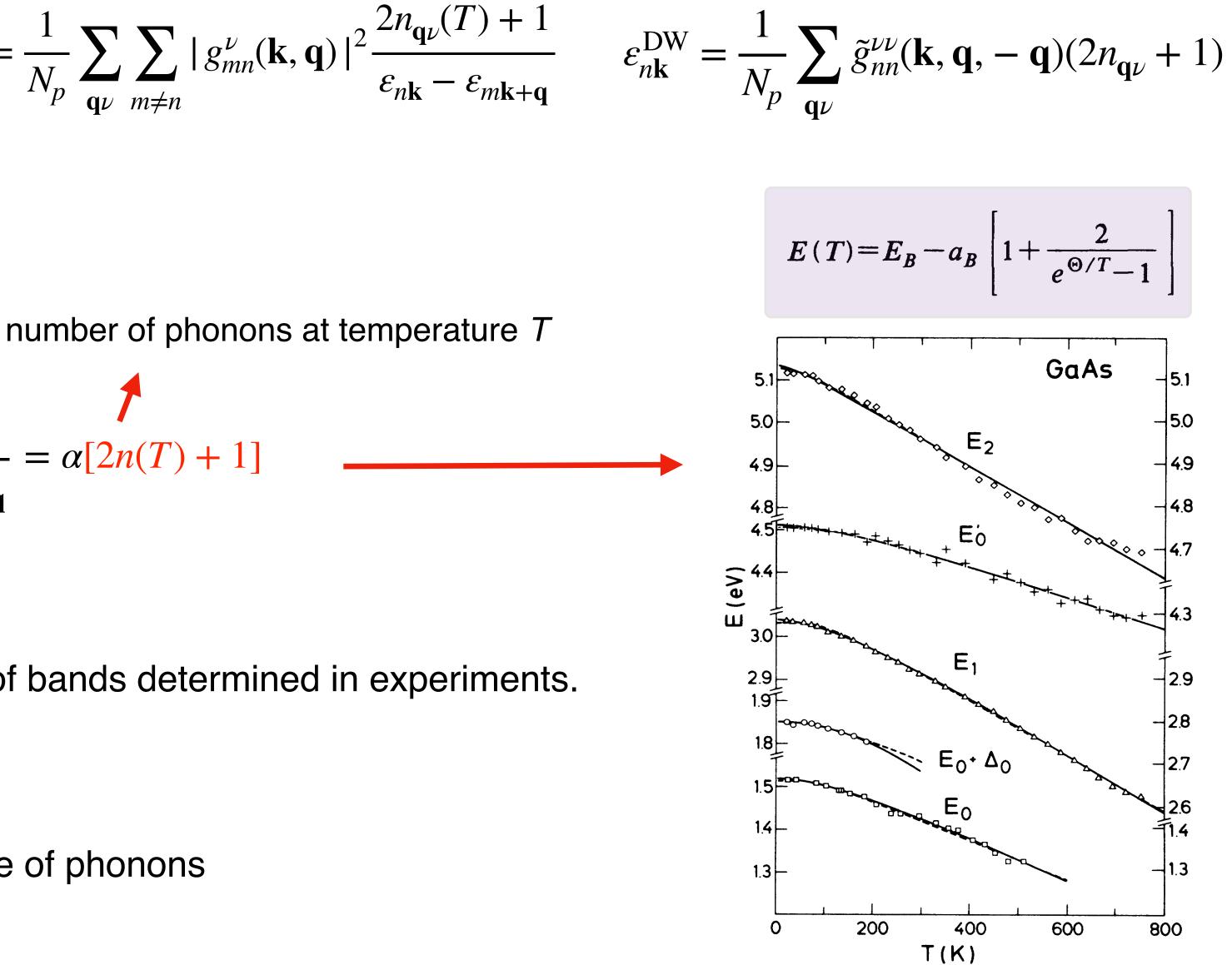
$$\Delta \varepsilon_{n\mathbf{k}}^{\text{AHC}} = \Delta \varepsilon_{n\mathbf{k}}^{\text{FM}}(T) + \Delta \varepsilon_{n\mathbf{k}}^{\text{DW}}(T) \qquad \varepsilon_{n\mathbf{k}}^{\text{FM}} = \frac{1}{N_p} \sum_{\mathbf{q}\nu} \varepsilon_{n\mathbf{k}}^{\text{FM}}(T)$$

Consider a materials with only one vibrational frequency $(n_{\mathbf{q}\nu}(T) \simeq n(T))$: number

$$\varepsilon_{n\mathbf{k}}^{\mathrm{FM}} = [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{N_p} \sum_{m \neq n} |g_{mn}^{\nu}(\mathbf{k}, \mathbf{q})|^2 \frac{1}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{\varepsilon_{n\mathbf{k}+\mathbf{q}}} = \alpha [2n(T) + 1] \frac{1}{\varepsilon_$$

Fully captures the temperature-dependence of bands determined in experiments.

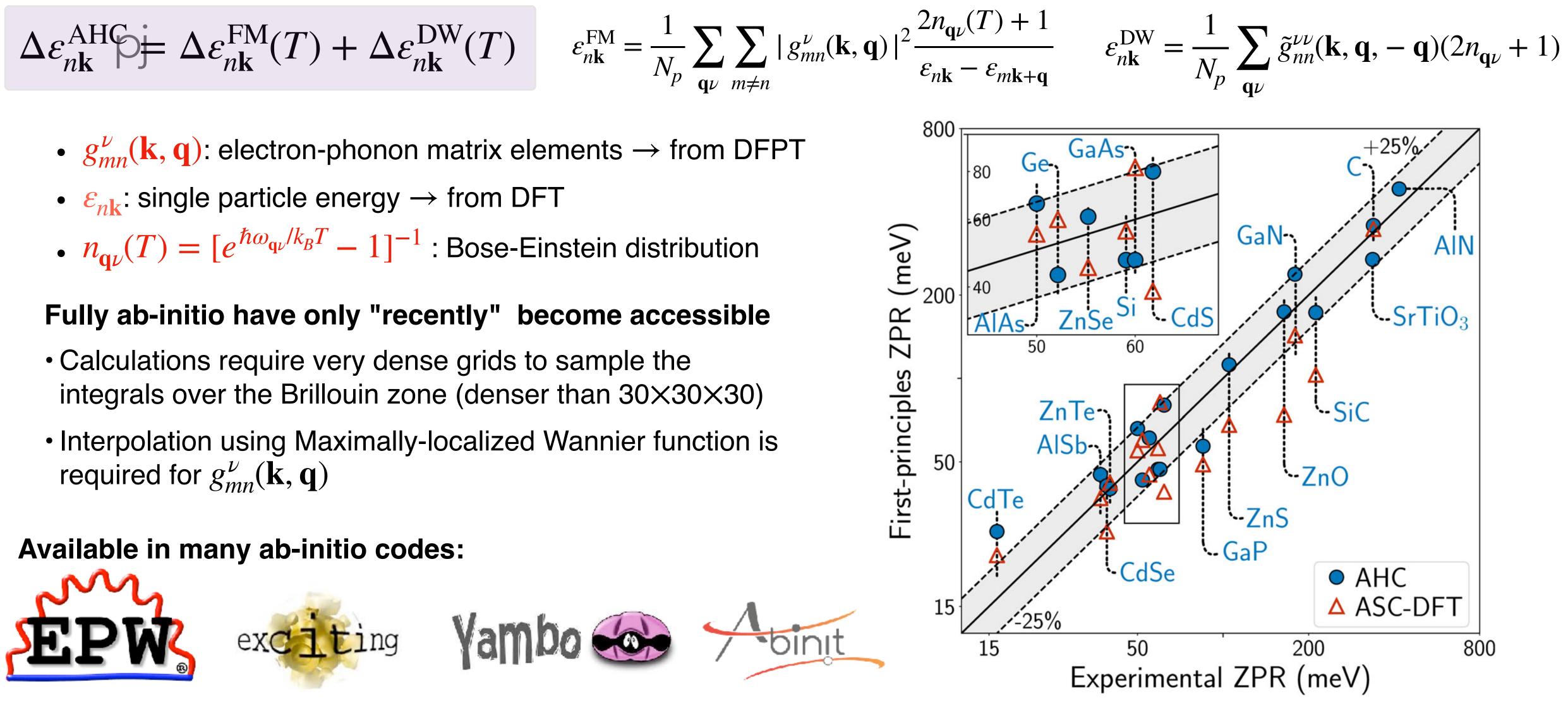
2 At T=0, n(T) = 0 however $\varepsilon_{n\mathbf{k}}^{AHC} \neq 0$ Renormalization of the bands even in absence of phonons **Zero-point motion effect (purely quantum)**



The Allen-Heine-Cardona theory in ab-initio calculations

$$\Delta \varepsilon_{n\mathbf{k}}^{\text{AH}} \stackrel{\leftarrow}{\rightarrow} \Delta \varepsilon_{n\mathbf{k}}^{\text{FM}}(T) + \Delta \varepsilon_{n\mathbf{k}}^{\text{DW}}(T) \qquad \varepsilon_{n\mathbf{k}}^{\text{FM}} = \frac{1}{N_p} \sum_{\mathbf{q}\nu} \sum_{\mathbf{q$$

- required for $g_{mn}^{\nu}(\mathbf{k},\mathbf{q})$



Marzari et al., Rev. Mod. Phys. 84, 1419 (2012) Giustino et al., Phys. Rev. B **76**, 165108 (2007)

Miglio, et al., npj Comput. Mater. 6, 167 (2020)

Consider a perturbation acting $\hat{H}^{el} = \hat{H}_0^{el} + \Delta \hat{V}$ on the electron Hamiltonian :

Electron Green's function

 $G_{ij}(t_1, t_2) = -i\hbar^{-1} \langle \Psi | \hat{T}[\hat{\psi}_i(t_1)\hat{\psi}_j^{\dagger}(t_2)] | \Psi \rangle$

electron ground-state wave function $|\Psi\rangle$ $\hat{\psi}^{\dagger}, \hat{\psi}$: creation/annihilation operators Wick's time-ordering operator

Direct access to physical properties (spectral function, observables, total energy, ect)

 \hat{T} :

Formally exact treatment of the perturbation

G: the (exact) Green's function.

 G_0 : the non-interacting Green's function.

 Σ : the electron self-energy

The Dyson equation

 $G = G_0 + G_0 \Sigma G$

coupled by the electron-phonon interactions

Many-body perturbation theory (MPBT) of electron-phonon coupling

Consider a perturbation acting on the **lattice** Hamiltonian :

$$\hat{H}^{ph} = \hat{H}_0^{ph} + \Delta \hat{V}$$

Phonon Green's function

$$D_{\alpha\beta}(t_1, t_2) = -i\hbar^{-1} \langle \Phi \,|\, \hat{T} \Delta \hat{\tau}_{\alpha}(t_1) \Delta \hat{\tau}_{\beta}(t_2) \,|\, \Phi \rangle$$

- Φ **phonon** ground-state wave function
- $\Delta \hat{ au}_{lpha}$: displacement operator
 - Wick's time-ordering operator

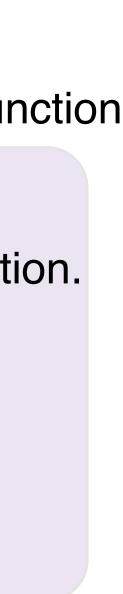
Perturbative treatment of the phonon Green's function

D: the (exact) **phonon** Green's function.

- D_0 : the non-interacting **phonon** Green's function.
- $\Pi^{(na)}$: the non-adiabatic phonon self-energy

The Dyson equation

 $D = D_0 + D_0 \Pi^{(na)} D$



Exact self-consistent equations for the electron and phonon Green's functions

Description	
Electronic charge density	$\langle \hat{n}_{\rm e}(1) \rangle$
Nuclear charge density	$\langle \hat{n}_{n}(\mathbf{r}t)$
Total electrostatic potential	$V_{\rm tot}(1)$
Equation of motion, electrons	$[i\hbar\partial/\partial$
Equation of motion, nuclei	$\sum_{\kappa''\alpha''p}$
Electron self-energy	$\Sigma(12)$:
Screened Coulomb, electrons	$W_{\rm e}(12)$
Electronic polarization	$P_{\rm e}(12)$
Electronic dielectric matrix	$\epsilon_{\rm e}(12)$
Vertex	Г(123)
Screened Coulomb, nuclei	$W_{\rm ph}(12)$
Phonon self-energy	$\prod_{\kappa \alpha p, \kappa' a}$

Giustino, Rev. Mod. Phys. (2017)

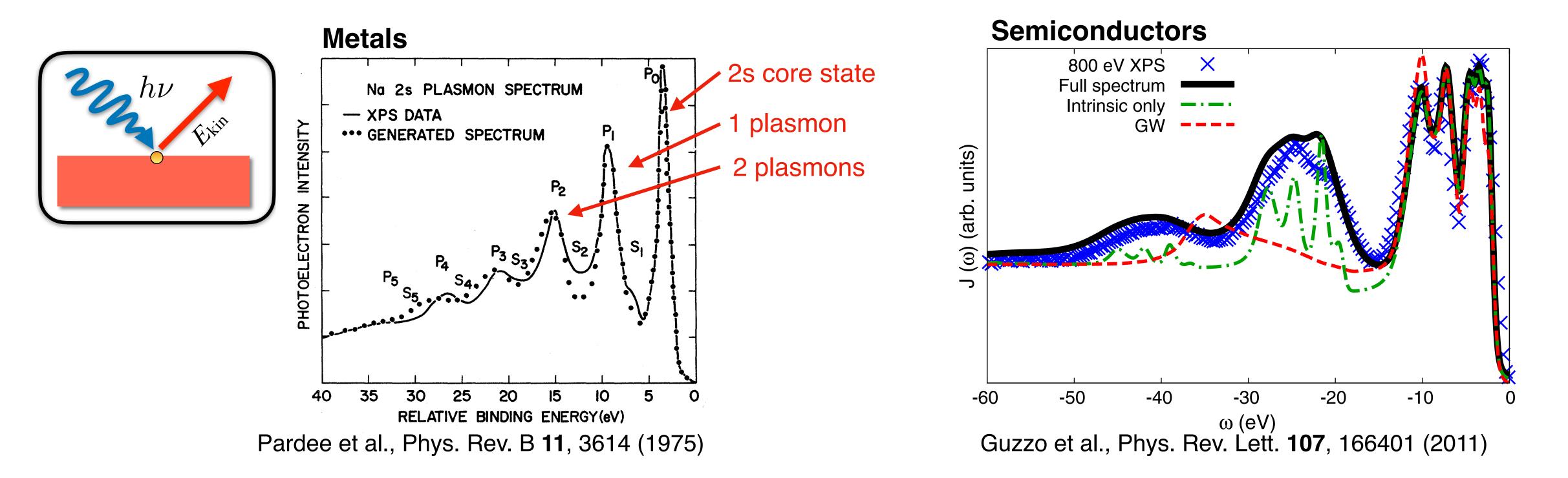
Expression

$$\begin{aligned} |h| &= -i\hbar \sum_{\sigma_{1}} G(11^{+}) \\ |h| &= n_{n}^{0}(\mathbf{r}) - (i\hbar/2) \sum_{\kappa p, aa'} Z_{\kappa} \partial^{2} \delta(\mathbf{r} - \boldsymbol{\tau}_{\kappa p}^{0}) / \partial r_{a} \partial r_{a'} D_{\kappa a p, \kappa a' p}(t^{+}t) \\ |h| &= \int d2v(12) [\langle \hat{n}_{e}(2) \rangle + \langle \hat{n}_{n}(2) \rangle] \\ \partial t_{1} + (\hbar^{2}/2m_{e}) \nabla^{2}(1) - V_{tot}(1)] G(12) - \int d3\Sigma(13) G(32) &= \delta(12) \\ e_{p''} [M_{\kappa} \omega^{2} \delta_{\kappa a p, \kappa'' a'' p''} - \Pi_{\kappa a p, \kappa'' a'' p''}(\omega)] D_{\kappa'' a'' p'', \kappa' a' p'}(\omega) &= \delta_{\kappa a p, \kappa' a' p'} \\ &= i\hbar \int d(34) G(13) \Gamma(324) [W_{e}(41^{+}) + W_{ph}(41^{+})] \\ 2) &= v(12) + \int d(34) v(13) P_{e}(34) W_{e}(42) \\ e_{0} &= -i\hbar \sum_{\sigma_{1}} \int d(34) G(13) G(41^{+}) \Gamma(342) \\ 0) &= \delta(12) - \int d(3) v(13) P_{e}(32) \\ 0) &= \delta(12) \delta(13) + \int d(4567) [\delta\Sigma(12) / \delta G(45)] G(46) G(75) \Gamma(673) \\ A2) &= \sum_{\kappa a p, \kappa' a' p'} \int d(34) \epsilon_{e}^{-1}(24) \nabla_{4,a'} V_{\kappa'} (\mathbf{r}_{4} - \boldsymbol{\tau}_{\kappa' p}^{0}) \\ \times D_{\kappa a p, \kappa' a' p'} (t_{3}t_{4}) \epsilon_{e}^{-1}(24) \nabla_{4,a'} V_{\kappa'} (\mathbf{r}_{4} - \boldsymbol{\tau}_{\kappa' p'}^{0}) \\ \times [\delta_{\kappa' p', \kappa'' p''} W_{e}(\mathbf{r}, \mathbf{r}', \omega) - \delta_{\kappa p, \kappa' p'} W_{e}(\mathbf{r}, \mathbf{r}', 0)]_{\mathbf{r} = \mathbf{\tau}_{\kappa'' p, \mu''}^{0} \mathcal{I}_{\kappa'' p, \mu''}^{0} \end{aligned}$$

Polaronic satellites in angle-resolved photoemission spectroscopy (ARPES)

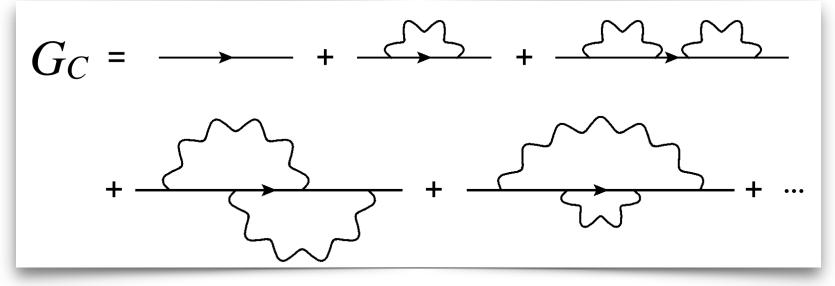
Part 2

Satellites in photoemission: a hallmark of electron-boson interaction



A strong stimulus for the development of (abinitio) theories of the electron-boson interaction

Example: the cumulant expansion approach

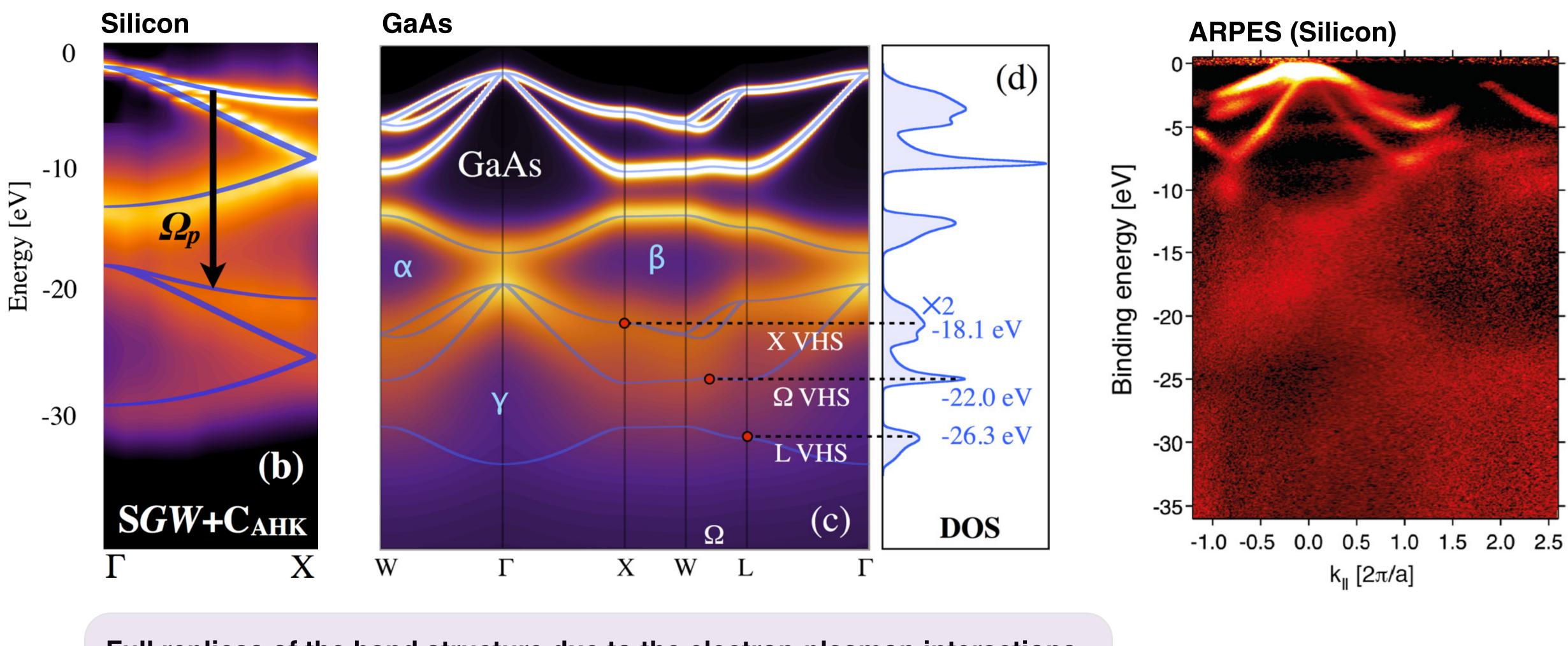


Cumulant representation of the spectral function

$$A(\mathbf{k},\omega) = \sum_{n} e^{A_{n\mathbf{k}}^{\mathrm{S1}}(\omega)} * A_{n\mathbf{k}}^{\mathrm{QP}}(\omega)$$

Caruso, Verdi, Giustino, Handbook of Materials Modeling Springer (2018)

Wanda Andreoni Sidney Yip Handbook of Materials Modeling Methods: Theory and Modeling econd Edition



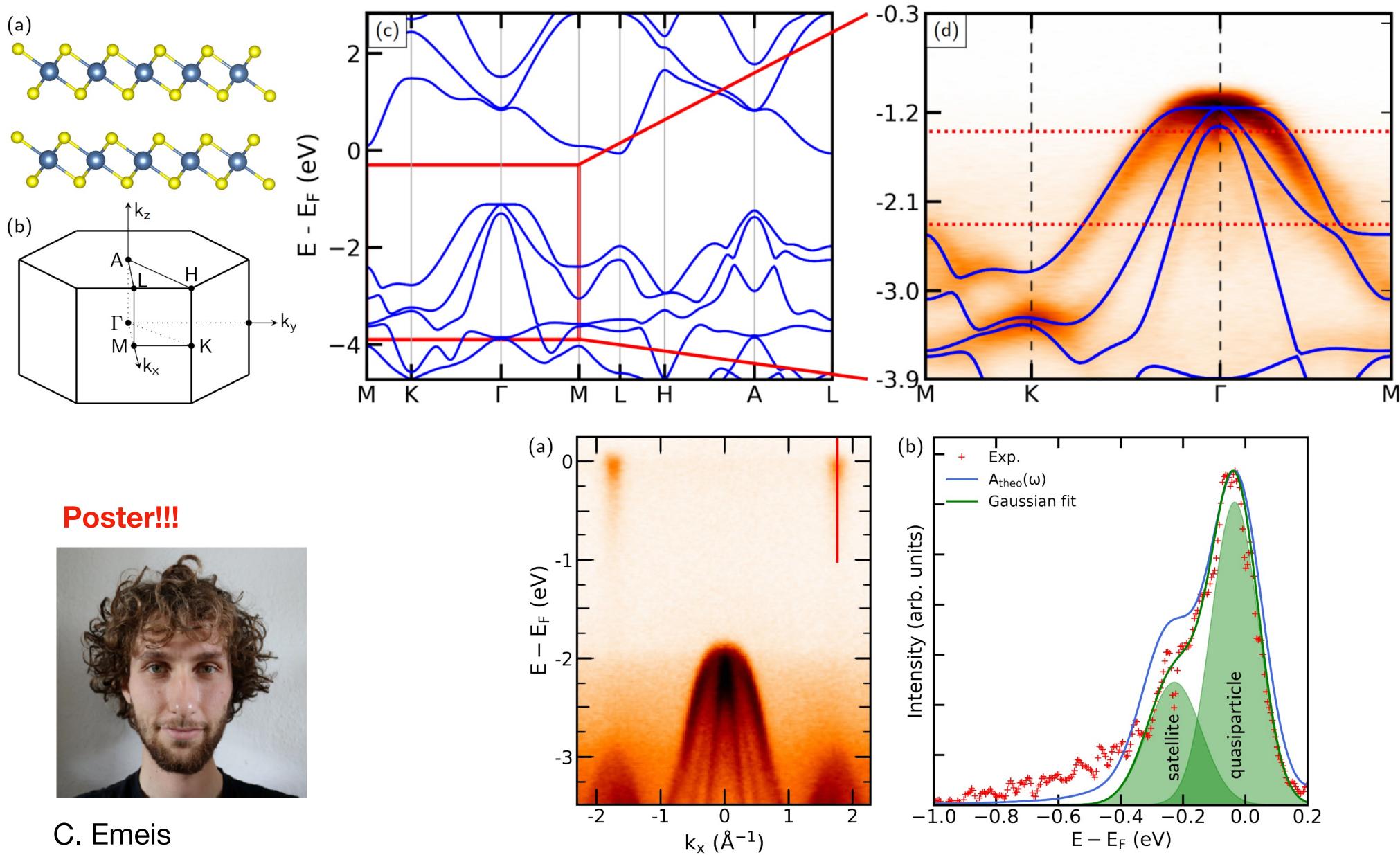
Full replicas of the band structure due to the electron-plasmon interactions

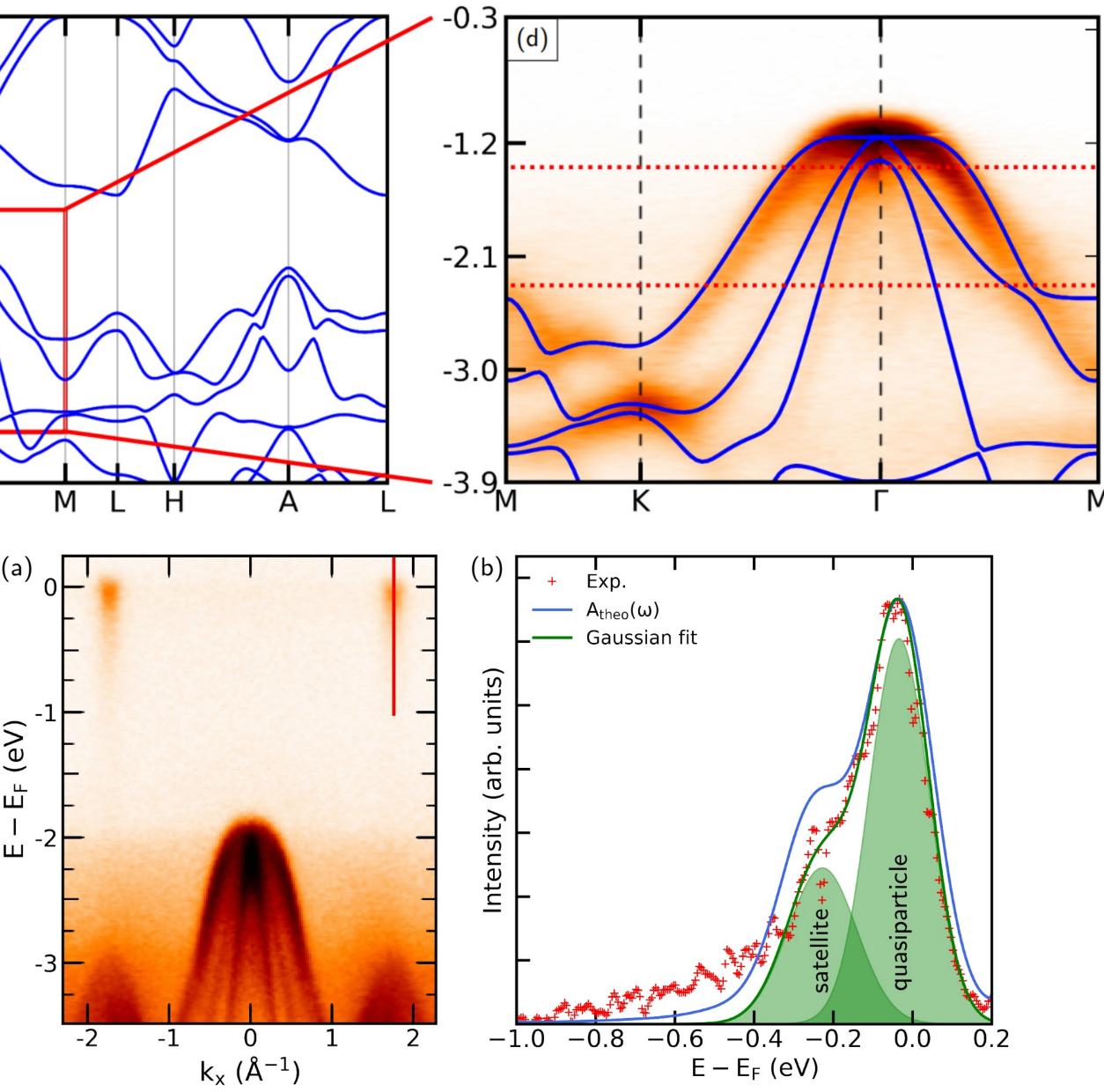
Caruso et al., Phys. Rev. Lett. **114**, 146404 (2015) Caruso et al., Phys. Rev. B, 92, 045123 (2015)

Band structures of plasmonic polarons

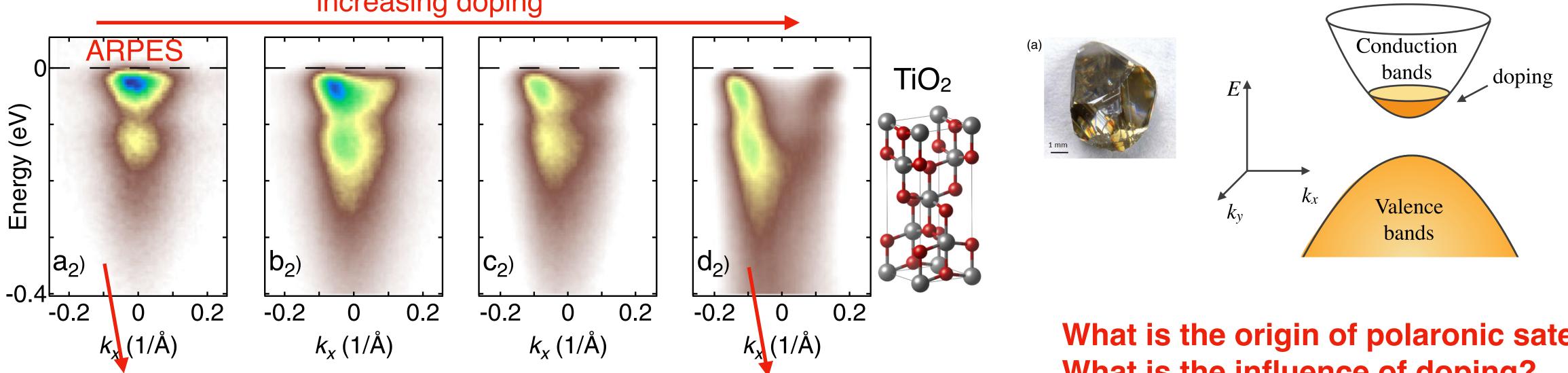
Lischner et al., Phys. Rev. B, **91**, 205113 (2015)

Satellites due to the electron-plasmon coupling in highly-doped HfS2

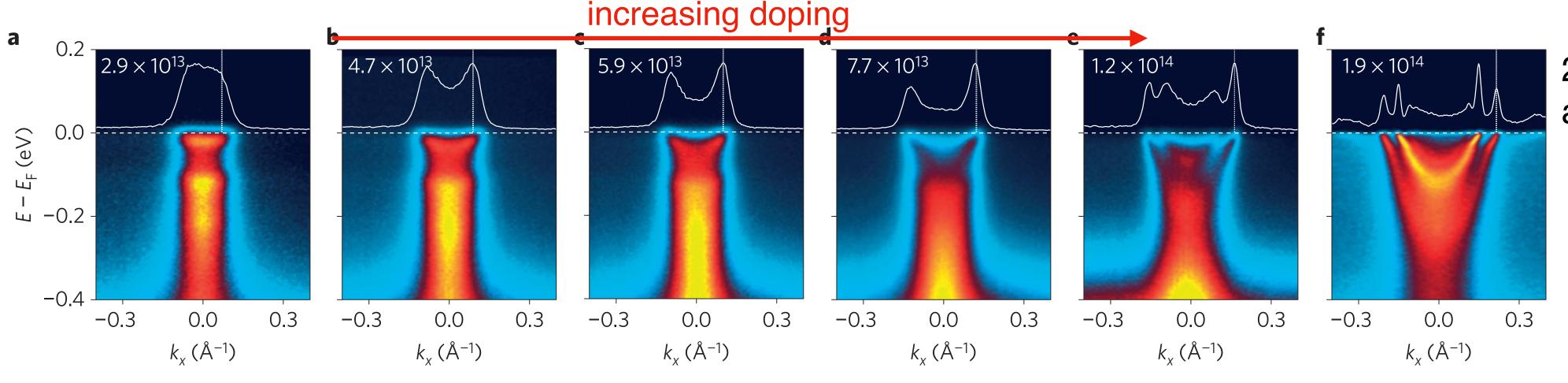




Satellites due to the electron-phonon coupling: highly-doped polar semiconductors



satellite (strong coupling) Moser et al., Phys. Rev. Lett. **110**, 196403 (2013)

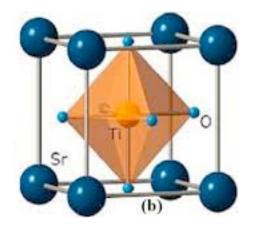


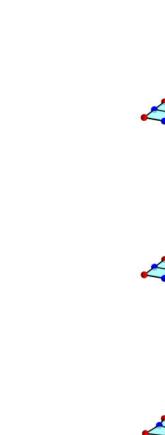
Wang et al., Nat. Mater. **15**, 835 (2016)

kink (weak coupling)

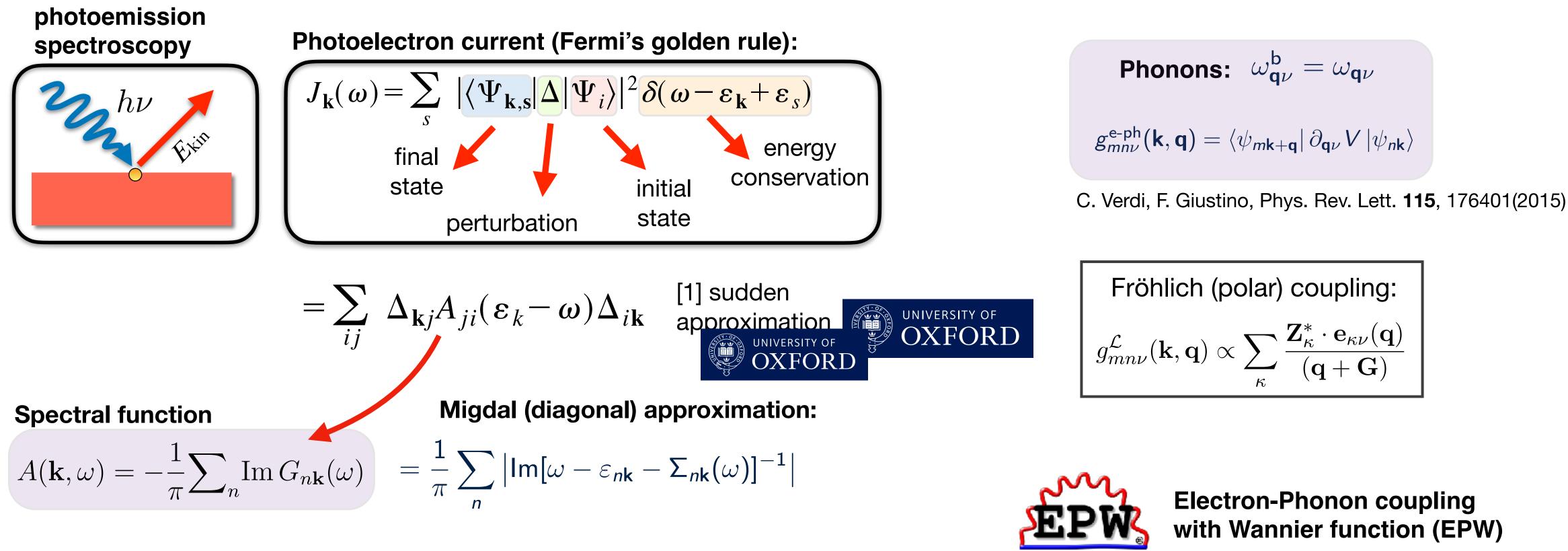
What is the origin of polaronic satellites? What is the influence of doping?

> 2D electron gas at the surface of SrTiO₃





First-principles theory of photoemission spectroscopy

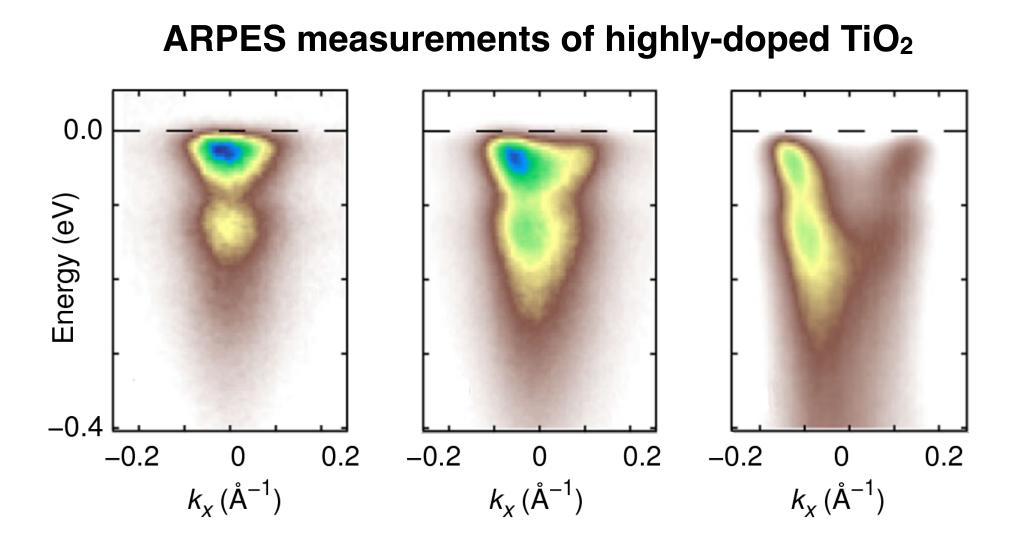


son coupling self-energy (Ean-Migdal)

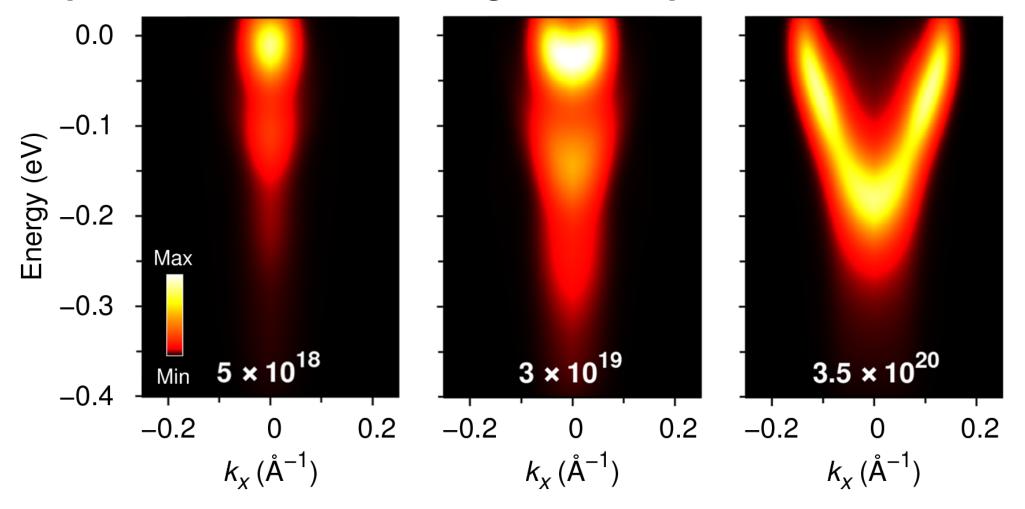
$$\Sigma_{n\mathbf{k}}(\omega) = \frac{1}{N_{\mathbf{q}}} \sum_{m\nu\mathbf{q}} |\mathbf{g}_{mn\nu}^{\mathbf{e}\cdot\mathbf{b}}(\mathbf{k},\mathbf{q})|^{2} \left[\frac{n_{\mathbf{q}\nu} + f_{m\mathbf{k}+\mathbf{q}}}{\omega - \epsilon_{m\mathbf{k}+\mathbf{q}} + \omega_{\mathbf{q}\nu}^{\mathbf{b}} - i\eta} + \frac{n_{\mathbf{q}\nu} + 1 - f_{m\mathbf{k}+\mathbf{q}}}{\omega - \epsilon_{m\mathbf{k}+\mathbf{q}} - \omega_{\mathbf{q}\nu}^{\mathbf{b}} - i\eta} \right]$$

[1] L. Hedin, et al., Phys. Rev. B 58, 15565 (1998)

Cumulant expansion approach
$$A(\mathbf{k},\omega) = \sum_{n} e^{A_{n\mathbf{k}}^{S1}(\omega)} * A_{n\mathbf{k}}^{QP}(\omega)$$



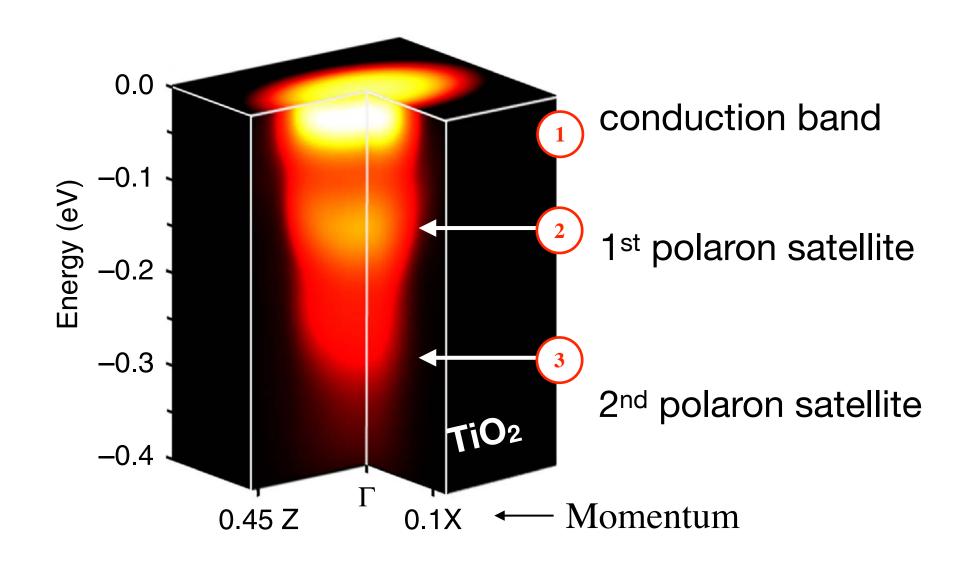
Spectral function including electron-phonon interactions:



ARPES: Moser et al., Phys. Rev. Lett. **110**, 196403 (2013) Theory: Verdi, Caruso, Giustino, Nature Comm. 8, 15769 (2017)

screen the electron-phonon interactions UNIVERSITY OF OXPORITELY reduce the coupling at higher doping)

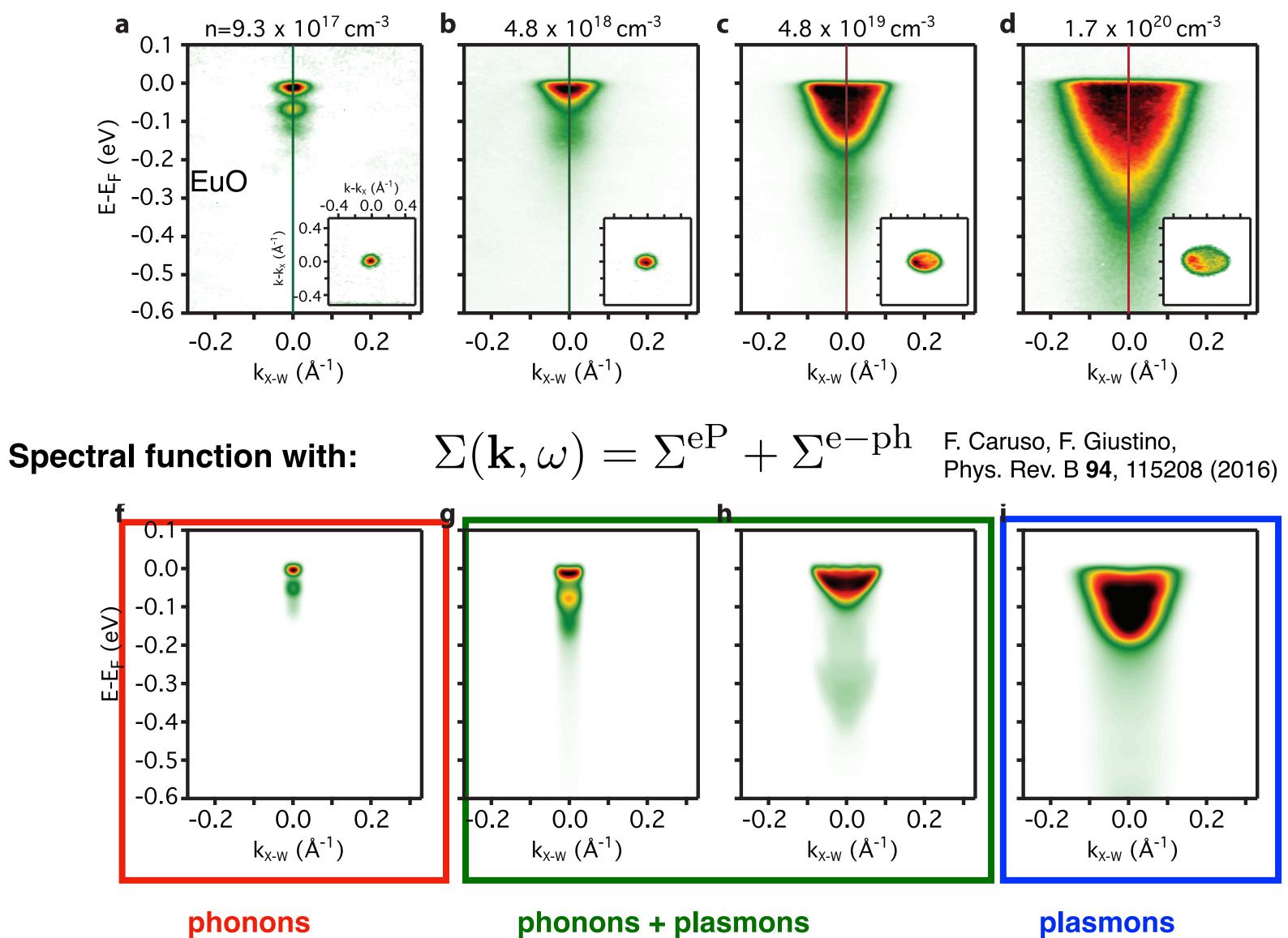
Doping-induced polaronic to Fermi liquid transition



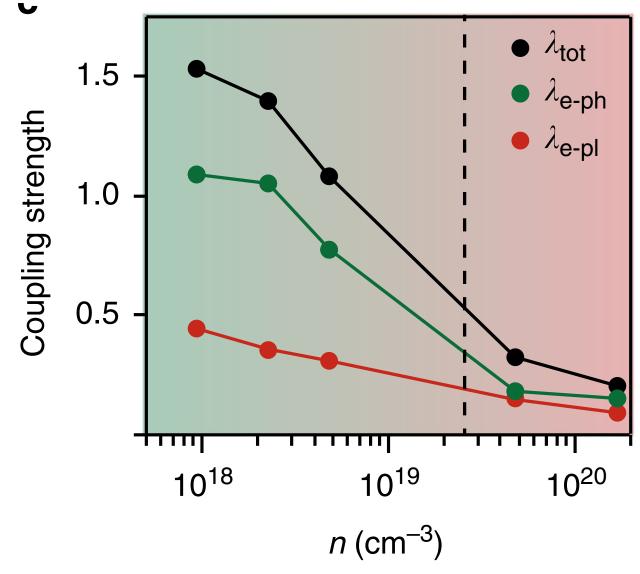
Carla Verdi

Feliciano Giustino

Doping-induced crossover from lattice to plasmonic polarons



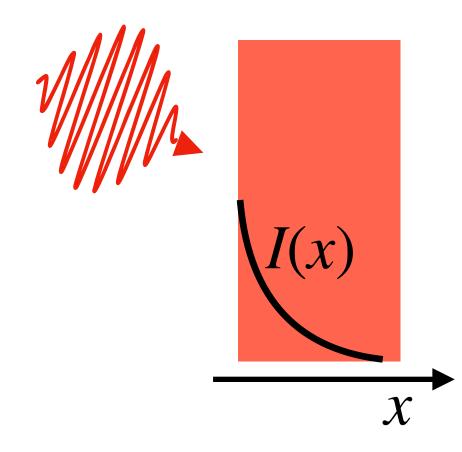
J. Riley, F. Caruso, C. Verdi, et al. Nature Comm. 9, 2305 (2018)



Phonon-assisted optical absorption in semiconductors

Part 3

Optical absorption in semiconductors

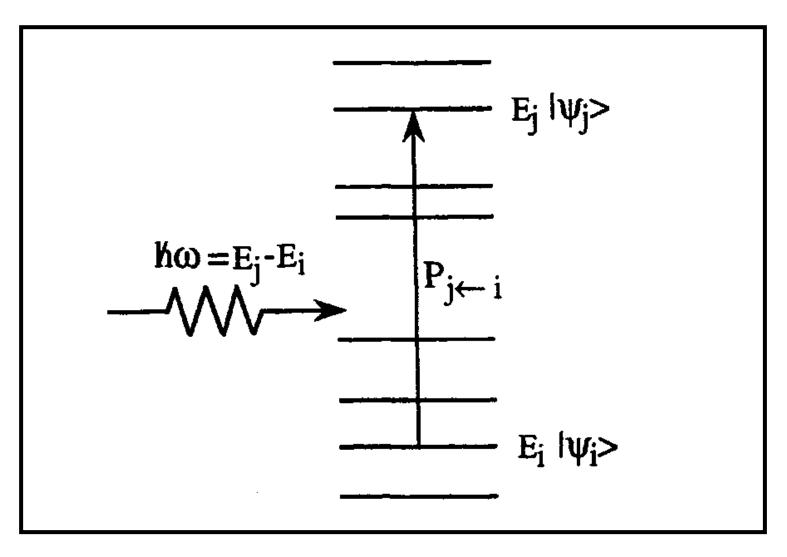


Intensity of radiation propagating through the sample

$$I(\omega, x) = I_0 e^{-\alpha(\omega)x}$$

 α : absorption coefficient

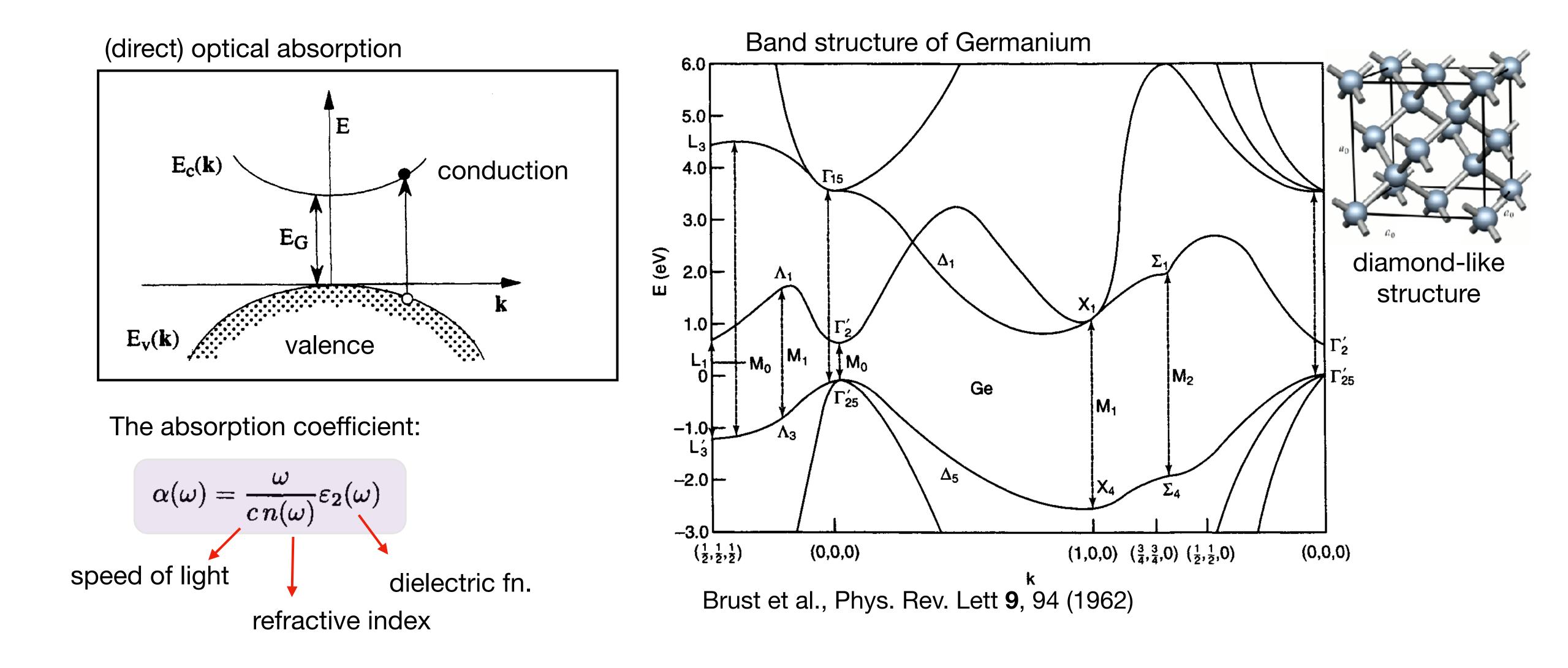
Quantum picture of the absorption process



Why is it important?

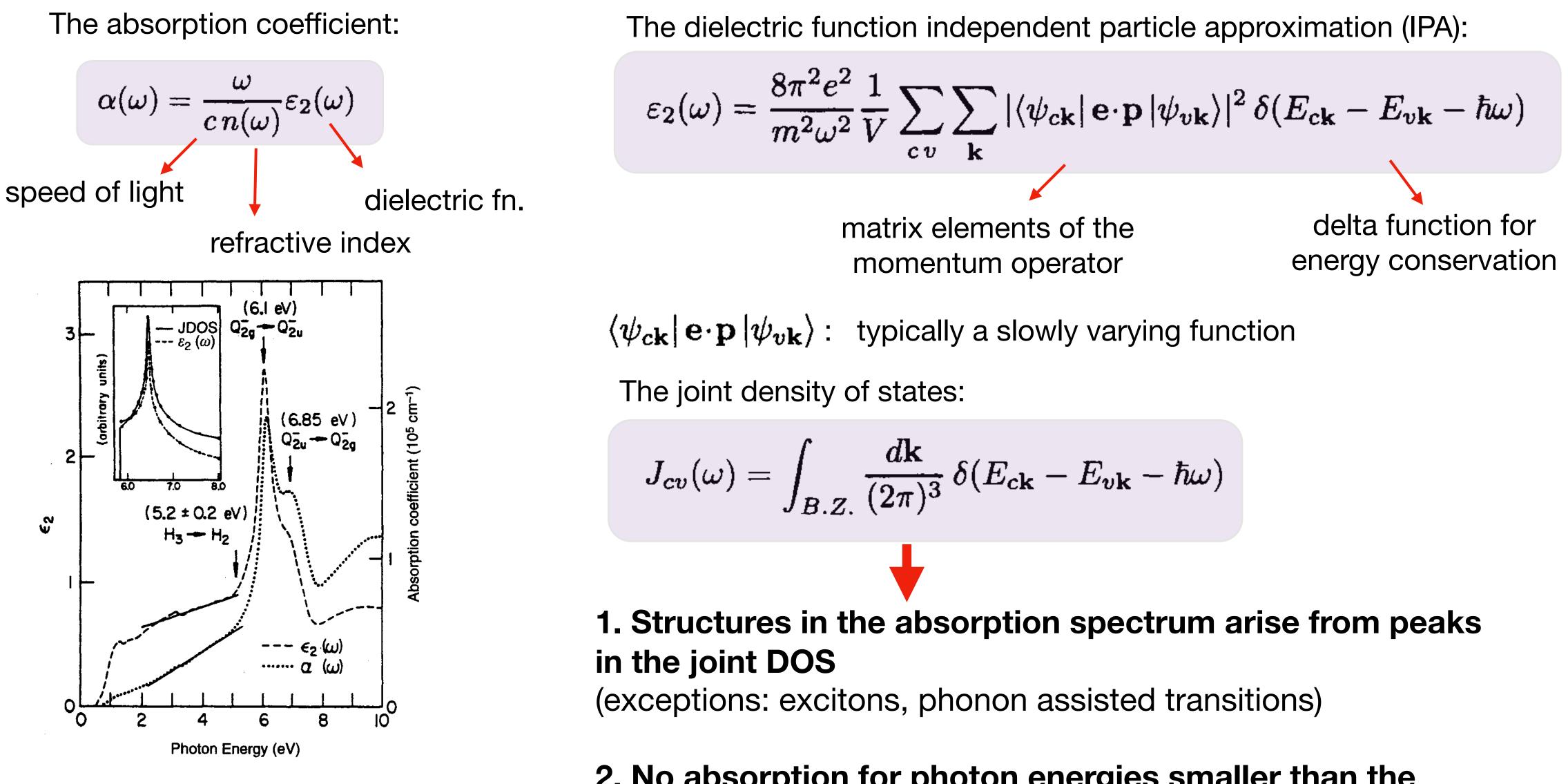
- powerful characterization technique
- fundamental principle underlying solar energy conversion

In this lecture: What is the role of phonons in the absorption of light in solids?



Phonon-assisted optical absorption in semiconductors

Phonon-assisted optical absorption in semiconductors

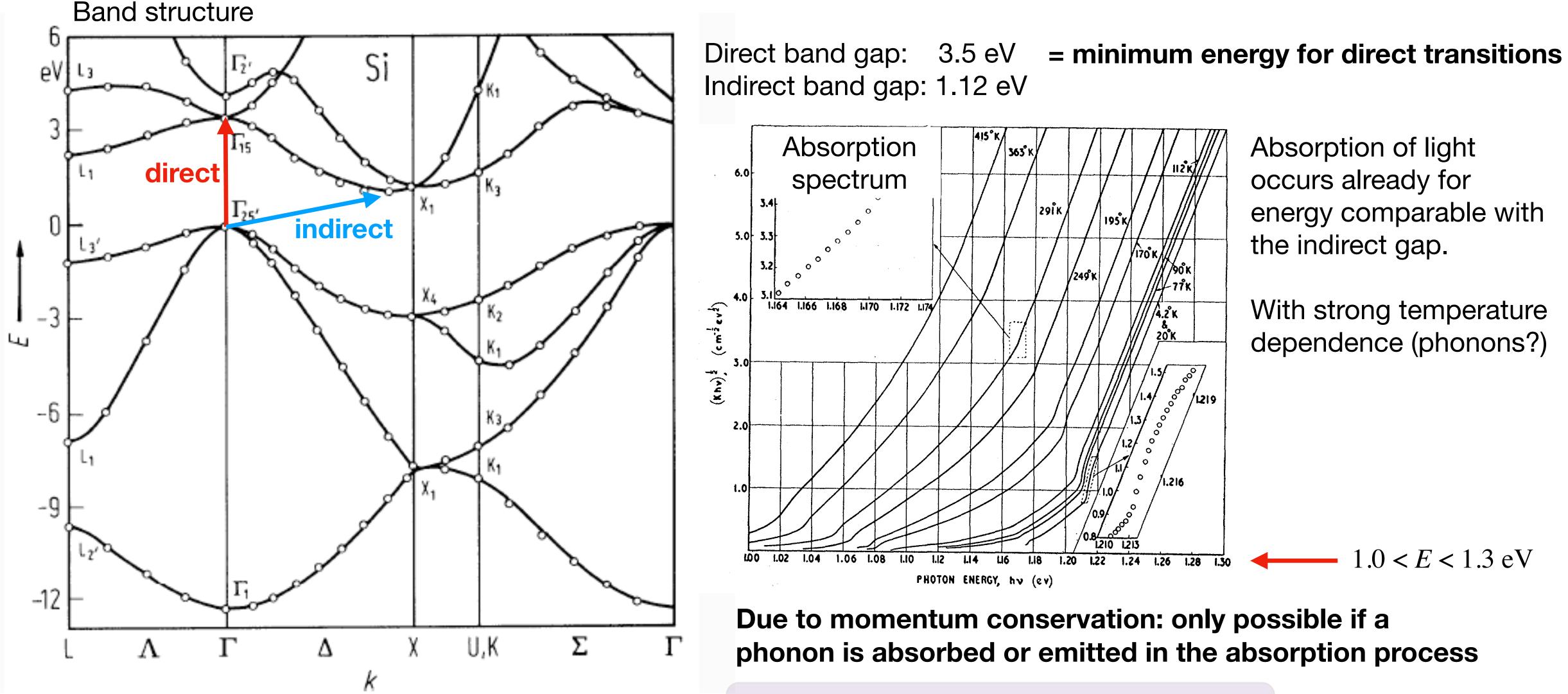


Hoffman et al., Phys. Rev. B **30**, 6051 (1984)

band gap (exceptions: excitons)

$$\int_{B.Z.} \frac{d\mathbf{k}}{(2\pi)^3} \,\delta(E_{c\mathbf{k}} - E_{v\mathbf{k}} - \hbar\omega)$$

2. No absorption for photon energies smaller than the



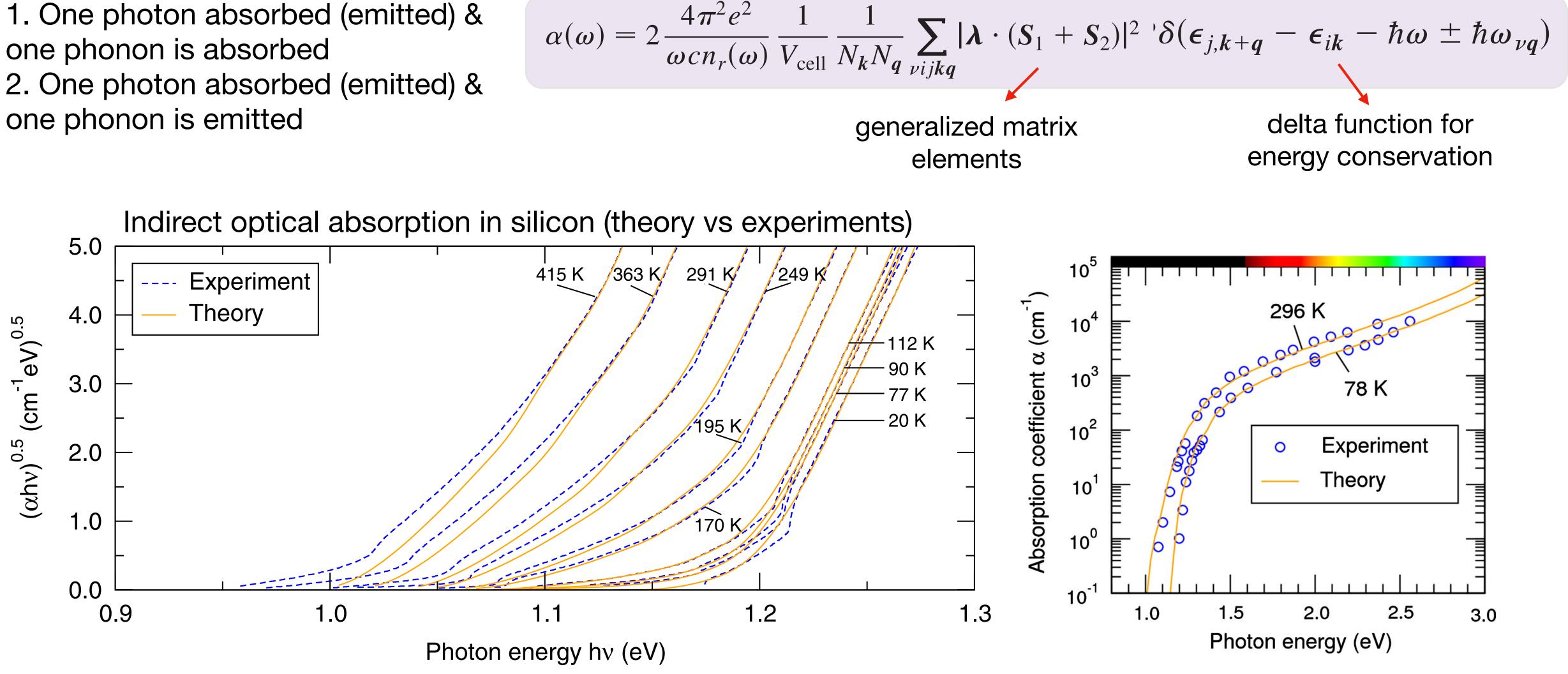
Macfarlane et al., Phys. Rev. **111**, 1245 (1958)

Phonon assisted optical absorption

Two possible processes:

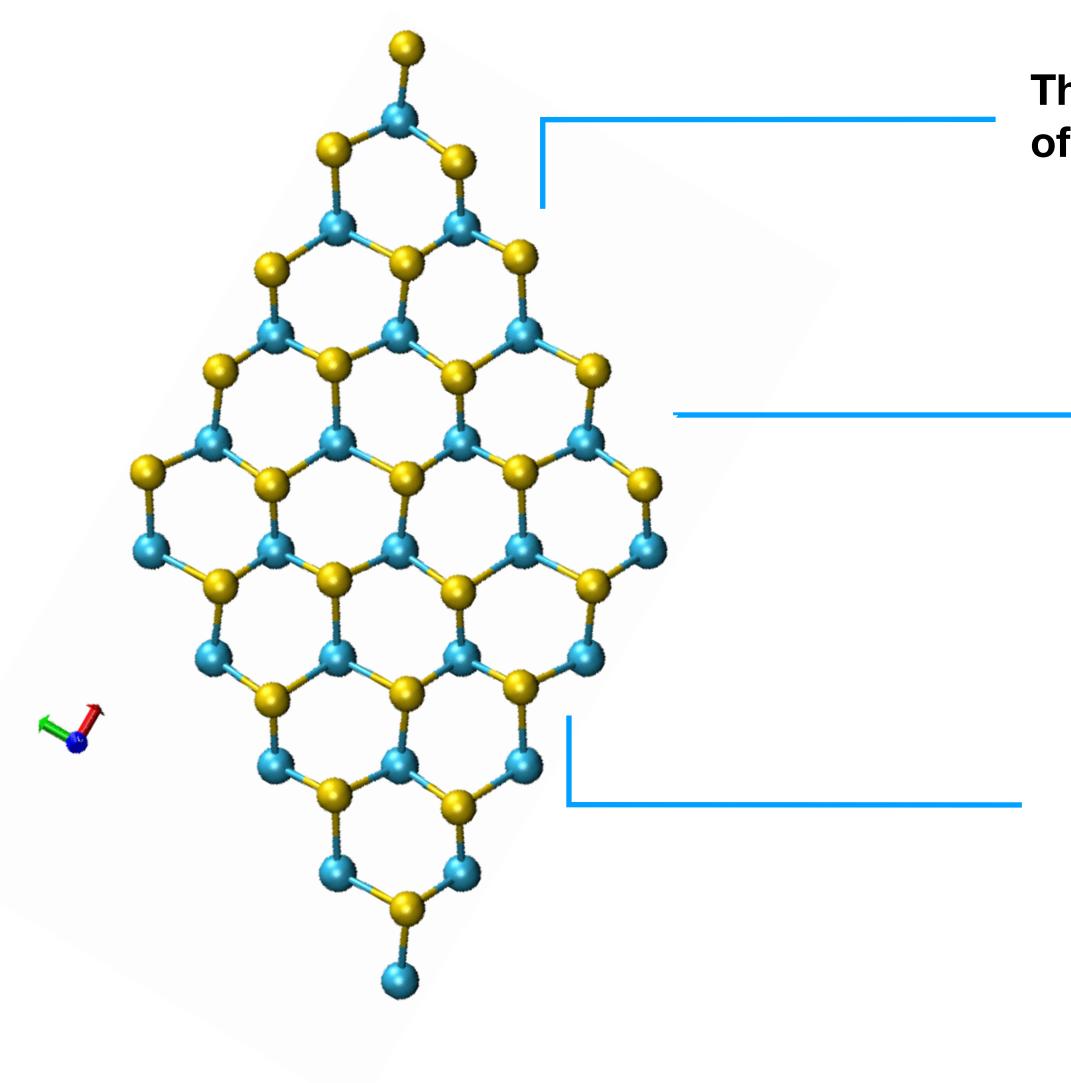
Theory: 2nd order Fermi golden rule + electron-phonon coupling

$$\alpha(\omega) = 2 \frac{4\pi^2 e}{\omega c n_r(\omega)}$$



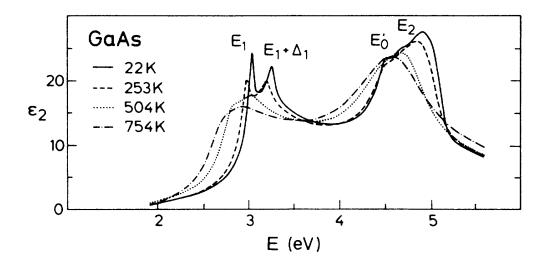
Noffsinger et al., Phys. Rev. Lett. **108**, 167402 (2012)

Phonon-assisted indirect optical absorption (emission)

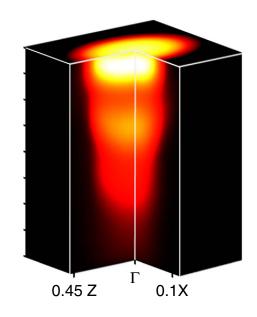


Outline

The temperature dependence of the band structure



Polaronic satellites in angle-resolved photoemission spectroscopy (ARPES)



Phonon-assisted optical absorption in semiconductors

