Monte-Carlo-Informed Shape Learning for Gain Shift Correction based on LaBr₃:Ce,Sr Intrinsic Activitiy

INNORIDO / AMETEK® RADIOISOTOPE IDENTIFICATION DEVICES

Felix Diel¹, Patrick Eulgem² and Marcus J. Neuer^{1,3}, Member, IEEE

¹innoRIID / Ametek, Department for Research and Development, Merowinger Platz 1, 40225 Duesseldorf, Germany ² ORTEC / Ametek, Rudolf-Diesel Str. 16, 40670 Meerbusch, Germany ³ RWTH Aachen University, Turm Str. 46, 52064 Aachen

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), Tampa, FL, US, 2024

Scan for PDF:

(1)

1 Introduction

1.1 Motivation

Lanthanum Bromide LaBr₃**:Ce,La** [1] manifested itself as a scintillation material of choice [2], [3], [4], if it comes to high resolution and good sensitivity, wherever Sodium Iodide NaI:Tl offers too low resolution.

2.2 Gini Impurity

- Probability for choosing *i*th item = p_i
- Probability for wrong categorization $\sum_{k \neq i} p_k = 1 p_i$
- Definition of Gini Impurity I:

Objective: LaBr₃:Ce,La has an intrinsic activity due its Lanthanum ¹³⁸La content [5], objective of this work is to provide a **Machine Learning** based solution for improving automatic gain stabilization.

Figure 1: Monte-Carlo-Simulation with tRAYcy showing the intrinsic activity – the pure ¹³⁸La limit (spectrum = black dashed line, energy positions = black lines)–, versus the high ⁴⁰K limit (spectrum = blue line, energy position at 1460keV = blue).

1.2 tRAYcy Monte-Carlo code

3 Monte - Carlo - Simulation with tRAYcy

- Simulation of spectral distributions $\psi(E|\kappa,\lambda)$ with **tRAYcy**
 - κ : Weight factor modelling the ⁴⁰K contribution, cf. Subsection 1.2
- λ : Weight factor modelling the ¹³⁸La contribution, cf. Subsection 1.2

 $G = 1 - \sum p_i^2$

Figure 2: Transition of probability distribution $\psi(E|\kappa,\lambda)$ from $(\lambda = 1, \kappa = 0 \text{ to } \lambda = 0, \kappa = 1)$

The **tRAYcy** Monte Carlo (MC) code is a ray-tracing based MC algorithm designed to enhance gamma spectroscopy. It simulates detector response functions and gamma radiation detector spectra. These simulations facilitate advancements in the analysis of gamma radiation spectra, particularly in:

- Mathematical calibration,
- Geometry correction,
- Summing correction,
- Spectrum deconvolution.

In this work, we apply the **deconvolution** technique to analyze the prominent peak structure observed at 1435+ keV in LaBr₃ detectors. Using tRAYcy, we examined the composition of the 1435+ keV structure and successfully separated it from the 40 K contribution (see Fig. 1).

1.3 Intrinsic activity

Relevant lines of 138 La [5], [6]:

Mode	Ratio	Half life	X-rays / keV	γ -Lines / keV
ε	65.5%	$1.03 \times 10^{11}a$	31.81, 32.194, 36.304, 36.378,37.255	1435.8
β^{-}	34.5%	$1.03 \times 10^{11}a$	34.279, 34.72, 39.17, 39.258, 40.228	788.742

- Measurement is inside the crystal \rightarrow X-rays and γ -Line coincident
- Result: Complex peak structure at 1468 keV 1472 keV, please refer to Fig. 1
- Structure is often used for automatic stabilization
- Line is close to the γ -Line 1460 keV of Potassium 40 K

Algorithmic procedure:

- Generate 20,000 distributions $X_{\text{Train}} = \psi(E|\kappa, \lambda)$
- Equidistant grid from $\psi(E|\kappa=1,\lambda=0)$ to $\psi(E|\kappa=0,\lambda=1)$, see Fig. 2
- $c = \kappa / \lambda$ defines precision peak shape and $Y_{\text{Train}} = c$
- Train Decision Tree $\mathcal{T}[\psi(E)]$ based on Gini Impurity (1) with (X_{Train} , Y_{Train})
- Use $\mathcal{T}\left[\psi(E)\right]$ as predictor of peak position, allowing precise automatic calibration

4 Tests

Handheld radioisotope identification device (RIID) based on LaBr₃:Ce,Sr

- Tested in climate chamber, ramping temperatures from -20° to 55° to test gain shift behaviour
- Variation of different amounts of additional ⁴⁰K that is added to the chamber and continuous evaluation of $c = \mathcal{T}[\psi(E)]$ to estimate fine gain modifier Δf_g
- Stabilization keeps gain calibration within $\pm 0.1 keV$

References

[1] S. W. Squillante, T. Johnson, R. Hawrami, R. Schmall, M. R. Squillante, and P. J. Sellin, "A new scintillator for gamma-ray spectroscopy: Ce3+

Depending on 40 K presence in natural background, two fundamental limits can be found:

- 1. The **High-K-limit**, potassium amount κ overwhelms the intrinsic activity λ , $\kappa \gg \lambda$
- 2. The ¹³⁸La-limit, amount κ of ⁴⁰K is lower than λ , $lambda \gg kappa$

2 Decision Trees

2.1 Introduction

- Supervised learning paradigm, discussed by Breiman et al. [7]
- Commonly uses the information gain IG, based upon the information entropy to find the data variable that
- Can be formulated as supervised **classification** or **regression** algorithm

-doped LaBr3," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 458, no. 1-2, pp. 61–67, 2001.

- [2] H. Zhang and et al., "Performance evaluation of a labr3:ce scintillation detector in a brain pet scanner," Physics in Medicine & Biology, vol. 64, no. 13, p. 135017, 2019.
- [3] A. Wójtowicz and et al., "Application of labr3(ce) scintillation detectors in nuclear safeguards measurements," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 831, pp. 332–339, 2016.
- [4] L. T. Hudson, J. T. Trammell, D. L. McDaniel, and T. W. Robertson, "Development and evaluation of labr3-based gamma-ray detectors for homeland security applications," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 604, no. 1-2, pp. 185–187, 2009.
- [5] R. Grzywacz, R. Grzywacz, and et al., "Radiation background of labr3(ce) scintillators," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, vol. 615, no. 2-3, pp. 587–593, 2010.
- [6] L. e. a. Nicoletti, "Measurement of radioactive contamination in labr3(ce) crystal scintillators," Journal of Instrumentation, vol. 5, no. 05, p. P05008, 2010.
- [7] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, *Classification and Regression Trees*. Chapman & Hall/CRC, 1984.

www.innoriid.eu

Corresponding author: marcus.neuer@ametek.com