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de la Torre, et al. Rev Mod. Phys. (2021)

Ultrafast dynamics: a new frontier of condensed-matter research



Coherent phonons in experiments: the example of antimony

Pump-probe ARPES

S. SAKAMOTO et al. PHYSICAL REVIEW B 105, L161107 (2022)

FIG. 1. (a) Top and side views of the crystal structure of Sb. Blue and red arrows represent the atom displacement for the A1g and Eg

phonons, respectively. (b) Bulk and surface Brillouin zone of Sb. (c) Experimental geometry. (d) Equilibrium experimental angle-resolved
photoemission spectroscopy (ARPES) spectrum along the !-K direction. (e) and (h) Coherent phonon-induced binding-energy oscillations
and the Fourier power spectra for the bulk band, (f) and (i) the surface + bulk band, and (g) and (j) the surface band, marked by green, blue,
and red arrows in panel (d), respectively. The gray curves in panels (e)–(g) are fitted curves.

well described by the equilibrium concept of electron-phonon
coupling.

Our trARPES setup is based on a Ti : sapphire regenera-
tive amplifier outputting 1.5 eV, 35 fs pulses at a repetition
rate of 312 kHz [26]. The photon energy was quadrupled to
6.0 eV for the probe pulse by two stages of second harmonic
generation. The beam profiles for the pump and probe pulses
were 68 × 85 and 38 × 41 µm2 in full width at half maxi-
mum, respectively. The incident fluence of the 1.5 eV pump
was 0.17 mJ/cm2 and sufficiently weak to avoid a nonlinear
response. Previous work found a 9 mJ/cm2 threshold for
frequency chirping [27], and >1 mJ/cm2 leads to phonon
softening in the similar semimetal Bi [28]. Photoelectrons
were collected by a hemispherical analyzer, and spectra were
recorded as a function of pump-probe delay. The overall time
resolution was deduced to be 85 fs from cross-correlations of
pump and probe pulses. The measurement temperature was
20 K. The light incidence plane was along the mirror plane of
the sample, and the pump and probe light polarizations were
p and s, respectively, as shown in Fig. 1(c). Photoelectrons
are collected along the !-K direction of the surface Brillouin
zone as shown by a black arrow in Fig. 1(c). To detect weak
coherent phonon oscillations, our accumulated data required
correction of systematic drifts along the energy, momentum,
and time axes, as described in the Supplemental Material [29].

First-principle calculations were performed on a 9 Sb bi-
layer slab (18 Sb layers) with a 30 Å vacuum layer using
the full-potential augmented-plane-wave method as imple-
mented in the WIEN2K code [30]. Note that Sb bilayers become
topological with !8 bilayers according to a previous DFT
calculation [16]. The experimental lattice structure was used
for the calculation. For the exchange-correlation potential,
the generalized gradient approximation of the Perdew-Burke-

Ernzerhof parameterization [31] was employed with the
spin-orbit interaction taken into account. The Brillouin zone
integration was performed on a 20 × 20 × 1 k-point mesh.
We displaced Sb atoms by ±0.02, ±0.05, and ±0.1% of the
c-axis lattice constant (11.22 Å) along the trigonal axis for the
A1g phonon and by ±0.01, ±0.02, and ±0.05% perpendicular
to the trigonal axis for the Eg phonon. These displacement
values result in binding-energy shifts that are resolvable while
maintaining a linear relationship between the energy shift and
the displacement [29]. The displacement directions for the
A1g and Eg phonons are depicted by red and blue arrows in
Fig. 1(a), respectively. The band structures were calculated
for each displacement, and the obtained binding-energy shift
["εn(k)] as a function of atom displacement ("r) was fit-
ted by a linear function at each momentum to obtain the
proportionality constant "ε/"r, which corresponds to the
deformational potential. In this way, we could minimize and
characterize errors from the DFT calculations [29].

Figure 1(d) shows the equilibrium ARPES spectrum taken
along the !-K direction. The spectrum is consistent with pre-
vious studies [18,32] and has three sharp energy bands marked
by arrows in Fig. 1(d). The band marked by a green arrow is a
bulk band, while the band marked by a red arrow is a surface
band. The band marked by a blue arrow has surface character
near ! but has increasing bulk character as k increases (see
the Supplemental Material for the orbital character of each
band [29]). We thus refer to these three bands as the bulk band
(green arrow), the surface band (red arrow), and the surface +
bulk band (blue arrow) hereafter.

These surface and surface + bulk bands are Rashba-type
spin-split bands [32,33]. However, unlike usual Rashba sys-
tems, the inner band (surface band) connects to the conduction
band, while the outer band (surface + bulk band) connects
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FIG. 2. Measured and simulated evolution of the intensity of different Bragg peaks in (a) the first picosecond after excitation and (b) in a
window of 15 picoseconds. Diamond symbols are used for PD peaks and circles denote Bragg peaks which are also present in the high-symmetry
phase. The thick solid lines in (a) are obtained from the MD simulations by convolution with a Gaussian function to account for the temporal
resolution of the experiment. Peak labels only denote the most prominent peaks of the fit.

experiments are only similar to a certain extent. Additionally,
the determination of an absolute change in intensity of single
peaks is, despite the elaborate data analysis, difficult due to
the diffracted intensity from the amorphous Si3N4, which is
why different scaling factors are applied. The convolution
reduces the amplitude of the oscillations and is an upper
limit of the time resolution of the experiment, as spatially
inhomogeneous excitation [19] might additionally decrease
the amplitude of the observed oscillations. The simulation
reveals that only the peaks related to the Peierls-like distortion
show a large decrease in amplitude, whereas the HS peaks
are predicted to minutely increase in intensity. The frequency
at the excitation density of the experiments is extracted from
the simulations to be 3.9 THz, corresponding to a significant
softening of the mode compared to the 4.5 THz observed in
experiments with low excitation densities [6] and in agreement
with the experimental data (Fig. 2). The amplitude of the Eg

mode, which can be observed in optical and x-ray diffraction
experiments [40,41], is too small to be detected here.

We quantify the incoherent energy transfer from electrons
to the lattice by solving the coupled differential equations
of a TTM, which describe the changes in electronic and
lattice temperature as a function of the temperature difference
between the two subsystems and compute the electron-phonon
coupling from our DFT simulations. The highly excited A1g

mode is excluded from this treatment, following Arnaud
et al. [18]. The energy content of the coherently excited A1g

mode is estimated to be insignificant in the entire energy
balance, justifying this approach. However, the assumption
of a thermal phonon distribution is questionable, as the
coupling of electrons to different phonon branches can vary
significantly [9,18].

The calculated electron-phonon coupling (see Sec. III) is
plotted in Fig. 3(b). We find a pronounced dependence of the
electron-phonon coupling on electronic temperature. A simi-
larly strong dependence has been reported for bismuth [18,42],

which has been explained as a consequence of the strongly
varying electronic density of states near the Fermi level. The
red dashed curves in Fig. 3(b) show the partial coupling
strength of electrons to the acoustic as well as to the optical
phonon branches. For all considered electron temperatures,
the incoherent electron-lattice interaction is dominated by
the coupling to optical phonons. This implies that the two-
temperature approximation fails in out-of-equilibrium states
and that a TTM might not accurately describe the microscopic
energy flow between electrons and lattice. As the TTM is the
commonly applied model, however, at first we continue by
fitting a TTM to our data, compare the obtained electron-
phonon coupling strength to our first principle values and
discuss the implications of nonthermal phonons thereafter.

We calculate the change of atomic mean square displace-
ment from the change of intensity of the HS Bragg peaks via
the relation

〈u2〉(t) −
〈
u2

0

〉
= − 3

4π2

ln(Irel,s(t))
s2

, (3)

where Irel,s is the relative intensity of the Bragg peak with
scattering vector s. Using tabulated values for the temperature
dependence of the Debye-Waller factor [43], the mean-square
displacement is converted into a lattice temperature, which
explicitly assumes the phonons to be in thermal equilibrium.
The MSD is plotted as a function of delay time in Fig. 3(c).

The coupled differential equations of the TTM are solved
and optimized numerically to best reproduce the experimental
values of the lattice temperature and are given by

Ce(Te)
∂Te

∂t
= −Gep(Te)(Te − Tl) + f (t − t0), (4a)

Cl(Tl)
∂Tl

∂t
= Gep(Te)(Te − Tl). (4b)

The function f models the temperature increase of the
electrons by a Gaussian function, the integral of which is
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well described by the equilibrium concept of electron-phonon
coupling.

Our trARPES setup is based on a Ti : sapphire regenera-
tive amplifier outputting 1.5 eV, 35 fs pulses at a repetition
rate of 312 kHz [26]. The photon energy was quadrupled to
6.0 eV for the probe pulse by two stages of second harmonic
generation. The beam profiles for the pump and probe pulses
were 68 × 85 and 38 × 41 µm2 in full width at half maxi-
mum, respectively. The incident fluence of the 1.5 eV pump
was 0.17 mJ/cm2 and sufficiently weak to avoid a nonlinear
response. Previous work found a 9 mJ/cm2 threshold for
frequency chirping [27], and >1 mJ/cm2 leads to phonon
softening in the similar semimetal Bi [28]. Photoelectrons
were collected by a hemispherical analyzer, and spectra were
recorded as a function of pump-probe delay. The overall time
resolution was deduced to be 85 fs from cross-correlations of
pump and probe pulses. The measurement temperature was
20 K. The light incidence plane was along the mirror plane of
the sample, and the pump and probe light polarizations were
p and s, respectively, as shown in Fig. 1(c). Photoelectrons
are collected along the !-K direction of the surface Brillouin
zone as shown by a black arrow in Fig. 1(c). To detect weak
coherent phonon oscillations, our accumulated data required
correction of systematic drifts along the energy, momentum,
and time axes, as described in the Supplemental Material [29].

First-principle calculations were performed on a 9 Sb bi-
layer slab (18 Sb layers) with a 30 Å vacuum layer using
the full-potential augmented-plane-wave method as imple-
mented in the WIEN2K code [30]. Note that Sb bilayers become
topological with !8 bilayers according to a previous DFT
calculation [16]. The experimental lattice structure was used
for the calculation. For the exchange-correlation potential,
the generalized gradient approximation of the Perdew-Burke-

Ernzerhof parameterization [31] was employed with the
spin-orbit interaction taken into account. The Brillouin zone
integration was performed on a 20 × 20 × 1 k-point mesh.
We displaced Sb atoms by ±0.02, ±0.05, and ±0.1% of the
c-axis lattice constant (11.22 Å) along the trigonal axis for the
A1g phonon and by ±0.01, ±0.02, and ±0.05% perpendicular
to the trigonal axis for the Eg phonon. These displacement
values result in binding-energy shifts that are resolvable while
maintaining a linear relationship between the energy shift and
the displacement [29]. The displacement directions for the
A1g and Eg phonons are depicted by red and blue arrows in
Fig. 1(a), respectively. The band structures were calculated
for each displacement, and the obtained binding-energy shift
["εn(k)] as a function of atom displacement ("r) was fit-
ted by a linear function at each momentum to obtain the
proportionality constant "ε/"r, which corresponds to the
deformational potential. In this way, we could minimize and
characterize errors from the DFT calculations [29].

Figure 1(d) shows the equilibrium ARPES spectrum taken
along the !-K direction. The spectrum is consistent with pre-
vious studies [18,32] and has three sharp energy bands marked
by arrows in Fig. 1(d). The band marked by a green arrow is a
bulk band, while the band marked by a red arrow is a surface
band. The band marked by a blue arrow has surface character
near ! but has increasing bulk character as k increases (see
the Supplemental Material for the orbital character of each
band [29]). We thus refer to these three bands as the bulk band
(green arrow), the surface band (red arrow), and the surface +
bulk band (blue arrow) hereafter.

These surface and surface + bulk bands are Rashba-type
spin-split bands [32,33]. However, unlike usual Rashba sys-
tems, the inner band (surface band) connects to the conduction
band, while the outer band (surface + bulk band) connects

L161107-2

S. SAKAMOTO et al. PHYSICAL REVIEW B 105, L161107 (2022)

FIG. 1. (a) Top and side views of the crystal structure of Sb. Blue and red arrows represent the atom displacement for the A1g and Eg

phonons, respectively. (b) Bulk and surface Brillouin zone of Sb. (c) Experimental geometry. (d) Equilibrium experimental angle-resolved
photoemission spectroscopy (ARPES) spectrum along the !-K direction. (e) and (h) Coherent phonon-induced binding-energy oscillations
and the Fourier power spectra for the bulk band, (f) and (i) the surface + bulk band, and (g) and (j) the surface band, marked by green, blue,
and red arrows in panel (d), respectively. The gray curves in panels (e)–(g) are fitted curves.

well described by the equilibrium concept of electron-phonon
coupling.

Our trARPES setup is based on a Ti : sapphire regenera-
tive amplifier outputting 1.5 eV, 35 fs pulses at a repetition
rate of 312 kHz [26]. The photon energy was quadrupled to
6.0 eV for the probe pulse by two stages of second harmonic
generation. The beam profiles for the pump and probe pulses
were 68 × 85 and 38 × 41 µm2 in full width at half maxi-
mum, respectively. The incident fluence of the 1.5 eV pump
was 0.17 mJ/cm2 and sufficiently weak to avoid a nonlinear
response. Previous work found a 9 mJ/cm2 threshold for
frequency chirping [27], and >1 mJ/cm2 leads to phonon
softening in the similar semimetal Bi [28]. Photoelectrons
were collected by a hemispherical analyzer, and spectra were
recorded as a function of pump-probe delay. The overall time
resolution was deduced to be 85 fs from cross-correlations of
pump and probe pulses. The measurement temperature was
20 K. The light incidence plane was along the mirror plane of
the sample, and the pump and probe light polarizations were
p and s, respectively, as shown in Fig. 1(c). Photoelectrons
are collected along the !-K direction of the surface Brillouin
zone as shown by a black arrow in Fig. 1(c). To detect weak
coherent phonon oscillations, our accumulated data required
correction of systematic drifts along the energy, momentum,
and time axes, as described in the Supplemental Material [29].

First-principle calculations were performed on a 9 Sb bi-
layer slab (18 Sb layers) with a 30 Å vacuum layer using
the full-potential augmented-plane-wave method as imple-
mented in the WIEN2K code [30]. Note that Sb bilayers become
topological with !8 bilayers according to a previous DFT
calculation [16]. The experimental lattice structure was used
for the calculation. For the exchange-correlation potential,
the generalized gradient approximation of the Perdew-Burke-

Ernzerhof parameterization [31] was employed with the
spin-orbit interaction taken into account. The Brillouin zone
integration was performed on a 20 × 20 × 1 k-point mesh.
We displaced Sb atoms by ±0.02, ±0.05, and ±0.1% of the
c-axis lattice constant (11.22 Å) along the trigonal axis for the
A1g phonon and by ±0.01, ±0.02, and ±0.05% perpendicular
to the trigonal axis for the Eg phonon. These displacement
values result in binding-energy shifts that are resolvable while
maintaining a linear relationship between the energy shift and
the displacement [29]. The displacement directions for the
A1g and Eg phonons are depicted by red and blue arrows in
Fig. 1(a), respectively. The band structures were calculated
for each displacement, and the obtained binding-energy shift
["εn(k)] as a function of atom displacement ("r) was fit-
ted by a linear function at each momentum to obtain the
proportionality constant "ε/"r, which corresponds to the
deformational potential. In this way, we could minimize and
characterize errors from the DFT calculations [29].

Figure 1(d) shows the equilibrium ARPES spectrum taken
along the !-K direction. The spectrum is consistent with pre-
vious studies [18,32] and has three sharp energy bands marked
by arrows in Fig. 1(d). The band marked by a green arrow is a
bulk band, while the band marked by a red arrow is a surface
band. The band marked by a blue arrow has surface character
near ! but has increasing bulk character as k increases (see
the Supplemental Material for the orbital character of each
band [29]). We thus refer to these three bands as the bulk band
(green arrow), the surface band (red arrow), and the surface +
bulk band (blue arrow) hereafter.

These surface and surface + bulk bands are Rashba-type
spin-split bands [32,33]. However, unlike usual Rashba sys-
tems, the inner band (surface band) connects to the conduction
band, while the outer band (surface + bulk band) connects

L161107-2

Antimony (Sb)

1.5,..---------.,.-, -----------, 
-.1.51 A1g 

1.0 

0.5 

00 

II (2.9THz) 

OJ I 
I <joel., , 

0.0 1.0 2.0 3.0 4.0 5.0 I 
V (THz) 

l' ::{ 

J 
-1.0 

0.0 1.0 2.0 3.0 4.0 

Time (ps) 

FIG. I. Normalized pump-probe data of AR vs lime delay for a single-
crystal bismuth sample (oriented in the [Ill] direction) and for a bis-
muth film sample (800 A). Intensity oscillations with a period of 0.34 ps 
arc observed. Shown in the inset is the Fourier transform llR ( v) of the 
single crystal pump-probe data. The frequency of oscillation is 2.9 THz 
and corresponds to the A Ig mode_ The previously reported frequencies of 
the A ig mode at 2.9 THz and the Eg modl'S at 2.2 THz are indicated. 

are plotted as a function of time delay. (Results in Fig. 1 
are for both single-crystal bismuth and an 800 A bismuth 
film). These oscillations are found superimposed on a de-
caying background associated with the carrier relaxation 
dynamics of the system. However, in this letter we direct 
our attention to the oscillations in 6.R which we attribute 
to lattice vibrations that modify the index of refraction in 
the excited vOlume. We note that the observed modulation 
of the reflected intensity depends linearly on the change in 
index of refraction (A.n) and therefore linearly on the pho-
non amplitUde. Consequently, the pump-probe data can be 
related through a Fourier transform to the phonon fre-
quency spectrum directly without the frequency mixing 
terms introduced bv diffraction ISRS, where the observed 
intensity variation is proportional to (i:w) 2. 

The basis for a phonon-related interpretation of the 
oscillztory b.R is the obServation that the oscillation fre-
quency occurs at 2,9 THz in bismuth and 4.5 THz in an-
timony, as determined from the Fourier transform of the 
b.R plots shown in the insets of Figs. 1 and 2. These fre-
quencies are in excellent agreement with the A 1;; phonon 
frequencies obtained through spontaneous Raman 
scattering7•8 and through inelastic neutron scattering'l·lO 
(at k = 0) in bismuth THz) and antimony (-4.5 
THz). Because the penetration depth of the light is much 
larger than the lattice constant, the observed mode fre-
quency is in good agreement with that for the bulk A 19 
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FIG. 2. Normalized pump-probe data of llR liS time delay for single-
crystal antimony (oriented in the [111] direction J. Intensity oReitlations 
with a period of 0.22 ps are observed. Shown in the inset is the Fourier 
transform I:>R (v) of the pump-probe data. The frequency of oscillation is 
4.5 THz and corresponds to the AI mode. The previously reported fre-
quencies of the Aj mode at 4.5 THz and the Eg modes at 3.5 THz are 
indicated. 

phonons and not with that fer the surface phonons; we 
thus conclude that the coherent phonon generation is a 
bulk phenomenon and not a surface effect, 

The Fourier transform of the data also 
gives an estimate of the linewidth of the oscillation at the 
observed phonon frequencies. This linewid1h gives infor-
mation about the damping of the lattice ringing through 
the Q value (Q = v/dv). When compared to the sponta-
neous Raman scattering data, 8 the Q value for single-
crystal bismuth (Q-lO), extracted from the Fourier 
transfonn of t::.R versus time, is a factor of 2/3 smaller. In 
the case of single-crystal antimony, the Q value (Q - 23) is 
a factor 5/4 larger. 

To confirm that we were indeed observing an intrinsic 
property of the material and not an experimental artifact 
(e.g., mUltiple reflections of sound waves in the sample) 
the same pump-probe experiment was done on polycrys-
talline bismuth films of varying thicknesses, on poUshed 
polycrystaUine bismuth rods, and on single-crystal bis-
muth. In each case, oscillations in f..R with the same fre-
quency were found. However, the best signal-to-noise ra-
tios were achieved in the single-crystal samples. Similarly, 
the single-crystal antimony data demonstrated a better 
signal-to-noise ratio than the polycrystaHine antimony data 
(polished rod). 

Although both A 19 and E" modes have been observed 
in spontaneous Raman scattering experiments using single 
crystals,7,o our pump-probe data only indicate the excita-
tion of the fully symmetrical A 1g optical mode in both bis-
muth and antimony. If the excitation of the coherent pho-
nons were strictly a stimulated Raman process, one would 
expect to find Eg mode oscillations in the b.R pump-probe 
data with roughly 1/4 the amplitude of the A]g mode 
oscillations.7 A careful search for the Eg mode was made 
on antimony by considering different crystal faces ([ 111 J 
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Cheng et al,  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Incoherent phonons in diffraction experiments: the case of graphite 

MAPPING MOMENTUM-DEPENDENT ELECTRON-PHONON … PHYSICAL REVIEW B 97, 165416 (2018)

FIG. 2. Evolution of !I (q,τ ) following photoexcitation of graphite (35 fs, 800 nm, 12 mJ/cm2). The dramatic changes reflect the
nonequilibrium phonon populations and their time dependence. (a) Raw diffraction pattern of graphite along the [001] zone axis showing
sixfold symmetry of the graphene planes. (b) Differential scattering flat field !I (q,τ ) at a time before optical excitation indicating signal to
noise. (c) !I (q,0.5 ps) provides a map of the relative strength of the q-dependent EPC coupling through the increased occupancy of strongly
coupled modes. Peaks in !I (q,0.5 ps) at the K points surrounding {21̄0} (circled) result from the increase in K-A′

1 population and outline the
hexagonal BZ. Scattering from the #-E2g TO phonon is forbidden around {21̄0}, but strong coupling to the entire TO branch is evident in the
vicinity of {200} as ridges of intensity radiating from # (the Bragg peak) to K points. (d)–(f) Nonequilibrium phonon dynamics: relaxation of
the transient population of strongly coupled optical modes. (d) At 1.5 ps the peaks evident at K points in panel (c) have disappeared and diffuse
intensity now appears halfway between {21̄0} and the BZ edge (inset), but is still absent in the M and #{21̄0} regions. (e) By 5 ps, the character
of !I (q,τ ) has changed dramatically to bands of intensity in the #{21̄0}-M-#{200} direction approximately orthogonal to q, with troughs near
#{21̄0} remaining. (f) At 100 ps the #{21̄0}-M-#{200} bands have become sharper and the troughs near #{21̄0} have filled in. Strong halos of diffuse
intensity are present around the {100} and {110} families of peaks are evident (inset). These halos are weak, but present at 5 ps [inset, panel
(e)].

flows preferentially to modes with strong EPC and these are the
first to show an increase in diffuse scattering [Fig. 2(c)]. Here,
we observe diffuse scattering peaks (FWHM = 0.12 Å

−1
) at

the K points along the reflection axes, near the {21̄0} family
of peaks (where scattering from the K-A′

1 mode is allowed)
and along starlike ridges joining #{200}-K (where TO branch
scattering is allowed). The phonon dispersion relation of
graphite [Fig. 1(b)] shows strong softening of the LO branch
near # and the TO branch near K due to Kohn anomalies
[36–38]. Earlier work suggested these strongly coupled modes
as the initial reservoir into which the electronic excitation
energy flows [32] and our results confirm that hypothesis.
Time-resolved Raman has previously been employed to follow
the the occupancy of the zone center #-E2g mode showing
that it is indeed strongly coupled [14,17]. Evidence for strong
coupling to the off-zone-center K-A′

1 mode, however, has
previously only been indirect. The peaks in Fig. 2(c) represent a
direct observation of this effect. In addition, Fig. 2(c) indicates
that coupling is strong for the entire TO branch between #-K ,
not only for the #-E2g mode.

The character of the differential diffuse scattering pattern
changes dramatically through Figs. 2(c)–2(f) as the nonequilib-
rium phonon distribution evolves, demonstrating the profound

sensitivity to the details of the phonon occupancies. The
complete time dependence of the diffuse intensity at selected
BZ points is shown in Fig. 3. Scattering from the K-A′

1
mode is forbidden by symmetry at the K points immediately
proximate to the reflection axes (indicated by green in the
inset); only LO phonon scattering is observed at these points
[35]. Thus, !I (q,τ ) at this point shows a qualitatively distinct
time dependence [Fig. 3(b), green] versus K points along the
reflection axes at which scattering from the K-A′

1 mode is
allowed [Fig. 3(b), red]. This includes a much slower initial
rise; 730 fs (K-LO) compared to 280 fs (K-TO). Intensity near
{200} [Fig. 3(b), cyan] reports on the occupancy of the strongly
coupled #-E2g TO mode at early times, and exhibits a slower
rise (430 fs) than the K-A′

1 mode. For comparison, the #-E2g

phonon population determined using TR-Raman [14] is shown
in gray. The #-E2g phonon population dynamics determined
by TR-Raman is nearly identical to that shown for the K-A′

1
phonon population (red curve) in terms of both rise time
and decay/recovery. The dynamics of both strongly coupled
optical phonons (SCOPs) is very similar, showing a rapid
increase in population due to strong EPC and then a subsequent
depopulation via PPC and relaxation to lower frequencies. The
slower rise time observed for the #-E2g phonon by UEDS is

165416-3

Ultrafast diffraction as a probe to 
non-equilibrium phonon population

Graphite

nqν(t) ≠ nBE
qν = [eℏωqν/kBT − 1]−1

Stern, Siwick, et al, Phys. Rev. B 97, 165916 (2018)



Tailoring quasiparticle interactions on subpicosecond timescales

coming soon: 

THz

excitons

cavity

Intense THz pulses

5-20 THz
200 mJ/cm2

Reversal of Ferroelectric 
polarization in LiNbO3 
Mankowsky, Cavalleri et al.,  
Phys. Rev. Lett. 118, 197601 (2017)

Cavity QED & Polaritons

Tunable phonon polaritons for hBN 
embedded in a optical micro-cavity 
Barra-Burrillo, Hillenbrand et al.,  
Nature Commun. 12, 6206 (2021)

Optical excitations

Ultrafast lattice distortion during 
exciton formation in perovskites 
Seiler, Ernstorfer et al.,  
ACS Nano 17, 1979 (2023)



Open challenges in ab-initio theory of light-driven structural control

1. Ab-initio description of excitation, dynamics, dissipation of the lattice


2. Novel paradigms for structural control require new theories


3. Many-body interactions and quasiparticle excitations in light-driven solids

4. Develop open-access algorithms suitable for modern HPC infrastructure


5. Go FAIR: Findability, Accessibility, Interoperability, and Reuse of time-dependent data

iℏ∂ tΨ
= ĤΨ

... require efforts from an entire community! 


• Scheffler, Draxl, et al, Nature 604, 635 (2022)

• Schlavin et al., Appl. Phys. Rev. 9, 011312 (2022)

• de la Torre, et al. Rev Mod. Phys. (2021)

• Disa et al., Nat. Phys. 17,1087 (2021)

• Basov et al., Nat. Mater 16, 1077 (2017)

• ... and many more 



Challenges in ab-initio theory of ultrafast dynamics
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Workflow for ultrafast dynamics simulations

Band structure (DFT) 
Phonon dispersion (DFPT)1.

Model coupling to light pulse  
(or excited state Ansatz)2.

Time propagation3.

Transient many-body effects 
and emergent phenomena

4.

Theoretical spectroscopy:  
tr-ARPES, Raman, scattering

5.
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Figure 3. Electron distribution function fnk superimposed to the band structure of monolayer MoS2. Energies
are relative to the Fermi level. At equilibrium (left), bands are occupied according to the Fermi-Dirac statistics
(Eq. (12)). Adapted from Ref. [144].

electron-phonon systems. In the TDBE, the dynamics of electronic and vibrational
excitations are described by changes of the electron and phonon distribution func-
tions fnk(t) and nq⌫(t), respectively, whereas electron and phonon energies are left
unchanged throughout the dynamics. At thermal equilibrium, fnk and nq⌫ are time
independent and they coincide with the Fermi-Dirac and the Bose-Einstein occupa-
tions f
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Here, "F is the Fermi energy, "nk is the single-particle energy of a Bloch electron, and
~!q⌫ the phonon energy. This case is exemplified by the left panel of Fig. 3, where
the Fermi-Dirac occupations are superimposed to the band structure of monolayer
MoS2, with yellow (blue) denoting fully occupied (empty) states with fnk = 1 (fnk =
0). In this framework, a regime of non-equilibrium requires either fnk or nq⌫ (or
both) to di↵er from the equilibrium Fermi-Dirac and the Bose-Einstein occupations,
as illustrated in the right panel of Fig. 3. The non-equilibrium distributions change
over time, and their dynamics is determined by the TDBE:

@tfnk(t) = �nk(t) (14)

@tnq⌫(t) = �q⌫(t) , (15)

where @t = @/@t and �nk and �q⌫ denote the collision integrals for electrons and
phonons. The numerical solution of Eqs. (14) and (15) requires the development of
suitable approximations for the evaluation of the collision integrals. In short, �nk and
�q⌫ account for the several scattering mechanisms which may lead to changes of the dis-
tributions functions as, e.g., electron-electron, electron-phonon, phonon-phonon, and
impurity scattering as well as the coupling to external fields. The recent development
of electronic structure codes for the study of electron-phonon and phonon-phonon cou-
pling has enabled to estimate the contribution of these scattering processes to collision
integrals, enabling the investigation of the coupled electron-phonon dynamics entirely
from first principles [33,59,134,143,144].
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Figure 2. a-d Calculated spectral function of graphene at equilibrium (t < 0) and at several time delays. t = 0 corresponds
to the e Electron band structure of graphene obtained from DFT calculations. The inset illustrates the Brillouin zone and
high-symmetry points. f-g Change in spectral intensity relative to equilibrium for t = 0 and 0.5 ps. h-i Simulated pump-probe
signal reproduced from Ref. [].

Fig. 2 (e), along the K-� high-symmetry in the Brillouin
zone (inset in Fig. 2 (e)). Photoemission experiments
conducted with linearly polarized (probe) light direction
yield vanishing photoemission intensity close to the Dirac
point along the �-K for the ⇡ (⇡⇤) band if s-polarized (p-
polarized) light is used as probe. Correspondingly, only
quasiparticle states above or below the Dirac point are
probed. The polarization-dependent intensity has been
attributed to the symmetry character of the ⇡ and ⇡⇤

bands (B2 and A2, respectively) which leads to vanish-
ing optical dipole matrix elements, corresponding to zero
photoemission intensity [13, 14]. As our calculations not
account for dipole selection rules, the spectral functions
of Figs. 2 (a-d) are representative of a scenario in which
both ⇡ and ⇡⇤ bands exhibit similar optical dipole matrix
elements, such as in the case circularly polarized probe.

Before the switching on of the pump (t < 0), the
spectral function coincides with the results of ordinary
electron-phonon coupling calculations at room temper-
ature [], and it is in good agreement with previous
studies. In short, the quasiparticle peaks exhibit a fi-
nite broadening which results from the finite lifetimes
of photoexcited holes. When the pump is switched o↵
(t = 0), the increase of lattice and electronic temper-

ature resulting from the photoexcitation of the system
manifests themselves in the angle-resolved spectral func-
tion primarily through the thermal excitation of carriers
across the Fermi surface. While 0.5 ps after photoexcita-
tion (Fig. 2 (c)) the weakening of these features reflects
the partial thermalization of the photoexcited carriers,
whereas after 2.5 ps (Fig. 2 (d)) the system has returned
to equilibrium.

The relative change in photoemission intensity as a
function of time delay – obtained as the di↵erence to the
spectral function before pump and reported in Figs. 2 (f-
g) – provide further insight into the spectral fingerprints
of quasiparticle dynamics in time-resolved ARPES. The
most prominent change in the spectral function results
from the enhanced concentration of electrons (holes)
above (below) the Fermi surface, resulting from the high
transient temperature of photoexcited graphene. At zero
pump-probe delay, this feature is manifested by a pro-
nounced spectral intensity gain (blue), extending up to
1 eV above the Fermi energy, and a corresponding in-
tensity loss (red) for binding energies up to 1 eV. The
energy range of this gain-loss pattern is closely related
to the thermal energy Eth = kbTel corresponding to the
transient electronic temperature. At 0.5 ps after pump,

tr-ARPES
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Phonons at equilibrium: monolayer MoS2
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Figure 3. Electron distribution function fnk superimposed to the band structure of monolayer MoS2. Energies
are relative to the Fermi level. At equilibrium (left), bands are occupied according to the Fermi-Dirac statistics
(Eq. (12)). Adapted from Ref. [144].

electron-phonon systems. In the TDBE, the dynamics of electronic and vibrational
excitations are described by changes of the electron and phonon distribution func-
tions fnk(t) and nq⌫(t), respectively, whereas electron and phonon energies are left
unchanged throughout the dynamics. At thermal equilibrium, fnk and nq⌫ are time
independent and they coincide with the Fermi-Dirac and the Bose-Einstein occupa-
tions f
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Here, "F is the Fermi energy, "nk is the single-particle energy of a Bloch electron, and
~!q⌫ the phonon energy. This case is exemplified by the left panel of Fig. 3, where
the Fermi-Dirac occupations are superimposed to the band structure of monolayer
MoS2, with yellow (blue) denoting fully occupied (empty) states with fnk = 1 (fnk =
0). In this framework, a regime of non-equilibrium requires either fnk or nq⌫ (or
both) to di↵er from the equilibrium Fermi-Dirac and the Bose-Einstein occupations,
as illustrated in the right panel of Fig. 3. The non-equilibrium distributions change
over time, and their dynamics is determined by the TDBE:

@tfnk(t) = �nk(t) (14)

@tnq⌫(t) = �q⌫(t) , (15)

where @t = @/@t and �nk and �q⌫ denote the collision integrals for electrons and
phonons. The numerical solution of Eqs. (14) and (15) requires the development of
suitable approximations for the evaluation of the collision integrals. In short, �nk and
�q⌫ account for the several scattering mechanisms which may lead to changes of the dis-
tributions functions as, e.g., electron-electron, electron-phonon, phonon-phonon, and
impurity scattering as well as the coupling to external fields. The recent development
of electronic structure codes for the study of electron-phonon and phonon-phonon cou-
pling has enabled to estimate the contribution of these scattering processes to collision
integrals, enabling the investigation of the coupled electron-phonon dynamics entirely
from first principles [33,59,134,143,144].

8

Bose-Einstein statistics: 

Vibrational temperature: 

initial electronic distribution can be estimated via ΔEel =
f T f Tkd ( ) ( )n n n nk k kBZ

1 FD
el
0 FD

ph
0∫ εΩ ∑ [ − ]− , which yields ΔEel =

35 meV per unit cell for the conditions specified above.
In Figure 2a, the electron distribution function f nk(t = 0)

corresponding to the initial excited state is superimposed to the
band dispersion of monolayer MoS2. Bright regions in the
conduction band reflect the initial population of excited
electrons, whereas dark regions in the valence band indicate
the hole population. The distribution function f nk0 further
illustrated in the full BZ in panels d and g of Figure 2 for the
conduction and valence bands, respectivelyindicates that
excited electrons (holes) primarily occupy states in the vicinity
of the K and Q (K and Γ) high-symmetry points.
Panels b and c of Figure 2 report the electronic occupations f nk

in the valence and conduction bands, respectively, throughout
the first 2 ps of the dynamics. Because radiative recombination is
neglected here, the total density of excited electrons and holes
remains constant throughout the dynamics. The qualitative
agreement between the temperature dependence of the Fermi−
Dirac function (Figure S4 of the Supporting Information) and
the changes of the electronic occupations suggests an intuitive
picture of the electron dynamics, whereby thermalization is
achieved through a progressive lowering of the effective
electronic temperature. It takes about 800 fs for excited holes
in the valence band to thermalize with the lattice, whereas the
electronic relaxation in the conduction band is completed within
2 ps. These time scales are in excellent agreement with recent
femtosecond electron diffraction measurements on monolayer
MoS2,

57 which estimated 1.7 ± 0.3 ps for the time scale for
electronic thermalization via electron−phonon scattering,
whereas relaxation time scales of the order of 1 ps have been
reported for few-layer samples.58 The different time scales for
electron and hole relaxation can be ascribed to the coexistence of
three quasi-degenerate valleys at Γ, K, and K′ in the valence
band, which in turn provide for a larger phase space for
electron−phonon scattering. As electrons and the lattice
approach thermal equilibrium, f nk converges toward a Fermi−

Dirac function with final temperature Tel
fin = 180 K (dark blue in

Figure 2b,c).
Interestingly, while the distribution function f nk remains

monotonic in the valence band at each time step, revealing no
traces of population inversion, a transient peak in the electronic
occupations of the conduction band (arrow in Figure 2c)
emerges over the first 300 fs at 200 meV above the conduction-
band minimum, the energy of the 6-fold degenerate Q pocket.
This feature indicates that a bottleneck effect in the carrier
relaxation may occur at Q, leading to a transient accumulation of
hot carriers around the Q point, and it suggests that, similarly to
WS2,

17 a regime of population inversion might be established in
monolayer MoS2 under suitable conditions of photoexcitation.
A momentum-resolved view of the electron and hole

dynamics is given by Figures 2 (panels e and f and h−i),
where values of f nk in the full BZ are shown for the conduction
and valence bands at selected time snapshots. Throughout the
dynamics, excited electrons and holes remain localized in
momentum space in the vicinity of the K and Γ high-symmetry
points in the valence band and around K and Q in the
conduction band. As time evolves, the occupation of electronic
states in the BZ, initially more diffused owing to the higher
electronic temperature, localizes further in the vicinity of high-
symmetry points. This trend reflects a lowering of the electronic
temperature as energy is transferred to the lattice and carriers
scatter back to the Fermi energy.
Having discussed the dynamics of excited electrons and holes,

I proceed next to discuss the out-of-equilibrium dynamics of the
lattice. The effective vibrational temperature is defined as

T t k n t( ) ln 1 ( )q q qB
1ω= ℏ { [ + ]}ν ν ν

−
(5)

and it is obtained by inverting the Bose−Einstein distribution
(eq 2). At variance with nqν, Tqν becomes constant throughout
the BZ at thermal equilibrium, and it is therefore better suited
(but otherwise equivalent) to inspect the nonequilibrium
dynamics of the lattice. Interpretation of Tqν as a thermody-
namic temperature, however, is rigorously justified only at
thermal equilibrium. Figures 3a−e reports the average vibra-

Figure 2.Nonequilibrium dynamics of electrons and holes in monolayerMoS2. (a) DFT band structure and Fermi−Dirac occupations (superimposed
as a color coding) for an initial excited electronic state f nk(t = 0). The band gap is shaded, and different color scales are used for conduction and valence
states, respectively. Time and energy dependence of the electron distribution function f nk in the valence (b) and conduction (c) bands. The
conduction-band energy is relative to the energy of the Kohn−Sham band gap (Δ = 1.7 eV). Time- and momentum-resolved electronic distribution
function f nk for crystal momenta in the full BZ for the conduction (d−f) and valence (g−i) bands at times t = 0, 0.5, and 2 ps.
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Figure 3. Electron distribution function fnk superimposed to the band structure of monolayer MoS2. Energies
are relative to the Fermi level. At equilibrium (left), bands are occupied according to the Fermi-Dirac statistics
(Eq. (12)). Adapted from Ref. [144].

electron-phonon systems. In the TDBE, the dynamics of electronic and vibrational
excitations are described by changes of the electron and phonon distribution func-
tions fnk(t) and nq⌫(t), respectively, whereas electron and phonon energies are left
unchanged throughout the dynamics. At thermal equilibrium, fnk and nq⌫ are time
independent and they coincide with the Fermi-Dirac and the Bose-Einstein occupa-
tions f
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Here, "F is the Fermi energy, "nk is the single-particle energy of a Bloch electron, and
~!q⌫ the phonon energy. This case is exemplified by the left panel of Fig. 3, where
the Fermi-Dirac occupations are superimposed to the band structure of monolayer
MoS2, with yellow (blue) denoting fully occupied (empty) states with fnk = 1 (fnk =
0). In this framework, a regime of non-equilibrium requires either fnk or nq⌫ (or
both) to di↵er from the equilibrium Fermi-Dirac and the Bose-Einstein occupations,
as illustrated in the right panel of Fig. 3. The non-equilibrium distributions change
over time, and their dynamics is determined by the TDBE:

@tfnk(t) = �nk(t) (14)

@tnq⌫(t) = �q⌫(t) , (15)

where @t = @/@t and �nk and �q⌫ denote the collision integrals for electrons and
phonons. The numerical solution of Eqs. (14) and (15) requires the development of
suitable approximations for the evaluation of the collision integrals. In short, �nk and
�q⌫ account for the several scattering mechanisms which may lead to changes of the dis-
tributions functions as, e.g., electron-electron, electron-phonon, phonon-phonon, and
impurity scattering as well as the coupling to external fields. The recent development
of electronic structure codes for the study of electron-phonon and phonon-phonon cou-
pling has enabled to estimate the contribution of these scattering processes to collision
integrals, enabling the investigation of the coupled electron-phonon dynamics entirely
from first principles [33,59,134,143,144].
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electron-phonon systems. In the TDBE, the dynamics of electronic and vibrational
excitations are described by changes of the electron and phonon distribution func-
tions fnk(t) and nq⌫(t), respectively, whereas electron and phonon energies are left
unchanged throughout the dynamics. At thermal equilibrium, fnk and nq⌫ are time
independent and they coincide with the Fermi-Dirac and the Bose-Einstein occupa-
tions f
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Here, "F is the Fermi energy, "nk is the single-particle energy of a Bloch electron, and
~!q⌫ the phonon energy. This case is exemplified by the left panel of Fig. 3, where
the Fermi-Dirac occupations are superimposed to the band structure of monolayer
MoS2, with yellow (blue) denoting fully occupied (empty) states with fnk = 1 (fnk =
0). In this framework, a regime of non-equilibrium requires either fnk or nq⌫ (or
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Thermalization of electrons and lattice from the two-temperature model (TTM)

Caruso, Novko, Adv. Phys. X 7, 2095925 (2022)

Eel = celTel Eph = cphTph
Tel Tph

un
co

up
le

d
electrons phonons electrons and phonons as two thermal baths

g

Dynamics as a thermalization 
of 2 thermal baths:

ΔEel

Δt
= gel(Tph − Tel)

ΔEph

Δt
= gph(Tel − Tph)1

ΔEel = − ΔEphEnergy conservation: gel = gph2

cel
ΔTel

Δt
= = g(Tph − Tel)

cph
ΔTph

Δt
= = g(Tel − Tph)

3
TTM: coupled first-order differential equation 
for the temperature of the electrons and lattice cel

∂Tel

∂t
= = g(Tph − Tel)+S(t)

cph
∂Tph

∂t
= = g(Tel − Tph)

infinitesimal 
time step

4

Two-temperature model

Cel(T ) = ∫
∞

∞
dεDel(ε)ε

∂f (μ, ε, Tel)
∂Tel

Electron heat capacity Phonon heat capacity 

Cph(T ) = ∫
∞

0
d(ℏω)Dph(ω)ℏω

∂n (ω, Tph)
∂Tph

Coupling constant

g = πkB

ℏDel (εF)
λ ⟨ω2⟩∫

∞

−∞
dεD2

el(ε)(−
∂f (μ, ε, Tel)

∂ε )

All quantities available from first principles (parameter-free)

driving term 
(coupling to light)



Figure 1. Schematic representation of two thermal reservoirs at temperatures T1 and T2 > T1 and energies
E1 = C1T1 and E2 = C2T2 – where C1 and C2 denote the heat capacities – in absence of interactions (a), in
presence of mutual interactions characterized by a coupling constant g (c), and in presence of an external field
(e). (b), (d), and (f): Time dependence of the temperature for the systems in (a), (c), and (e), respectively, as
obtained from the solution of the TTM.

mediately obtained from calculations based on density-functional theory and density-
functional perturbation theory [156], respectively, the parameters g can be estimated
from first-principles calculations of the Eliashberg function via well-established simula-
tion packages [157]. This procedure enables the solution of the TTM entirely ab-initio,
without resorting to free parameters [50,55,62,68,79]. Alternatively, the g can be de-
duced by experimental data, e.g., by fitting Eq. (9) to pump-probe photoemission
measurements (see, e.g., Sec. 4) [76].

As discussed in Sec. 3.2, the application of the TTM to the non-equilibrium dynam-
ics of electrons and phonons in solids can be justified through its formal derivation
from the time-dependent Boltzmann equation [44]. The description of ultrafast pro-
cesses via Eqs. (3) and (4), however, entails two main approximations: (i) at each time
steps throughout the dynamics, electrons are assumed to populate electronic bands
according to a Fermi-Dirac function at the e↵ective temperature Tel; (ii) the lattice
is assumed to be at thermal equilibrium throughout the dynamics, i.e., all bosonic
occupations are described by the Bose-Einstein statistics at the e↵ective temperature
Tph. These approximations limit the domain of applicability of the TTM. Because
of the approximation (i), the TTM is unsuitable to describe the early stages of the
electron dynamics (t < 100 fs), which can be characterized by population inversion,
the anisotropic excitation of electron-hole pairs in the Brillouin zone, and electron-
electron scatterings. The domain of application of the TTM is thus restricted to met-
als, semimetals, and doped semiconductors with short electron thermalizaton times,
since, on the other hand, electronic excitations in gapped systems (e.g., semiconduc-
tors) are inherently linked to a regime of population inversion that cannot be properly
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Thermalization of electrons and lattice from the two-temperature model

Two-temperature model (TTM) cel
∂Tel

∂t
= = g(Tph − Tel)+S(t) cph

∂Tph

∂t
= = g(Tel − Tph)

Caruso, Novko, Adv. Phys. X 7, 2095925 (2022)

Limitations:  
• Non-equilibrium states characterized by a single temperature 
• The electron subsystem is at thermal equilibrium:  

 
• The phonon subsystem is at thermal equilibrium:  

 

• Only applicable to metals

Tel → fnk(Tel) = [e(εnk−μ)/kBTel + 1]−1

Tph → nqν(Tph) = [e(ℏωqν)/kBTph − 1]−1

Figure 2. (a) Schematic illustration of the TTM and (b) NLM. At variance with the TTM, the NLM ac-
counts for coupling with di↵erent subsets of phonon modes, as well as phonon-phonon interactions. (c) Time-
dependence of the electronic (blue) and vibrational temperatures of the longitudinal (LA) and transverse
acoustic phonons (TA1 and TA2) of aluminum. Reproduced from Ref. [40].

modeled via a Fermi-Dirac function. Additionally, the approximation (ii) makes the
TTM unsuitable to describe the non-equilibrium dynamics of the lattice. The TTM
is sometimes extended to model the population inversion and other forms of nascent
non-equilibrium distributions by defining separately electron and hole thermal baths
[160], i.e., electron and hole temperatures [161], or by dividing the electronic bath into
a majority of thermal and a small portion of non-thermal carriers [51,90,117,118].
However, in these extensions, the issue of thermalized lattice bath (ii) is still present.
In the following, we discuss how this limitation can be overcome by extending the
TTM to account for anisotropic coupling to di↵erent phonon modes.

2.1. The non-thermal lattice model

Ultrafast di↵use-scattering experiments and first-principles calculations provide strong
evidence that non-thermal regimes of the lattice – i.e., vibrational states characterized
by bosonic occupations which deviate significantly from the Bose-Einstein statistics –
can be established upon photo-excitation in both semiconducting and metallic layered
compounds, such as, black phosphorus [147], MoS2 [146], graphite [85], graphene [145],
and TiS2 [154]. Even for simple metals such as Al, the anisotropic coupling between
electrons and acoustic phonons can trigger the emergence of a non-equilibrium vibra-
tional states persisting for several picoseconds [40]. Generally, whenever the electron-
phonon interaction is dominated by one or several strongly-coupled modes, these lattice
vibrations may provide a preferential decay channel for the relaxation of photo-excited
electrons and holes [81]. As mentioned in the introduction, such a scenario can lead to
the formation of hot phonons, i.e., a non-thermal state of the lattice [76,78,82,126,127].
Because of the assumption that the lattice can be described by a Bose-Einstein dis-
tribution at temperature Tph, the TTM is unsuitable to describe these phenomena
[40,85,147]

To enable the description of hot phonons and non-thermal states of the lattice,
a generalization of the TTM to account for anisotropies in the coupling with di↵er-
ent subsets of lattice vibrations – referred to as non-thermal lattice model (NLM)
[40,62,122,123] or three-temperature model [81,82], depending on the level of approx-
imation – has recently been proposed. In short, while in the TTM the electrons are
coupled to the lattice via a single coupling constant g [Fig. 2 (a)], in the NLM the
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1. Non-thermal lattice model (NLM)

L. Waldecker, R. Bertoni, R. 
Ernstorfer, J. Vorberger,  
Phys. Rev. X 6, 021003 (2016)

Generalizations: 

2. Distinct Fermi levels for electrons and 
holes (suitable for semiconductors )
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],

dTe

dt
=

I(t)

�ce
� gop

ce
(Te � Top)�
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gop
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gl
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. (3)

The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
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found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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subsystems is defined with gop and gl. In addition to
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the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in

Graphene

Fabio Caruso,1 Dino Novko,2, 3 and Claudia Draxl1

1
Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany

2
Donostia International Physics Center (DIPC),

Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
3
Center of Excellence for Advanced Materials and Sensing Devices,

Institute of Physics, Bijenička 46, 10000 Zagreb, Croatia
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electron-phonon coupling strengths �q⌫ of graphene along the
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found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
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which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
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trons, acoustic phonons and impurities. Here, on the
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experiments even without this term. We emphasize that
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modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
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other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
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F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on
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anisotropy in � we separate the lattice degrees of free-
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op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
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found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on
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subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
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fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
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with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
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tion of the two phonon subsystems and input parameters
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F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].
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Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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In Fig. 2 (a-d) we report our first-principles calcula-
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time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].
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Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
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time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].
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Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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In Fig. 2 (a-d) we report our first-principles calcula-
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tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
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anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
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modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
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theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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Figure 2. a-d Calculated spectral function of graphene at equilibrium (t < 0) and at several time delays. t = 0 corresponds
to the e Electron band structure of graphene obtained from DFT calculations. The inset illustrates the Brillouin zone and
high-symmetry points. f-g Change in spectral intensity relative to equilibrium for t = 0 and 0.5 ps. h-i Simulated pump-probe
signal reproduced from Ref. [].

Fig. 2 (e), along the K-� high-symmetry in the Brillouin
zone (inset in Fig. 2 (e)). Photoemission experiments
conducted with linearly polarized (probe) light direction
yield vanishing photoemission intensity close to the Dirac
point along the �-K for the ⇡ (⇡⇤) band if s-polarized (p-
polarized) light is used as probe. Correspondingly, only
quasiparticle states above or below the Dirac point are
probed. The polarization-dependent intensity has been
attributed to the symmetry character of the ⇡ and ⇡⇤

bands (B2 and A2, respectively) which leads to vanish-
ing optical dipole matrix elements, corresponding to zero
photoemission intensity [13, 14]. As our calculations not
account for dipole selection rules, the spectral functions
of Figs. 2 (a-d) are representative of a scenario in which
both ⇡ and ⇡⇤ bands exhibit similar optical dipole matrix
elements, such as in the case circularly polarized probe.

Before the switching on of the pump (t < 0), the
spectral function coincides with the results of ordinary
electron-phonon coupling calculations at room temper-
ature [], and it is in good agreement with previous
studies. In short, the quasiparticle peaks exhibit a fi-
nite broadening which results from the finite lifetimes
of photoexcited holes. When the pump is switched o↵
(t = 0), the increase of lattice and electronic temper-

ature resulting from the photoexcitation of the system
manifests themselves in the angle-resolved spectral func-
tion primarily through the thermal excitation of carriers
across the Fermi surface. While 0.5 ps after photoexcita-
tion (Fig. 2 (c)) the weakening of these features reflects
the partial thermalization of the photoexcited carriers,
whereas after 2.5 ps (Fig. 2 (d)) the system has returned
to equilibrium.

The relative change in photoemission intensity as a
function of time delay – obtained as the di↵erence to the
spectral function before pump and reported in Figs. 2 (f-
g) – provide further insight into the spectral fingerprints
of quasiparticle dynamics in time-resolved ARPES. The
most prominent change in the spectral function results
from the enhanced concentration of electrons (holes)
above (below) the Fermi surface, resulting from the high
transient temperature of photoexcited graphene. At zero
pump-probe delay, this feature is manifested by a pro-
nounced spectral intensity gain (blue), extending up to
1 eV above the Fermi energy, and a corresponding in-
tensity loss (red) for binding energies up to 1 eV. The
energy range of this gain-loss pattern is closely related
to the thermal energy Eth = kbTel corresponding to the
transient electronic temperature. At 0.5 ps after pump,

before pump excitation equilibriumthermalization
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in
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Dynamics of electron and lattice degrees of freedom in
time-domain and in highly nonthermal state can be cap-
tured by means of the e↵ective temperature model, where
the energy of the each of the subsystems is defined with
the e↵ective temperature, while the energy exchange be-
tween them is ruled by the electron-phonon coupling [1].
In the case of graphene, most of the electron-phonon
coupling strength � comes from the optical phonon (op)
modes (i.e., E2g and A0

1) concetrated at the � and K
points of the 1st Brillouin zone [see Fig. 1(a)], which
comes from a small energy-momentum phase space typ-
ical for the Dirac semimetals. Due to this distinguished
anisotropy in � we separate the lattice degrees of free-
dom into the two subsystems: (i) strongly coupled hot
op modes characterized with Top and (ii) the rest of the
lattice modes (acoustic and out-of-plane optical modes)
defined with Tl. Such a hot phonon scenario was con-
firmed in many time-resolved Raman spectroscopy exper-
iments [2–5]. This separation leads to the three tempera-
ture model and the following coupled rate equations [6–8],
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The specific heats of the electrons, strongly coupled op
modes, and the remnant lattice modes are ce, cop, and
cl. The coupling between the electrons and two phonon
subsystems is defined with gop and gl. In addition to
the electron-phonon coupling, we also introduce the an-
harmonic coupling rate 1/⌧ between the op and l modes,
which we extract from the ab initio calculations of the
anharmonic scattering rates in graphene [9]. I(t)/� is
the Gaussian pump pulse defined with the energy den-
sity F and FWHM of 30 fs that heats the electronic sys-
tem. Since the electronic specific heat is not well defined
during the pump excitation, the parameter � controls
the energy density of the pulse [8]. Appart from � and
⌧ , all the input quantities are obtained here by means
of density functional and density functional perturbation
theories as in Ref.[10].

In Figs. 1(b) and 1(c) we display the results of the
three temperature model for the two di↵erent fluences

Figure 1. (a) Phonon dispersions and the corresponding
electron-phonon coupling strengths �q⌫ of graphene along the
� � K path. The results of the three temperature model are
shown in (b) and (c) for F = 8J/m2 and F = 3.46 J/m2,
respectively. Blue, dark organge, and light orange lines show
the corresponding time-dependent temperatures of electrons
Te, of strongly coupled optical phonons Top, and of the rest
of the littice modes Tl. The experimentally obtained electron
temperatures (light blue dots) are extracted from Refs. [8, 11].
The Fermi energy is "F = �200meV.

found in the experiments, i.e., F = 8J/m2 [11] and
F = 3.46 J/m2 [8]. In both cases the results show a
striking agreement with the experiments. In Ref. [11] the
experimental values of the electronic temperatures were
fitted with the two exponential functions, while in Ref. [8]
the results were fitted to the three temperature model,
where the vital role was given to the supercollisional term
with T 3 power law describing the scattering between elec-
trons, acoustic phonons and impurities. Here, on the
other hand, we obtain a very good agreement with the
experiments even without this term. We emphasize that
the crucial ingredients to achieve this are proper separa-
tion of the two phonon subsystems and input parameters
based on the ab initio electronic and phononic structures.
Thermalization of the electronic distribution occurs on

time scales of few tens of fs, as suggested by pump probe
measurements.
[12]
In Fig. 2 (a-d) we report our first-principles calcula-

tions of the time-resolved spectral function of p-doped
graphene. We consider momenta in the immediate vicin-
ity of the Dirac point, denoted by the shaded area in

Delay [ps]

Calculated vs measured 
electronic temperature

2. Spectral function: 

5

Ank(!, T ) =
1

⇡

|Im⌃e�ph

nk (!)|
[! � "nk � Re⌃e�ph

nk (!)]2 + [Im⌃e�ph

nk (!)]2
(65)

⌧nk(T ) = ~/2Im⌃e�ph

nk ("nk)(66)

m
⇤(T ) = m

⇤
b
[1� ~�1

@⌃nk(!)/@!|"F ](67)

1. Electron phonon coupling self-energy

4

⌧nk = ~/2 Im⌃�1

nk(48)

�nk = 2/~ Im⌃nk(49)

�nk = vnk⌧nk(50)

µnk =
q

m⇤

X

n

Z
dk

⌦BZ

⌧nkf("nk)(51)

k q k� q(52)

g
e�ph

mn (k,q)(53)

g
e�pl

mn (k,q)(54)

g
e�eh

mn (k,q)(55)

⌃(k,!) = ⌃eP + ⌃e�ph(56)

✏k ! ✏k + iIm⌃k(✏k)(57)

✏k =
~2k2
2m

(58)

V
0

tot(r)(59)

V
0

tot(r) +�Vtot(r)(60)

ZT = (S2
�/)T ⇠ 2.6(61)

⌃e�ph

nk (!) =

Z
dq

⌦BZ

X

m⌫

|ge�ph

mn⌫ (k,q)|2


nq⌫ + fmk+q

! � "mk+q + !q⌫ � i⌘
+

nq⌫ + 1� fmk+q

! � "mk+q � !q⌫ � i⌘

�
.

4

⌧nk = ~/2 Im⌃�1

nk(48)

�nk = 2/~ Im⌃nk(49)

�nk = vnk⌧nk(50)

µnk =
q

m⇤

X

n

Z
dk

⌦BZ

⌧nkf("nk)(51)

k q k� q(52)

g
e�ph

mn (k,q)(53)

g
e�pl

mn (k,q)(54)

g
e�eh

mn (k,q)(55)

⌃(k,!) = ⌃eP + ⌃e�ph(56)

✏k ! ✏k + iIm⌃k(✏k)(57)

✏k =
~2k2
2m

(58)

V
0

tot(r)(59)

V
0

tot(r) +�Vtot(r)(60)

ZT = (S2
�/)T ⇠ 2.6(61)

⌃e�ph

nk (!) =

Z
dq

⌦BZ

X

m⌫

|ge�ph

mn⌫ (k,q)|2


nq⌫ + fmk+q

! � "mk+q + !q⌫ � i⌘
+

nq⌫ + 1� fmk+q

! � "mk+q � !q⌫ � i⌘

�
.

 Bose / Fermi 
occupations 

2

Figure 2. a-d Calculated spectral function of graphene at equilibrium (t < 0) and at several time delays. t = 0 corresponds
to the e Electron band structure of graphene obtained from DFT calculations. The inset illustrates the Brillouin zone and
high-symmetry points. f-g Change in spectral intensity relative to equilibrium for t = 0 and 0.5 ps. h-i Simulated pump-probe
signal reproduced from Ref. [].

Fig. 2 (e), along the K-� high-symmetry in the Brillouin
zone (inset in Fig. 2 (e)). Photoemission experiments
conducted with linearly polarized (probe) light direction
yield vanishing photoemission intensity close to the Dirac
point along the �-K for the ⇡ (⇡⇤) band if s-polarized (p-
polarized) light is used as probe. Correspondingly, only
quasiparticle states above or below the Dirac point are
probed. The polarization-dependent intensity has been
attributed to the symmetry character of the ⇡ and ⇡⇤

bands (B2 and A2, respectively) which leads to vanish-
ing optical dipole matrix elements, corresponding to zero
photoemission intensity [13, 14]. As our calculations not
account for dipole selection rules, the spectral functions
of Figs. 2 (a-d) are representative of a scenario in which
both ⇡ and ⇡⇤ bands exhibit similar optical dipole matrix
elements, such as in the case circularly polarized probe.

Before the switching on of the pump (t < 0), the
spectral function coincides with the results of ordinary
electron-phonon coupling calculations at room temper-
ature [], and it is in good agreement with previous
studies. In short, the quasiparticle peaks exhibit a fi-
nite broadening which results from the finite lifetimes
of photoexcited holes. When the pump is switched o↵
(t = 0), the increase of lattice and electronic temper-

ature resulting from the photoexcitation of the system
manifests themselves in the angle-resolved spectral func-
tion primarily through the thermal excitation of carriers
across the Fermi surface. While 0.5 ps after photoexcita-
tion (Fig. 2 (c)) the weakening of these features reflects
the partial thermalization of the photoexcited carriers,
whereas after 2.5 ps (Fig. 2 (d)) the system has returned
to equilibrium.

The relative change in photoemission intensity as a
function of time delay – obtained as the di↵erence to the
spectral function before pump and reported in Figs. 2 (f-
g) – provide further insight into the spectral fingerprints
of quasiparticle dynamics in time-resolved ARPES. The
most prominent change in the spectral function results
from the enhanced concentration of electrons (holes)
above (below) the Fermi surface, resulting from the high
transient temperature of photoexcited graphene. At zero
pump-probe delay, this feature is manifested by a pro-
nounced spectral intensity gain (blue), extending up to
1 eV above the Fermi energy, and a corresponding in-
tensity loss (red) for binding energies up to 1 eV. The
energy range of this gain-loss pattern is closely related
to the thermal energy Eth = kbTel corresponding to the
transient electronic temperature. At 0.5 ps after pump,
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Transient phonon softening (Kohn anomaly) in MgB2

it is quite general, and it can be applied to different materials
in order to elucidate the time-resolved infrared spectroscopy
of the zone-center phononmodes in general.Ourwork paves
the way for a direct experimental check of hot phonons in
MgB2 and in other similar materials characterized by a
strongly anisotropic e-ph coupling.
Density-functional theory calculations were performed

by using the QUANTUM ESPRESSO package [43]. Norm-
conserving pseudopotentials were employed with the
Perdew-Burke-Ernzerhof exchange-correlation functional
[44]. A 24 × 24 × 24 Monkhorst-Pack grid in momentum
space and a planewave cutoff energy of 60 Ry were used for
ground-state calculations. The phonon dispersion was cal-
culated on a 12 × 12 × 12 grid using density-functional
perturbation theory (DFPT) [45] and the e-ph coupling
was computed by using an in-house modified version of
the EPW code [46]. Electron and phonon energies, and e-ph
couplingmatrix elements were interpolated usingmaximally
localized Wannier functions [47]. The phonon self-energy
for theq ¼ 0E2g modewas computed on a 300 × 300 × 300
electron momentum grid, while the Eliashberg function was
obtained on a 40 × 40 × 40 grid of electron and phonon
momenta.
The phonon dispersion and the e-ph coupling strengths

λqν are depicted in Fig. 1(a), and the corresponding
phonon density of states and Eliashberg function α2FðωÞ
in Fig. 1(b). Our computed phonon dispersions are in good
agreement with previous results [1–5,22,48,49], while the
total e-ph coupling strength λ ¼ 0.6 is smaller than the
earlier ab initio values (λ≳ 0.7) [1,4,49–51], but in rather
good agreement with experimental estimates [52,53].
Consistent with earlier works [4,11,12], large values of
the e-ph coupling are mainly concentrated in the E2g branch
in the Brillouin zone center along the Γ̄ − Ā line. This is
reflected in a dominant peak in the Eliashberg function at
the corresponding E2g energies ω ≈ 60–70 meV. As shown
below, such remarkable anisotropy is responsible for the
hot-phonon scenario, where the zone-center E2g phonon
modes can acquire, under suitable conditions (i.e., by using
pump-probe techniques), a population much larger than
other underlying lattice DOF.
In order to capture the anisotropy of the e-ph interaction,

we model the total Eliashberg function as the sum of two
terms, α2FðωÞ ¼ α2FE2g

ðωÞ þ α2FphðωÞ, where α2FE2g
ðωÞ

contains the contribution of the hot E2g modes along and
around the Γ̄ − Ā path in the relevant energy range ω ∈
½60∶75& meV (green shaded areas in Fig. 1), while
α2FphðωÞ accounts for the weakly coupled cold modes
in the remnant parts of the Brillouin zone. The resulting e-
ph coupling strengths for the hot and cold modes are λE2g

¼
0.26 and λph ¼ 0.34, respectively.
With the fundamental input of the anisotropic e-ph

coupling, we investigate the rates of the energy transfer
between the electron and lattice DOF in a typical

time-resolved pump-probe experiment. As we detail below,
energy transfer processes and the hot-phonon physics are
driven by the strong anisotropy of the thermodynamical
properties of hot and cold modes, i.e., by the remarkable
difference in specific heats. This physics thus does not rely
on the assumption of effective temperatures for the elec-
tronic and lattice DOF. On the other hand, the use of
standard three-temperature model appears as a reliable and
convenient way to describe these processes in terms of few
intuitive quantities [54–58]. The validation of this model-
ing, compared with the results of a numerical computation
using nonthermal distributions, is presented in Ref. [59]
(for detailed comparison between thermal and nonthermal
models see Sec. S2 and Figs. S2 and S3). Characteristic
parameters of our description will be thus the effective
electronic temperature Te, the effective temperature TE2g

of
the hot E2g phonon strongly coupled to the electronic σ
bands, and the lattice temperature Tph that describes the
effective temperature of the remaining cold phonon modes:

Ce
∂Te

∂t ¼ Sðz; tÞ þ∇zðκ∇zTeÞ − GE2g
ðTe − TE2g

Þ

−GphðTe − TphÞ; ð1Þ

CE2g

∂TE2g

∂t ¼ GE2g
ðTe − TE2g

Þ − CE2g

TE2g
− Tph

τ0
; ð2Þ

Cph
∂Tph

∂t ¼ GphðTe − TphÞ þ CE2g

TE2g
− Tph

τ0
: ð3Þ

HereCe,CE2g
, andCph are the specific heat capacities for the

electron, hot-phonon, and cold-phonon states, respectively.

(a) (b)

FIG. 1. (a) Plot of the phonon dispersions (solid lines) and e-ph
coupling strengths λqν, represented by the size of the black
circles. Also shown are the experimental phonon energies of the
E2g mode close to the M̄ point and along the Γ̄ − Ā path (red
circles) [22], as well as along the M̄ − Γ̄ cuts (purple empty
squares) [48]. (b) Corresponding phonon density of states FðωÞ
(dashed line) and the total Eliashberg function α2FðωÞ (blue solid
line). Green color shows the contribution to the Eliashberg
function associated with the hot E2g modes around and along
the Γ̄ − Ā path, α2FE2g

ðωÞ.
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GE2g
(Gph) is the electron-phonon relaxation rate between

electronic states and hot (cold) phononmodes, calculated by
means of α2FE2g

(α2Fph). Furthermore κ is the thermal
conductivity of electrons and τ0 is a parameter ruling the
anharmonic phonon-phonon scattering between the hot and
cold phonon components (for further details see Sec. S1 and
Fig. S1 in Ref. [59]). Modeling a typical pump-probe
experimentwith the photon energy being>1 eV,we assume
the pump energy to be transferred uniquely to the electronic
DOF by the term Sðz; tÞ ¼ IðtÞe−z=δ=δ, where IðtÞ is the
intensity of the absorbed fraction of the laser pulse (with a
Gaussian profile) and δ is the penetration depth. The
anisotropic coupling of the e-ph interaction is thus reflected
in a different evolution of the three characteristic temper-
atures. Starting from an initial thermalized system at
T0 ¼ 300 K, the energy pumped to the electronic DOF is
transferred faster to the E2g phonons than to the other lattice
vibrations, leading to an effective temperature TE2g

signifi-
cantly higher than that of the other modes, Tph. Final
thermalization between all the lattice DOF occurs on time
scales of several picoseconds, as a result of the weak direct
phonon-phonon scattering and of the weak coupling
between the electronic states and phonon modes other
than the E2g ones. In our calculations, the parameters in
Eqs. (1)–(3) (with the exception of κ, δ and τ0) are evaluated
numerically from the first-principles calculations [59].
Our calculations predict a very fast increase of TE2g

[see
Fig. 2(a)], reaching the maximum temperature Tmax

E2g
≈

1200 K with a short delay of 40 fs from the maximum
energy transfer to the electronic DOF, consistent with a
computed relaxation time τE2g

≈ 46 fs (see Sec. S1 in
Ref. [59]). Subsequent thermalization between electrons,
hot E2g phonons, and the remaining lattice DOF occurs on a
quite longer time scale, ∼1 ps [59], where all the DOF
thermalize to an average temperature ∼400 K [75]. Note
that the strong enhancement of TE2g

with respect to Tph is
not so much due to the difference between λE2g

and λph,
but rather due to the smaller heat capacity CE2g

≪ Cph,
reflecting the fact that very few E2g modes in α2FE2g

are
responsible for a similar coupling as many cold lattice
modes in α2Fph.
The preferential energy transfer to a single phonon mode

can be revealed via several experimental techniques. One of
the most direct ways is measuring the intensities of the
Stokes (S) and anti-Stokes (AS) E2g peaks in Raman
spectroscopy, which are related to the Bose-Einstein
occupation factor bðω;TÞ ¼ ½expðω=TÞ − 1%−1 via the
relations ISðTE2g

Þ ∝ 1þ bðωE2g
;TE2g

Þ and IASðTE2g
Þ ∝

bðωE2g
;TE2g

Þ, respectively. Assuming to work at zero
fluence and room temperature, we predict in Fig. 2(b) an
increase of the intensity of the Stokes peak up to a factor 2
[ISðTE2g

Þ=ISð300 KÞ ≈ 2], and of the anti-Stokes peak as
high as a factor 15 [IASðTE2g

Þ=IASð300 KÞ ≈ 15]. At the

maximum temperature of the hot phonon, the intensity of
the anti-Stokes resonance can be as high as 50% of the
intensity of the Stokes peak. The experimental investigation
of Stokes and anti-Stokes peak intensities in time-resolved
Raman spectroscopy may provide also a direct way to
probe the validity of the hot-phonon scenario by simulta-
neous measurement of the Stokes and anti-Stokes inten-
sities of the Raman active out-of-plane B1g mode with
frequency ωB1g

≈ 86 meV. Since this mode is weakly
coupled to the electronic states, we expect it to be governed
by the cold-phonon temperature Tph, with a drastically
different behavior in the time evolution of the Stokes and
anti-Stokes peak intensities than the E2g mode (see Sec. S3
and Fig. S4 in Ref. [59]). These spectral signatures
constitute a clear fingerprint of hot-phonon physics, sug-
gesting that time-resolved Raman measurements may
provide a tool to unambiguously unravel the thermalization
mechanisms for systems out of equilibrium.
As shown in Refs. [34,42], the peculiar characteristics of

hot-phonon dynamics can be traced also through the ω-
resolved phonon spectral properties. On the theoretical
side, these properties can be properly investigated in the
Raman spectra of the E2g mode upon computation of the
many-body phonon self-energy Πðω; fTgÞ of the E2g mode
at q ≈ 0 [76]. Note that, in the real-time dynamics, the
phonon self-energy will depend on the full set of electron
and phonon temperatures fTg ¼ ðTe; TE2g

; TphÞ. The full
spectral properties can be thus evaluated in terms of the
phonon spectral function as [77]

Bðω; fTgÞ ¼ −
1

π
Im

!
2ωE2g

ω2 − ω2
E2g

− 2ωE2g
Π̄ðω; fTgÞ

"
; ð4Þ

(a)

(b)

FIG. 2. (a) Time dependence of the electron and phonon
effective temperatures Te, TE2g

, Tph in MgB2 as obtained from
the three-temperature model. The dashed line shows the pulse
profile. The absorbed fluence of the pump pulse is 12 J=m2, the
pulse duration is 45 fs (as in Ref. [33]). (b) Ratios between
the intensities of the Stokes (IS) and anti-Stokes (IAS) E2g

Raman peaks.
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(Gph) is the electron-phonon relaxation rate between

electronic states and hot (cold) phononmodes, calculated by
means of α2FE2g

(α2Fph). Furthermore κ is the thermal
conductivity of electrons and τ0 is a parameter ruling the
anharmonic phonon-phonon scattering between the hot and
cold phonon components (for further details see Sec. S1 and
Fig. S1 in Ref. [59]). Modeling a typical pump-probe
experimentwith the photon energy being>1 eV,we assume
the pump energy to be transferred uniquely to the electronic
DOF by the term Sðz; tÞ ¼ IðtÞe−z=δ=δ, where IðtÞ is the
intensity of the absorbed fraction of the laser pulse (with a
Gaussian profile) and δ is the penetration depth. The
anisotropic coupling of the e-ph interaction is thus reflected
in a different evolution of the three characteristic temper-
atures. Starting from an initial thermalized system at
T0 ¼ 300 K, the energy pumped to the electronic DOF is
transferred faster to the E2g phonons than to the other lattice
vibrations, leading to an effective temperature TE2g

signifi-
cantly higher than that of the other modes, Tph. Final
thermalization between all the lattice DOF occurs on time
scales of several picoseconds, as a result of the weak direct
phonon-phonon scattering and of the weak coupling
between the electronic states and phonon modes other
than the E2g ones. In our calculations, the parameters in
Eqs. (1)–(3) (with the exception of κ, δ and τ0) are evaluated
numerically from the first-principles calculations [59].
Our calculations predict a very fast increase of TE2g

[see
Fig. 2(a)], reaching the maximum temperature Tmax

E2g
≈

1200 K with a short delay of 40 fs from the maximum
energy transfer to the electronic DOF, consistent with a
computed relaxation time τE2g

≈ 46 fs (see Sec. S1 in
Ref. [59]). Subsequent thermalization between electrons,
hot E2g phonons, and the remaining lattice DOF occurs on a
quite longer time scale, ∼1 ps [59], where all the DOF
thermalize to an average temperature ∼400 K [75]. Note
that the strong enhancement of TE2g

with respect to Tph is
not so much due to the difference between λE2g

and λph,
but rather due to the smaller heat capacity CE2g

≪ Cph,
reflecting the fact that very few E2g modes in α2FE2g

are
responsible for a similar coupling as many cold lattice
modes in α2Fph.
The preferential energy transfer to a single phonon mode

can be revealed via several experimental techniques. One of
the most direct ways is measuring the intensities of the
Stokes (S) and anti-Stokes (AS) E2g peaks in Raman
spectroscopy, which are related to the Bose-Einstein
occupation factor bðω;TÞ ¼ ½expðω=TÞ − 1%−1 via the
relations ISðTE2g

Þ ∝ 1þ bðωE2g
;TE2g

Þ and IASðTE2g
Þ ∝

bðωE2g
;TE2g

Þ, respectively. Assuming to work at zero
fluence and room temperature, we predict in Fig. 2(b) an
increase of the intensity of the Stokes peak up to a factor 2
[ISðTE2g

Þ=ISð300 KÞ ≈ 2], and of the anti-Stokes peak as
high as a factor 15 [IASðTE2g

Þ=IASð300 KÞ ≈ 15]. At the

maximum temperature of the hot phonon, the intensity of
the anti-Stokes resonance can be as high as 50% of the
intensity of the Stokes peak. The experimental investigation
of Stokes and anti-Stokes peak intensities in time-resolved
Raman spectroscopy may provide also a direct way to
probe the validity of the hot-phonon scenario by simulta-
neous measurement of the Stokes and anti-Stokes inten-
sities of the Raman active out-of-plane B1g mode with
frequency ωB1g

≈ 86 meV. Since this mode is weakly
coupled to the electronic states, we expect it to be governed
by the cold-phonon temperature Tph, with a drastically
different behavior in the time evolution of the Stokes and
anti-Stokes peak intensities than the E2g mode (see Sec. S3
and Fig. S4 in Ref. [59]). These spectral signatures
constitute a clear fingerprint of hot-phonon physics, sug-
gesting that time-resolved Raman measurements may
provide a tool to unambiguously unravel the thermalization
mechanisms for systems out of equilibrium.
As shown in Refs. [34,42], the peculiar characteristics of

hot-phonon dynamics can be traced also through the ω-
resolved phonon spectral properties. On the theoretical
side, these properties can be properly investigated in the
Raman spectra of the E2g mode upon computation of the
many-body phonon self-energy Πðω; fTgÞ of the E2g mode
at q ≈ 0 [76]. Note that, in the real-time dynamics, the
phonon self-energy will depend on the full set of electron
and phonon temperatures fTg ¼ ðTe; TE2g

; TphÞ. The full
spectral properties can be thus evaluated in terms of the
phonon spectral function as [77]

Bðω; fTgÞ ¼ −
1
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2ωE2g

ω2 − ω2
E2g
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"
; ð4Þ

(a)

(b)

FIG. 2. (a) Time dependence of the electron and phonon
effective temperatures Te, TE2g

, Tph in MgB2 as obtained from
the three-temperature model. The dashed line shows the pulse
profile. The absorbed fluence of the pump pulse is 12 J=m2, the
pulse duration is 45 fs (as in Ref. [33]). (b) Ratios between
the intensities of the Stokes (IS) and anti-Stokes (IAS) E2g

Raman peaks.
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where ωE2g
¼ 67 meV is the harmonic adiabatic phonon

frequency as obtained from DFPT and Π̄ðω; fTgÞ is the
phonon self-energy for the E2g modes, where, to avoid
double counting, the noninteracting adiabatic contribution
at T ¼ 0 K is subtracted (for more details on the non-
adiabatic phonon self-energy see Ref. [59]). The inclusion
of many-body effects on the crystal-lattice dynamics via
Eq. (4) is reflected by renormalization of the phonon energy
ΩE2g

and by the finite phonon linewidth ΓE2g
, which may be

computed through solution of the following self-consistent
equations: Ω2

E2g
¼ ω2

E2g
þ 2ωE2g

Π̄ðΩE2g
; fTgÞ, and ΓE2g

¼
−2ImΠ̄ðΩE2g

; fTgÞ.
Using such theoretical tools, we evaluate, within the three-

temperature model, the time-resolved dynamics of the
Raman peak position and of the phonon linewidth, as well
as of the full phonon spectral function of the E2g mode in
MgB2 as a function of the pump-probe time delay. A similar
approach (however, without time dependence) was used in
Ref. [42] for graphene, where the effects of the electronic
damping due to the electron-electron interaction were
explicitly included in the evaluation of the phonon self-
energy. This description is however insufficient in the case of
MgB2 where the electronic damping is crucially governed by
the e-ph coupling itself [28,30]. In order to provide a reliable
description we evaluate thus the E2g phonon self-energy in a
nonadiabatic framework [30] explicitly retaining the e-ph
renormalization effects in the Green’s functions of the
relevant intraband contribution (see Sec. S4 in Ref. [59]).
The E2g phonon spectral function is shown in Figs. 3(a) and
3(b) as a function of the time delay, for two different fluences.
The corresponding phonon energiesΩE2g

and linewidthsΓE2g

are summarized in panels (c) and (d). The combined effect of
the time evolution of Te and TE2g

, Tph results in a nontrivial
time dependence of the spectral properties. Our calculations
reveal a counterintuitive reduction of the phonon linewidth
ΓE2g

right after photoexcitation, followed by a subsequent
increase during the overall thermalization with the cold
phononDOF. The time dependence of the phonon frequency
shows an even more complex behavior, with an initial
redshift, followed by a partial blueshift, and furthermore
by a redshift.
In order to rationalize these puzzling results, we analyze

in detail the temperature dependence of the phonon spectral
properties, decomposing the phonon self-energy into its
basic components: interband or intraband terms, and in
adiabatic (A) and nonadiabatic (NA) processes. For details
see Ref. [59], whereas here we summarize the main results.
A crucial role is played by the NA intraband term, which is
solely responsible for the phonon damping. Following a
robust scheme usually employed for the optical conduc-
tivity (see Sec. S4 in Ref. [59]), we can model the effects
of the e-ph coupling on the intraband processes in terms
of the renormalization function λðω; fTgÞ and the e-ph
particle-hole scattering rate γðω; fTgÞ:

Π̄intra;NAðω; fTgÞ ¼
ωhjgE2g

j2iTe

ω½1þ λðω; fTgÞ& þ iγðω; fTgÞ
; ð5Þ

where hjgE2g
j2iTe

¼−
P

nkσ jgnnE2g
ðkÞj2∂fðεnk;TeÞ=∂εnk [59].

Phonon optical probes at equilibrium are commonly at
room (or lower) temperature in the regime γðω;TÞ ≪
ω½1þ λðω;TÞ&, where the phonon damping ΓE2g

∝
γðΩE2g

;TÞ. Our calculations predict on the other hand
γðΩE2g

;T300 KÞ ≈ 75 meV, which is close to ΩE2g
½1þ

λðΩE2g
;T300 KÞ& ≈ 85 meV, resulting in ΓE2g

≈ 26 meV,
in good agreement with the experiments [14,15,19]
and with the previous calculations [28,30]. The further
pump-induced increase of γðΩE2g

; fTgÞ ≫ ΩE2g
½1þ

λðΩE2g
; fTgÞ& drives the system into an opposite regime

where ΓE2g
∝ 1=γðΩE2g

;TÞ. In this regime the pump-
induced increase of γðΩE2g

; fTgÞ results thus in a reduction
of ΓE2g

, as observed in Fig. 3(d). A similar change of regime
is responsible for the crossover from an Elliott-Yafet to the
Dyakonov-Perel spin-relaxation, or for the NMR motional
narrowing [78,79]. We also note here that the same effects
and the change of regime are partially responsible for the
overall time dependence of the phonon frequency [see
Fig. 3(c)], where the full result (full blue circles) is
compared with the one retaining only the nonadiabatic
intraband self-energy (open orange squares). The redshift
predicted for the latter case is a direct effect of the same
change of regime responsible for the reduction of the
phonon damping. However, in the real part of the self-
energy, adiabatic processes (both intra- and interband) play
also a relevant role [59], giving rise to an additional

(a)

(c)

(d)

(b)

FIG. 3. (a),(b) Intensity of the phonon spectral function
BE2g

ðω; fTgÞ for F ¼ 12 J=m2 [panel (a)] and for F ¼ 30 J=m2

(panel b). Time evolution of the (c) Raman peak positions and
(d) phonon linewidths using the full self-energy for F ¼ 12 J=m2

(full circles) and for F ¼ 30 J=m2 (open circles). Also shown are
the results obtained with only the NA intraband term and for
F2 ¼ 30 J=m2 (open squares). The dashed horizontal line in panel
(c) shows the adiabatic energy of the E2g mode.
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where ωE2g
¼ 67 meV is the harmonic adiabatic phonon

frequency as obtained from DFPT and Π̄ðω; fTgÞ is the
phonon self-energy for the E2g modes, where, to avoid
double counting, the noninteracting adiabatic contribution
at T ¼ 0 K is subtracted (for more details on the non-
adiabatic phonon self-energy see Ref. [59]). The inclusion
of many-body effects on the crystal-lattice dynamics via
Eq. (4) is reflected by renormalization of the phonon energy
ΩE2g

and by the finite phonon linewidth ΓE2g
, which may be

computed through solution of the following self-consistent
equations: Ω2

E2g
¼ ω2

E2g
þ 2ωE2g

Π̄ðΩE2g
; fTgÞ, and ΓE2g

¼
−2ImΠ̄ðΩE2g

; fTgÞ.
Using such theoretical tools, we evaluate, within the three-

temperature model, the time-resolved dynamics of the
Raman peak position and of the phonon linewidth, as well
as of the full phonon spectral function of the E2g mode in
MgB2 as a function of the pump-probe time delay. A similar
approach (however, without time dependence) was used in
Ref. [42] for graphene, where the effects of the electronic
damping due to the electron-electron interaction were
explicitly included in the evaluation of the phonon self-
energy. This description is however insufficient in the case of
MgB2 where the electronic damping is crucially governed by
the e-ph coupling itself [28,30]. In order to provide a reliable
description we evaluate thus the E2g phonon self-energy in a
nonadiabatic framework [30] explicitly retaining the e-ph
renormalization effects in the Green’s functions of the
relevant intraband contribution (see Sec. S4 in Ref. [59]).
The E2g phonon spectral function is shown in Figs. 3(a) and
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The corresponding phonon energiesΩE2g
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are summarized in panels (c) and (d). The combined effect of
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right after photoexcitation, followed by a subsequent
increase during the overall thermalization with the cold
phononDOF. The time dependence of the phonon frequency
shows an even more complex behavior, with an initial
redshift, followed by a partial blueshift, and furthermore
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In order to rationalize these puzzling results, we analyze

in detail the temperature dependence of the phonon spectral
properties, decomposing the phonon self-energy into its
basic components: interband or intraband terms, and in
adiabatic (A) and nonadiabatic (NA) processes. For details
see Ref. [59], whereas here we summarize the main results.
A crucial role is played by the NA intraband term, which is
solely responsible for the phonon damping. Following a
robust scheme usually employed for the optical conduc-
tivity (see Sec. S4 in Ref. [59]), we can model the effects
of the e-ph coupling on the intraband processes in terms
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; fTgÞ results thus in a reduction
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, as observed in Fig. 3(d). A similar change of regime
is responsible for the crossover from an Elliott-Yafet to the
Dyakonov-Perel spin-relaxation, or for the NMR motional
narrowing [78,79]. We also note here that the same effects
and the change of regime are partially responsible for the
overall time dependence of the phonon frequency [see
Fig. 3(c)], where the full result (full blue circles) is
compared with the one retaining only the nonadiabatic
intraband self-energy (open orange squares). The redshift
predicted for the latter case is a direct effect of the same
change of regime responsible for the reduction of the
phonon damping. However, in the real part of the self-
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where ωE2g
¼ 67 meV is the harmonic adiabatic phonon

frequency as obtained from DFPT and Π̄ðω; fTgÞ is the
phonon self-energy for the E2g modes, where, to avoid
double counting, the noninteracting adiabatic contribution
at T ¼ 0 K is subtracted (for more details on the non-
adiabatic phonon self-energy see Ref. [59]). The inclusion
of many-body effects on the crystal-lattice dynamics via
Eq. (4) is reflected by renormalization of the phonon energy
ΩE2g

and by the finite phonon linewidth ΓE2g
, which may be

computed through solution of the following self-consistent
equations: Ω2

E2g
¼ ω2

E2g
þ 2ωE2g

Π̄ðΩE2g
; fTgÞ, and ΓE2g

¼
−2ImΠ̄ðΩE2g

; fTgÞ.
Using such theoretical tools, we evaluate, within the three-

temperature model, the time-resolved dynamics of the
Raman peak position and of the phonon linewidth, as well
as of the full phonon spectral function of the E2g mode in
MgB2 as a function of the pump-probe time delay. A similar
approach (however, without time dependence) was used in
Ref. [42] for graphene, where the effects of the electronic
damping due to the electron-electron interaction were
explicitly included in the evaluation of the phonon self-
energy. This description is however insufficient in the case of
MgB2 where the electronic damping is crucially governed by
the e-ph coupling itself [28,30]. In order to provide a reliable
description we evaluate thus the E2g phonon self-energy in a
nonadiabatic framework [30] explicitly retaining the e-ph
renormalization effects in the Green’s functions of the
relevant intraband contribution (see Sec. S4 in Ref. [59]).
The E2g phonon spectral function is shown in Figs. 3(a) and
3(b) as a function of the time delay, for two different fluences.
The corresponding phonon energiesΩE2g

and linewidthsΓE2g

are summarized in panels (c) and (d). The combined effect of
the time evolution of Te and TE2g

, Tph results in a nontrivial
time dependence of the spectral properties. Our calculations
reveal a counterintuitive reduction of the phonon linewidth
ΓE2g

right after photoexcitation, followed by a subsequent
increase during the overall thermalization with the cold
phononDOF. The time dependence of the phonon frequency
shows an even more complex behavior, with an initial
redshift, followed by a partial blueshift, and furthermore
by a redshift.
In order to rationalize these puzzling results, we analyze

in detail the temperature dependence of the phonon spectral
properties, decomposing the phonon self-energy into its
basic components: interband or intraband terms, and in
adiabatic (A) and nonadiabatic (NA) processes. For details
see Ref. [59], whereas here we summarize the main results.
A crucial role is played by the NA intraband term, which is
solely responsible for the phonon damping. Following a
robust scheme usually employed for the optical conduc-
tivity (see Sec. S4 in Ref. [59]), we can model the effects
of the e-ph coupling on the intraband processes in terms
of the renormalization function λðω; fTgÞ and the e-ph
particle-hole scattering rate γðω; fTgÞ:

Π̄intra;NAðω; fTgÞ ¼
ωhjgE2g

j2iTe

ω½1þ λðω; fTgÞ& þ iγðω; fTgÞ
; ð5Þ

where hjgE2g
j2iTe

¼−
P

nkσ jgnnE2g
ðkÞj2∂fðεnk;TeÞ=∂εnk [59].

Phonon optical probes at equilibrium are commonly at
room (or lower) temperature in the regime γðω;TÞ ≪
ω½1þ λðω;TÞ&, where the phonon damping ΓE2g

∝
γðΩE2g

;TÞ. Our calculations predict on the other hand
γðΩE2g

;T300 KÞ ≈ 75 meV, which is close to ΩE2g
½1þ

λðΩE2g
;T300 KÞ& ≈ 85 meV, resulting in ΓE2g

≈ 26 meV,
in good agreement with the experiments [14,15,19]
and with the previous calculations [28,30]. The further
pump-induced increase of γðΩE2g

; fTgÞ ≫ ΩE2g
½1þ

λðΩE2g
; fTgÞ& drives the system into an opposite regime

where ΓE2g
∝ 1=γðΩE2g

;TÞ. In this regime the pump-
induced increase of γðΩE2g

; fTgÞ results thus in a reduction
of ΓE2g

, as observed in Fig. 3(d). A similar change of regime
is responsible for the crossover from an Elliott-Yafet to the
Dyakonov-Perel spin-relaxation, or for the NMR motional
narrowing [78,79]. We also note here that the same effects
and the change of regime are partially responsible for the
overall time dependence of the phonon frequency [see
Fig. 3(c)], where the full result (full blue circles) is
compared with the one retaining only the nonadiabatic
intraband self-energy (open orange squares). The redshift
predicted for the latter case is a direct effect of the same
change of regime responsible for the reduction of the
phonon damping. However, in the real part of the self-
energy, adiabatic processes (both intra- and interband) play
also a relevant role [59], giving rise to an additional

(a)

(c)

(d)

(b)

FIG. 3. (a),(b) Intensity of the phonon spectral function
BE2g

ðω; fTgÞ for F ¼ 12 J=m2 [panel (a)] and for F ¼ 30 J=m2

(panel b). Time evolution of the (c) Raman peak positions and
(d) phonon linewidths using the full self-energy for F ¼ 12 J=m2

(full circles) and for F ¼ 30 J=m2 (open circles). Also shown are
the results obtained with only the NA intraband term and for
F2 ¼ 30 J=m2 (open squares). The dashed horizontal line in panel
(c) shows the adiabatic energy of the E2g mode.
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and ∂qνV the derivative of the self-consistent potential
associatedwith the νth phononmodewithwave vectorq and
energy ℏωqν. gmn;νðk;qÞ is obtained from the bare matrix
element gbmn;νðk;qÞ by screening the variation of the ionic
potential using the electronic dielectric function. Here we
calculate gbmn;νðk;qÞ by unscreening gmn;νðk;qÞ and neglect
local-field effects for simplicity. Equation (1) accounts for
both the screened and the bare electron-phonon vertices
(g and gb), and it thus avoids the approximation employed
in previous first-principles calculations, whereby the
matrix elements gbmn;νðk;qÞg#mn;νðk;qÞ were replaced by
jgmn;νðk;qÞj2 [17]. The nonadiabatic phonon dispersions,
that is, the dispersions modified by the phonon self-energy
of Eq. (1), were extracted directly from the phonon spectral
function [34]:

AqνðωÞ ¼ π−1Im
!

2ωqν

ω2 − ω2
qν − 2ωqνΠNA

qν ðωÞ

"
: ð2Þ

Equation (2), which constitutes the phonon counterpart of
the electronic spectral function [2], exhibits peaks at the
nonadiabatic phonon frequencies Ωqν given by

Ω2
qν ≃ ω2

qν þ 2ωqνReΠNA
qν ðΩqνÞ; ð3Þ

with a full width at half maximum Γqν ¼ 2ℏImΠNA
qν ðΩqνÞ.

Nonadiabatic phonon spectral functions obtained
from Eq. (2) are reported in Figs. 1(f)–1(h), whereas the
phonon dispersions derived from Eq. (3) are shown in
Figs. 1(i)–1(k).
An inspection of Eq. (1) reveals that nonadiabatic effects

may become important whenever the transition energies
between occupied and empty electronic states (ϵmkþq−ϵnk)
approach the characteristic phonon energy ℏωqν. As in
solids ℏωqν is typically ≲100 meV, this condition is
satisfied only in metals, doped semiconductors, and nar-
row-gap semiconductors, wherein low-energy intraband
transitions may be excited. Therefore, in these systems
one may expect to observe (i) phonon damping effects, with
a characteristic time scale set by the phonon lifetime τqν ¼
ℏ=Γqν, and (ii) a renormalization of the adiabatic phonon
frequencies, arising from the finite value of ReΠNA

qν ðΩqνÞ in
Eq. (3). On the other hand, the standard Born-Oppenheimer
approximation is recovered in the limit ΠNA

qν ¼ 0.
Calculations were performed using density-

functional theory (ground state and band structures) and
density-functional perturbation theory (phonon dispersion
relations and electron-phonon matrix elements), using
Quantum Espresso [38], EPW [44], and WANNIER90 [42]. The
doping was modeled in the rigid-band approximation, and
the spectral functions were computed at 300 K. Complete
calculation details are given in Ref. [34]. The phonon
dispersions of pristine diamond in the adiabatic approxi-
mation are presented in Fig. 1(b) for momenta along the

L-Γ-X path. The acoustic and optical phonon branches,
which correspond to the in- and out-of-phase oscillation of
the diamond sublattices, are denoted as AP and OP,
respectively, in Fig. 1(b). Pristine diamond is an insulator
with a fundamental band gap Eg ¼ 5.4 eV [45,46], and the
large optical phonon energy of ℏωph ¼ 164 meV reflects
the stiffness of its covalent bonds. Since Eg ≫ ℏωph,
nonadiabatic effects are relatively unimportant, and the
nonadiabatic corrections are smaller than 0.4 meV;
see Fig. 1(i). The resulting phonon dispersions are in
excellent agreement with our measured IXS spectrum in
Fig. 1(c), in line with the notion that phonons in wide-
band-gap insulators are well described in the adiabatic
approximation.
To quantify the importance of nonadiabaticity for

undoped semiconductors and insulators, we derive a simple
estimate of the energy renormalization. In the limit of
nondispersive electronic bands, one may replace ϵmkþq −
ϵnk ¼ Eg in Eq. (1). If we further assume an Einstein model
for the optical phonons ℏωqν ¼ ℏωE and we restrict
ourselves to the limit ℏωE ≪ Eg, the term in large
parentheses in Eq. (1) reduces to ℏωE=E2

g to first order.
An explicit approximation for Eq. (1) then is promptly
obtained: ℏΠ ¼ 2ϵ∞g2ℏωE=E2

g, with ϵ∞ being the dielec-
tric constant and g the average electron-phonon matrix
element. For diamond, using ϵ∞ ¼ 5.44, Eg ¼ 5.4 eV,
ℏωE ¼ 0.16 eV, and g ¼ 0.1 eV, we obtain ℏΠ ¼
0.5 meV, which is consistent with the first-principles
calculations shown in Fig. 1(i).
As compared to the undoped case, the IXS spectra of

B-doped diamond in Figs. 1(d) and 1(e) exhibit a redshift of
the LO phonon energy and an increase of the phonon
linewidth close to Γ, which indicate the emergence of a
doping-induced KA. To quantify the effect of doping on the
phonon energy, we define the phonon-softening parameter
ΔΩqνðnÞ ¼ Ωqνð0Þ −ΩqνðnÞ, where ΩqνðnÞ denotes the
phonon frequency at a carrier density n. The softening and
linewidth become more pronounced with the increase of
doping concentration. The KA is observed only for wave
vectors smaller than a critical cutoff value qc ¼ 2kF, with
kF being the Fermi momentum, which corresponds to the
maximum momentum transfer for electron-phonon scatter-
ing on the Fermi surface; see Fig. 1(a) [1]. Using the Fermi
momentum of the homogeneous electron gas model,
kF ¼ ð3π2n=NmÞ1=3, where Nm ¼ 3 is the degeneracy of
the valence-band top of diamond, we obtain qc ¼ 0.3 and
0.5 Å−1 for doping levels of 3 × 1020 and 1.4 × 1021 cm−3,
respectively. These values are marked by vertical dashed
lines in Figs. 1(d), 1(e), 1(j), and 1(k).
For momenta q < qc, we find adiabatic phonon

dispersions consistent with previous works [25,28,29].
As reported in Refs. [9,29], however, the adiabatic approxi-
mation leads to a systematic underestimation of the phonon
energy as compared to the experiment, which becomes
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Time-dependent Boltzmann equation (TDBE)  



Time-dependent Boltzmann equation

Key assumption: Electronic and vibrational excitations are described via the corresponding distribution functions 
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Rate of change of  and  from the TDBEnqν fnk

• solved via Euler or Runge-Kutta algorithms. 
• scattering rates are obtained ab initio
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Bose-Einstein statistics: 

Fermi-Dirac statistics: 

neq
qν = [eℏωqν/kBT − 1]−1Thermal 

equilibrium
f eq
nk = [e(εnk−μ)/kBT + 1]−1

nqν ≠ neq
qν

Out of 
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nkand/or

I[ f, n] collision integral



Collision integrals due to the electron-phonon interactions

Ĥeph = N− 1
2

p ∑
mnk

∑
qν

gν
mn(k, q) ̂c†

mk+q ̂cnk[ ̂aqν + ̂a†
−qν]Electron-phonon interaction

Γem
qν à

4π
�hNp

X

mnk
jgν

mnÖk; qÜj2fnkÖ1� fmkáqÜδÖεnk � �hωqν � εmkáqÜÖnqν á 1Ü :

(23) 

The total rate of change in the phonon occupation nqν due to the 
electron-phonon interactions Γpe

qν can thus be defined as the difference 
between the rates of phonon emission (Γem

qν ) and absorption (Γabs
qν ) processes: 

Γpe
qνÖtÜ à

4π
�hNp

X

mnk
jgν

mnÖk; qÜj2fnkÖ1� fmkáqÜ (24) 

⇥ âδÖεnk � �hωqν � εmkáqÜÖnqν á 1Ü � δÖεnk á �hωqν � εmkáqÜnqνä :

Equation (24) is the phonon collision integral due to the electron-phonon 
interaction. Its time dependence arises from the changes of the electron and 
phonon distribution functions (fnk and nqν) over time. In conditions of 
thermal equilibrium between electrons and the lattice, as for instance in 
an ideal situation in which electron and phonon occupations are described 
by Fermi-Dirac and Bose-Einstein statistics at a given temperature, the rates 
Γabs

qν and Γem
qν are equal and opposite in sign, indicating that the total change 

in the phonon number nqν vanishes, since the emission and absorption of 
phonons are perfectly compensated.

Following similar steps, the electronic collision integral due to the elec-
tron-phonon interaction can be derived as: 

Γep
nkÖtÜ à

2π
�hNp

X

mνq
jgν

mnÖk; qÜj2

⇥ fÖ1� fnkÜfmkáqδÖεnk � εmkáq á �hωqνÜÖ1á nqνÜ
á Ö1� fnkÜfmkáqδÖεnk � εmkáq � �hωqνÜnqν

� fnkÖ1� fmkáqÜδÖεnk � εmkáq � �hωqνÜÖ1á nqνÜ
� fnkÖ1� fmkáqÜδÖεnk � εmkáq á �hωqνÜnqνg :

(25) 

Figure 4. Diagrammatic representation of (a) phonon-emission and (b) phonon-absorption 
processes. Wavy lines represent non-interacting phonon propagator, whereas straight lines 
denote non-interacting single-particle propagators. In both diagrams, time increases from left 
to right.
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Γ(co)
nk =

∫
dω
2π

[
f<nk(ω)Γ

>
nk(ω)− f>nk(ω)Γ

<
nk(ω)

]

≈ 2π
!

∑

m,ν

∫
d3q
ΩBZ

|gmnν(k, q)|2

×
[
fnk(1 − fmk+q)δ(∆ε

nm
k,q + !ωqν)nqν

+fnk(1 − fmk+q)δ(∆ε
nm
k,q − !ωqν)(nqν + 1)

−(1 − fnk) fmk+qδ(−∆εnm
k,q + !ωqν)nqν

−(1 − fnk) fmk+qδ(−∆εnm
k,q − !ωqν)(nqν + 1)

]
,

 

(36)

where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via

JM(E) = 1
V

∫
d3r J(r; E) (37)

=
−e
Vuc

∑

n

∫
d3k
ΩBZ

vnkfnk(E), (38)

where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:

σαβ =
∂JM,α

∂Eβ

∣∣∣∣
E=0

=
−e
Vuc

∑

n

∫
d3k
ΩBZ

vαnk∂Eβ fnk. (39)

Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:

−evβ
nk
∂f 0

nk
∂εnk

=
∑

m

∫
d3q
ΩBZ

[
τ−1

mk+q→nk ∂Eβ fmk+q

−τ−1
nk→mk+q ∂Eβ fnk

]
,

 
(40)

where we introduced the partial decay rate

τ−1
nk→mk+q =

∑

ν

2π
! |gmnν(k, q)|2

×
[
(nqν + 1 − f 0

mk+q)δ(∆ε
nm
k,q − !ωqν)

+(nqν + f 0
mk+q)δ(∆ε

nm
k,q + !ωqν)

]
,

 

(41)

and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ
enc

∣∣∣∣ . (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via

JM(E) = 1
V
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d3r J(r; E) (37)

=
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where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:

σαβ =
∂JM,α

∂Eβ
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E=0

=
−e
Vuc

∑
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∫
d3k
ΩBZ

vαnk∂Eβ fnk. (39)

Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:

−evβ
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where we introduced the partial decay rate
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and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ
enc

∣∣∣∣ . (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via
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∫
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where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:
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Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:
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where we introduced the partial decay rate
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and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ
enc

∣∣∣∣ . (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via

JM(E) = 1
V

∫
d3r J(r; E) (37)

=
−e
Vuc

∑

n

∫
d3k
ΩBZ

vnkfnk(E), (38)

where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:

σαβ =
∂JM,α

∂Eβ
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E=0

=
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∑
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∫
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Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:
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where we introduced the partial decay rate
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and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ
enc

∣∣∣∣ . (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).

Rep. Prog. Phys. 83 (2020) 036501 fmk+q → fnk

emission
4



Collision integrals due to the electron-phonon interactions

Collision integral  
due to the EPI

Γe−ph
nk = 2π

ℏ ∑
mqν

|gν
nm(k, q) |2 [ − fnk(1 − fmk+q)δ(εnk − εmk+q − ℏωqν)

−fnk(1 − fmk+q)δ(εnk − εmk+q + ℏωqν)

+(1 − fnk)fmk+qδ(εnk − εmk+q + ℏωqν)]
+(1 − fnk)fmk+qδ(εnk − εmk+q − ℏωqν)

Review

7

Γ(co)
nk =

∫
dω
2π

[
f<nk(ω)Γ

>
nk(ω)− f>nk(ω)Γ

<
nk(ω)

]

≈ 2π
!

∑

m,ν

∫
d3q
ΩBZ

|gmnν(k, q)|2

×
[
fnk(1 − fmk+q)δ(∆ε

nm
k,q + !ωqν)nqν

+fnk(1 − fmk+q)δ(∆ε
nm
k,q − !ωqν)(nqν + 1)

−(1 − fnk) fmk+qδ(−∆εnm
k,q + !ωqν)nqν

−(1 − fnk) fmk+qδ(−∆εnm
k,q − !ωqν)(nqν + 1)

]
,

 

(36)

where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via

JM(E) = 1
V

∫
d3r J(r; E) (37)

=
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Vuc

∑
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∫
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where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:
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∑
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Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:
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where we introduced the partial decay rate
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and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ
enc

∣∣∣∣ . (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state ("rst two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption ("rst and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 
The four scattering processes included in Γ(co)

nk  are illustrated 
in "gure 2.

Equation (28) is solved iteratively to obtain the E-"eld-
dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via
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=
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where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-"eld dependence of all quantities for clarity.

In the case of weak electric "elds, we can restrict ourselves 
to the linear response of the current density, which de"nes the 
conductivity tensor:
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Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coef"cients ∂Eβ fnk by taking derivatives on both 
sides with respect to the electric "eld:
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and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric "eld, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = !−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coef"cients ∂Eβ fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is de"ned as the ratio between 
conductivity and carrier density:

µd
αβ =
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The charge carrier density entering the electron mobility ten-
sor, nc = nel, is de"ned as

nel =
1

Vuc

∑

n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

, (43)

Figure 2. The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, "rst 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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Numerical implementation

1 Real time propagation (Heun or Runge Kutta algorithm)
∂f
∂t

= Γcollisions f(t + Δt) = f(t) + ΓcollisionsΔt

2 Electron and phonon energies (  and ) from DFT and DFPT. εnk ℏωqν

• Spin-orbit coupling effects included

• Norm-conserving Vanderbiit (ONCV) pseudopotential

• Band structure are fixed,  and  are time-independent (weakly perturbed system)εnk ωqν

3 Ultra-dense k- and q-point meshes (maximally-localized Wannier functions)

• in 2D materials  up to 120 × 120 × 1 200 × 200 × 1

4 Electron-phonon and phonon-phonon coupling matrix elements from first principles

Euler: 

5 Implemented in EPW by Yiming Pan (check out his poster!)
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Estimated timescales 
for electron relaxation: < 2 ps

(*) Mannebach et al., Nano Lett. 15, 6889 (2015)

Experiments  from (*)  
(fs-electron diffraction): 1.7 ± 0.3 ps

Nonequilibrium ELECTRON dynamics in monolayer MoS2

Electron and hole dynamics with momentum resolution
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initial electronic distribution can be estimated via ΔEel =
f T f Tkd ( ) ( )n n n nk k kBZ

1 FD
el
0 FD

ph
0∫ εΩ ∑ [ − ]− , which yields ΔEel =

35 meV per unit cell for the conditions specified above.
In Figure 2a, the electron distribution function f nk(t = 0)

corresponding to the initial excited state is superimposed to the
band dispersion of monolayer MoS2. Bright regions in the
conduction band reflect the initial population of excited
electrons, whereas dark regions in the valence band indicate
the hole population. The distribution function f nk0 further
illustrated in the full BZ in panels d and g of Figure 2 for the
conduction and valence bands, respectivelyindicates that
excited electrons (holes) primarily occupy states in the vicinity
of the K and Q (K and Γ) high-symmetry points.
Panels b and c of Figure 2 report the electronic occupations f nk

in the valence and conduction bands, respectively, throughout
the first 2 ps of the dynamics. Because radiative recombination is
neglected here, the total density of excited electrons and holes
remains constant throughout the dynamics. The qualitative
agreement between the temperature dependence of the Fermi−
Dirac function (Figure S4 of the Supporting Information) and
the changes of the electronic occupations suggests an intuitive
picture of the electron dynamics, whereby thermalization is
achieved through a progressive lowering of the effective
electronic temperature. It takes about 800 fs for excited holes
in the valence band to thermalize with the lattice, whereas the
electronic relaxation in the conduction band is completed within
2 ps. These time scales are in excellent agreement with recent
femtosecond electron diffraction measurements on monolayer
MoS2,

57 which estimated 1.7 ± 0.3 ps for the time scale for
electronic thermalization via electron−phonon scattering,
whereas relaxation time scales of the order of 1 ps have been
reported for few-layer samples.58 The different time scales for
electron and hole relaxation can be ascribed to the coexistence of
three quasi-degenerate valleys at Γ, K, and K′ in the valence
band, which in turn provide for a larger phase space for
electron−phonon scattering. As electrons and the lattice
approach thermal equilibrium, f nk converges toward a Fermi−

Dirac function with final temperature Tel
fin = 180 K (dark blue in

Figure 2b,c).
Interestingly, while the distribution function f nk remains

monotonic in the valence band at each time step, revealing no
traces of population inversion, a transient peak in the electronic
occupations of the conduction band (arrow in Figure 2c)
emerges over the first 300 fs at 200 meV above the conduction-
band minimum, the energy of the 6-fold degenerate Q pocket.
This feature indicates that a bottleneck effect in the carrier
relaxation may occur at Q, leading to a transient accumulation of
hot carriers around the Q point, and it suggests that, similarly to
WS2,

17 a regime of population inversion might be established in
monolayer MoS2 under suitable conditions of photoexcitation.
A momentum-resolved view of the electron and hole

dynamics is given by Figures 2 (panels e and f and h−i),
where values of f nk in the full BZ are shown for the conduction
and valence bands at selected time snapshots. Throughout the
dynamics, excited electrons and holes remain localized in
momentum space in the vicinity of the K and Γ high-symmetry
points in the valence band and around K and Q in the
conduction band. As time evolves, the occupation of electronic
states in the BZ, initially more diffused owing to the higher
electronic temperature, localizes further in the vicinity of high-
symmetry points. This trend reflects a lowering of the electronic
temperature as energy is transferred to the lattice and carriers
scatter back to the Fermi energy.
Having discussed the dynamics of excited electrons and holes,

I proceed next to discuss the out-of-equilibrium dynamics of the
lattice. The effective vibrational temperature is defined as

T t k n t( ) ln 1 ( )q q qB
1ω= ℏ { [ + ]}ν ν ν

−
(5)

and it is obtained by inverting the Bose−Einstein distribution
(eq 2). At variance with nqν, Tqν becomes constant throughout
the BZ at thermal equilibrium, and it is therefore better suited
(but otherwise equivalent) to inspect the nonequilibrium
dynamics of the lattice. Interpretation of Tqν as a thermody-
namic temperature, however, is rigorously justified only at
thermal equilibrium. Figures 3a−e reports the average vibra-

Figure 2.Nonequilibrium dynamics of electrons and holes in monolayerMoS2. (a) DFT band structure and Fermi−Dirac occupations (superimposed
as a color coding) for an initial excited electronic state f nk(t = 0). The band gap is shaded, and different color scales are used for conduction and valence
states, respectively. Time and energy dependence of the electron distribution function f nk in the valence (b) and conduction (c) bands. The
conduction-band energy is relative to the energy of the Kohn−Sham band gap (Δ = 1.7 eV). Time- and momentum-resolved electronic distribution
function f nk for crystal momenta in the full BZ for the conduction (d−f) and valence (g−i) bands at times t = 0, 0.5, and 2 ps.
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Nonequilibrium PHONON dynamics in monolayer MoS2

F. Caruso, J. Phys. Chem. Lett. 12, 1274 (2021)
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tronic temperature – becomes more localized. This trend
reflects the lowering of the (e↵ective) electronic temper-
ature as energy is transferred to the lattice and carriers
scatter back to the Fermi energy.

As electrons and lattice approach thermal equilibrium,
the EDF converges towards a Fermi-Dirac function with
final temperature T el

fin = 180 K (dark blue in Fig. 2 (b-c)).
Strikingly di↵erent time scales characterize the relaxation
of excited electrons and holes. While it takes about 800 fs
for excited holes in the valence band to reach thermal-
ization, the electronic relaxation in the conduction band
is slower and is completed within 2 ps. The faster hole
relaxation can be ascribed to the larger phase space for
electron-phonon scattering, which in turn arises from the
co-existence of two quasi-degenerate maxima at � and K
in the valence band. These time scales are in excellent
agreement with recent femtosecond electron di↵raction
measurements on monolayer MoS2? , which estimated
to 2 ps the timescale for electronic thermalization via
electron-phonon scattering.

Overall, Figs. 2 (d-i) provide evidence that, throughout
each step of the dynamics, the excited electrons and holes
remain localized in momentum space in the vicinity of
K and � high-symmetry points in the valence band, and
around K and Q in the conduction band. This anisotropic
population of electronic states in the BZ is responsible for
a stringent momentum selectivity in the phonon emis-
sion, which as discussed below, underpins the emergence
of non-thermal vibrational state of the lattice with a life-
time of several picoseconds.

To inspect the non-equilibrium dynamics of the lattice,
we focus on the (e↵ective) vibrational temperature:

Tq⌫ = ~!q⌫ [kB ln(1 + nq⌫)]
�1 (5)

obtained by inverting the Bose-Einstein distribution
function. The advantage of this choice is that Tq⌫ be-
comes a constant at thermal equilibrium, whereas nq⌫

does not. Interpretation of Tq⌫ as a thermodynamic tem-
perature, however, is rigorously justified only at thermal
equilibrium. In Figs. 3 (a-e), we report the average vibra-
tional temperature T̃q = N�1

ph

P
⌫ Tq⌫ – with Nph being

the number of phonons – for crystal momenta within the
first BZ and for several time steps throughout the dy-
namics. The same color bar (shown beside panel (i)) is
used for panels (a-i).

At t = 0 (a), the system is at thermal equilibrium as re-
flected by the constant vibrational temperature in the BZ
(Tq⌫ = T ph

0 = 100 K). As the coupled electron-phonon
dynamics begins, the excited carriers in the valence and
conduction bands tend to relax back to Fermi level by
transferring energy to the lattice by emitting phonons.
The change in the population of the ⌫-th phonon at mo-
mentum q is reflected, at each time step of the dynam-
ics, by the change of its Bose-Einstein occupation nq⌫

and, via Eq. (5), of the vibrational temperature Tq⌫ . At
t = 100 fs the lattice abandons the initial thermalized
state, as illustrated in Fig. 3 (b) by the emergence of in-
homogeneities in the average vibrational temperature T̃q.

In particular, we observe an increase of the vibrational
temperature for momenta close to � and K, which in
turn, reflects an enhancement of the phonon population.

To understand the origin of these features, we note that
the phonon emission – and, thus, the change of Tq⌫ – is
triggered by electronic transitions within the valence and
conduction bands, which are heavily constrained by en-
ergy and momentum conservation laws. For the excited
electronic distribution of Fig. 2 (a), for instance, phonon-
assisted transitions within the valence band would pri-
marily involve two types of processes: (i) intra-valley
transitions, connecting initial and final states both lo-
cated close to the same high-symmetry point (� or K); (ii)
inter-valley transitions, with the initial and final states
located at � and K, respectively (or vice versa). Due to
momentum conservation, processes of type (i) result in
the emission of long-wavelength phonons (q ' 0) with
momenta close to �, whereas processes of type (ii) can
only involve the emission phonons with momenta around
K. A similar picture applies to transitions in the con-
duction band. Here, however, the presence of the Q
valley also enables the emission of phonons around M
and Q. A schematic illustration of the allowed inter- and
intra-valley phonon-assisted transitions is provided in the
SM. Umklapp processes are also included in this pictures,
since transitions connecting di↵erent BZs can be folded
back to the first BZ via translation by a reciprocal lattice
vector. The anisotropic increase of vibrational tempera-
ture, thus, indicates the preferential emission of phonons
at � and K, which is dictated by momentum selectivity
in the electronic transitions.

As shown in Fig. 2 (c), this mechanism leads to a
further enhancement of the anisotropic population of
phonons in the BZ for t = 500 fs. Additionally, we ob-
serve an increase in vibrational temperature at the M
point and, less pronouncedly, at Q, which arise from tran-
sitions involving the Q pocket in the conduction band (see
SM). As time evolves, phonon-phonon scattering tends to
counterbalance a non-thermal vibrational state, by driv-
ing the lattice towards a thermalized regime (namely,
Tq⌫ = constant). This behaviour is manifested for t = 1.5
and 3 ps – illustrated in Figs. 2 (d-e), respectively – by
a progressive reduction of the temperature anisotropy in
the BZ.

In addition to the momentum anisotropy illustrated
in panels (a-e), the vibrational temperature may change
significantly for di↵erent phonon branches, since the con-
tribution of each phonon to the relaxation process is
dictated by its own electron-phonon coupling strength.
Figures 3 (g-i) illustrates the mode- and momentum-
resolved vibrational temperature Tq⌫ , superimposed to
the phonon dispersion of monolayer MoS2 (obtained from
density-functional perturbation theory at zero temper-
ature) for t = 0.1, 0.5, and 3 ps. Optical phonons,
which are characterized by out-of-phase oscillations of the
atoms in the unit cell, lead to stronger coupling with the
electrons as compared to the acoustic (in-phase) modes,
and they thus provide a more likely decay channel for
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A crash course in the theory diffraction
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In order to make contact with the literature we define the quantity exp(�2WT )
as the Debye-Waller factor where:
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and therefore we can write for the temperature dependent scattering intensity:
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The Debye-Waller exponential factor describes the attenuation of the scattered
intensity as a result of the vibrational motion of the atoms. Now we take
the Taylor expansion of the second exponential appearing after the summation
over p, p0 to obtain for the zero-phonon hI0(S)iT and one-phonon contribution
hI1(S)iT to the scattered intensity [2]:

hI0(S)iT = |f0|2exp(�2WT )
X

pp0

exp

⇢
iS · [Rp �Rp0 ]

�
(11)

hI1(S)iT = |f0|2exp(�2WT )
1

MNp

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T

⇥
X

pp0

cos[q · (Rp �Rp0)]exp

⇢
iS · [Rp �Rp0 ]

�
. (12)

Using the standard textbook relation
P

p exp(iq ·Rp) = Np�q,G twice we can
rewrite the zero-phonon contribution to the scattered intensity as:

hI0(S)iT = N2
p |f0|2exp(�2WT )�S,G. (13)

The above expression shows that the zero-phonon contribution, related also to
the Laue’s interference function, has very sharp maxima whenever the scattering
vector S is equal to a reciprocal lattice vector G and is zero for all other values.
It also shows that the ratio between the elastic scattering intensity from a system
with the atoms vibrating at temperature T (oscillating target), and a system
with the atoms static at their equilibrium positions (static target) is reduced by
the Debye-Waller factor exp(�2WT ).

For the one-phonon contribution we can express the cosine function in terms
of exponentials and use again the standard textbook relation

P
p exp(iq ·Rp) =

3

Zero-phonon term: 

Np�q,G twice to obtain:

hI1(S)iT = |f0|2exp(�2WT )
Np

2M

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T

⇥
⇥
�(S+ q) + �(S� q)

⇤
. (14)

= |f0|2exp(�2WT )
Np

M

X

⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
Eq⌫,T

The derivation of the dynamical structure factor proceeds along the same lines
with the above derivation for the static scattering intensity, but now considering
a time dependent phonon field, i.e. write zq⌫ = lq⌫(a

†
�q⌫e

i!q⌫t + aq⌫e�i!q⌫t),

and taking also the time average as
R1
1

dt
2⇡ exp(�iEt/h̄). The result for the

zero-phonon contribution and the one-phonon contribution to the dynamical
structure factor is:

hI0(S, E)iT = N2
p |f0|2exp(�2WT )�S,G�E , (15)

hI1(S, E)iT = |f0|2exp(�2WT )
h̄2Np

2M

X

q⌫

X

↵↵0

S↵S↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
1

h̄!q⌫
(16)

⇥
⇥
�(S+ q)nq⌫,T �(E + h̄!q⌫) + �(S� q)(nq⌫,T + 1)�(E � h̄!q⌫)

⇤
.

and therefore:

hI0(G, E)iT = N2
p |f0|2exp

⇥
� 2WT (G)

⇤
�E , (17)

hI1(q, E)iT = |f0|2exp
⇥
� 2WT (q)

⇤ h̄2Np

2M

X

⌫

X

↵↵0

q↵q↵0e⌫↵(q)e
⌫⇤
↵0(q)

�
1

h̄!q⌫

⇥
⇥
nq⌫,T �(E + h̄!q⌫) + (nq⌫,T + 1)�(E � h̄!q⌫)

⇤
. (18)

The above result can be obtained alternatively by following the derivation in
Ref. [2] at pp. 470-473. We note that Eq. (16) is the same with Eq. (10.62)
of Ref. [2], but now including the phonon polarization vectors e⌫↵(q) and the
atomic structure factor f0.
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One-phonon term: 

thermal transport in this far from equiulibrium
regime.

Conclusion

UED and UEDS have provided time- and
momentum-resolved details of electron-phonon
coupling, anharmonic phonon decay and ther-
mal transport on the sub-nanoscale in an 1L-
MoS2 /Si:N heterostructure. These data show
that the dielectric environment provided by
Si:N leads to a strong renormalization of the
EPI in the monolayer. ab inition DFT sim-
ulations using a recently developed framework
are in excellent agreement with these measure-
ments. Combined, these approaches provide a
momentum-resolved protocol which can yield
details of coupling dynamics in 2D material sys-
tems and their heterostructures.

Methods

UEDS

The total scattered intensity can be decom-
posed into

I(Q, ⌧) = I0(Q, ⌧) + I1(Q, ⌧) + · · ·

The zeroth-order term I0(Q, ⌧) is the elastic
Bragg scattering and the first-order contribu-
tion I1(Q, ⌧) is the inelastic single-phonon ’dif-
fuse’ scattering that is the primary focus of this
work. Adopting phonon normal mode coordi-
nates gives:

I1(Q, t) /
X

⌫

n⌫(q, t) + 1/2

!⌫(q, t)| {z }
|a⌫q|2

��F1⌫(Q, t)
��2

(3a)
where the label ⌫ indicates the specific phonon
branch, Q is the electron scattering vector, q
is the reduced phonon wavevector (i.e. q = Q
- H, where H is the closest Bragg peak), a⌫q
is the vibrational amplitude of mode �, n⌫ is
the mode-resolved occupancy with energy ~!⌫ ,
and F1⌫ are known as the one-phonon structure

factors. I1 provides momentum-resolved infor-
mation on the nonequilibrium distribution of
phonons across the entire Brillouin zone, since
I1(q, ⌧) depends only on phonon modes with
wavevector q = Q - H (Fig 1a). The F1⌫ are
geometrical weights that describe the relative
strength of scattering from di↵erent phonon
modes and depend sensitively on the atomic
polarization vectors {e⌫k}.43 Most importantly,
F1⌫ (Q) are relatively large when the phonon
mode ⌫ is polarized parallel to the reduced scat-
tering vector q. These phonon-scattering selec-
tion rules mean that F1⌫ for the out of plane (Z-
polarized) acoustic and optical bands and the
optical modes of E” symmetry are very weak
in the geometry of these experiments (SI, Fig.
S8). These experiments primarily probe the q-
dependent population dynamics of the E’ op-
tical and LA/TA branches. Terms of higher-
order than I1 represent multi-phonon scatter-
ing. These terms have lower cross-sections and
do not contribute significantly to the interpreta-
tion of the 1L-MoS2 signals reported on here.24

The 1L-MoS2 /Si:N specimens used in these ex-
periments provide two distinct contributions to
I0 that are both evident in Fig1: (i) elastic
scattering from the amorphous Si:N substrate
layer which is distributed as di↵use rings, and
(ii) the Bragg and phonon di↵use scattering
from the 1L-MoS2 . The qualitatively di↵er-
ent character of these signals makes the amor-
phous Si:N contribution to the scattering sig-
nals, Isub(Q, ⌧) = Isub(|Q|), easily subtracted
from the dataset as a background. See Supple-
mentary Information Section 1 for details of the
pump-probe instrument.

Sample Preparation

The techniques of Liu et al were used to gen-
erate the 1L-MoS2 sample onto the supporting
Si3N4 (Si:N) substrate.44 A 150 nm-thick Au
film was deposited onto a Si wafer (from Nova
Electronic Materials) with e-beam evaporation
(0.05 nm/s). Polyvinylpyrrolidone (PVP) solu-
tion (from Sigma Aldrich, mw 40000, 10% wt
in ethanol/acetonitrile wt 1/1) was spin-coated
on the top of the Au film (1500 rpm, acceler-
ation 500 rpm/s, 2 min) and then heated at
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momentum-dependent electron−phonon interaction strength
and the available inelastic electron−phonon scattering path-
ways that are open to the hot carriers. These pathways are
constrained by the electronic band structure and carrier
distribution (Figure 2) and explain the observed and computed
momentum-dependent phonon heating dynamics. Within 5−
10 ps, the carrier and phonon systems in 1L-MoS2 have
equilibrated with respect to the partition of excitation energy,
but the phonon system remains profoundly out of equilibrium
internally.
Previous work has demonstrated the possibility of defining a

time-dependent effective phonon temperature, Teff(τ), that
corresponds to the observed MSD using the model49

u
M k T

F( ) 3
2

coth
2 ( )

( ) d2

0 B eff
∫τ ω

τ
ω

ω ω⟨ ⟩ = ℏ ℏ∞ ikjjjjj y{zzzzz (2)

where F(ω) is the phonon density of states. However, such a
Teff(τ) provides a misleading view of the nonequilibrium state
of the phonon system during carrier−phonon equilibration.
This is illustrated in Figure 4a, where the nonequilibrium
phonon-diffuse differential scattering intensity at 5 ps is
compared with a thermalized phonon-diffuse differential
intensity distribution at Teff(5 ps) = 380 K (inset), the
effective temperature determined by eq 2 and the measured
MSD at 5 ps (Figure 3). The phonon population distribution
in 1L-MoS2 is still profoundly nonthermal and is not well
described by an effective temperature.
Further relaxation of these anisotropic nonequilibrium

phonons in 1L-MoS2 involves coupling processes internal to
the monolayer and heat transfer between the monolayer and
Si:N substrate in the heterostructure. These distinct processes
are both resolved by these measurements. In Figure 5, the
diffuse intensity dynamics at K out to 150 ps are compared

against the MSD dynamics extracted from the Bragg peaks,
whose ∼50 ps decay time (single-exponential fit) indicates the
cooling rate of the monolayer to the underlying substrate. The
observed decay of diffuse intensity at K is in poor agreement
with these MSD dynamics, indicating that a different process is
involved. The single-exponential decay time constant deter-
mined for dynamics at K is 25 ps, twice as rapid as the MSD
dynamics but in good agreement with the ab initio anharmonic
decay rate of E′ optical phonons at K (22 ps), to which UEDS
is most sensitive (Figure S8 in the Supporting Information).
The observed decay of the MSD is, however, in reasonable
agreement with the decay in phonon-diffuse scattering
measured for both the mid-BZ LA and TA modes, whose
heating dynamics are shown in Figure 4d,e (Table S1 in the
Supporting Information). For times <30 ps, this subnanoscale
phonon transport across the 1L-MoS2/Si:N heterostructure

Figure 4.Momentum-resolved phonon re-equilibration dynamics. (a) All-phonon differential diffuse scattering pattern of 1L-MoS2 calculated from
first-principles as ΔI = I(Q, τ = 5 ps) − I(Q, T = 300 K). The inset (upper left) is the thermal differential diffuse scattering pattern calculated as ΔI
= I(Q, T = 380 K) − I(Q, T = 300 K). The temperature of 380 K corresponds to an effective lattice temperature as extracted from the observed
MSD at τ = 5 ps (see text), shown on the same color scale. Black hexagons indicate BZ boundaries. Regions for which data are shown in (b−d) are
indicated with the matching color. (b−d) Relative change in diffuse intensity at the reduced scattering vectors (b) K, (c) M, (d) LA phonons at Q
and for (e) TA phonons at Q. Signals are obtained by integration over the colored regions in (a), as well as over every visible BZ (see the
Supporting Information). Acoustic signals are extracted by integrating over the segmented annuli given in (a), with LA and TA distinction possible
due to phonon scattering selection rules (Figure S5 in the Supporting Information). Red and orange curves are shown as in Figure 3.

Figure 5. Optical phonon anharmonic decay vs monolayer cooling. K
valley optical phonon-diffuse scattering (blue) compared to MSD
decay (green). The single-exponential decay of the diffuse intensity at
K (25 ps) is in good agreement with the anharmonic decay rate of E′
optical phonons computed via first-principles calculations (see section
3.3 in the Supporting Information).

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.2c00850
Nano Lett. XXXX, XXX, XXX−XXX
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Simulated UEDS for monolayer MoS2

ΔI(Q, t)

Thermal 
heating only
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from TDBE

Recipe for ab-initio simulation of UEDS intensities

T. Britt, F. Caruso et al,, Nano Lett. 22, 4718 (2022)

Μ
Γ

K

Μ

Μ

Q

T̃q

250

150

100

200

T[K]

Step 1: Obtain the non-equilibrium phonon population from the TDBE

Step 3: Subtract the initial structure factor

Intensity difference: ΔI(Q, t) = I(Q, t) − I(Q, t = 0) Debye-Waller effect
thermal heating

phonons out 
of equilibrium

Step 2: Evaluate the structure factor for the instantaneous phonon population

thermal transport in this far from equiulibrium
regime.

Conclusion

UED and UEDS have provided time- and
momentum-resolved details of electron-phonon
coupling, anharmonic phonon decay and ther-
mal transport on the sub-nanoscale in an 1L-
MoS2 /Si:N heterostructure. These data show
that the dielectric environment provided by
Si:N leads to a strong renormalization of the
EPI in the monolayer. ab inition DFT sim-
ulations using a recently developed framework
are in excellent agreement with these measure-
ments. Combined, these approaches provide a
momentum-resolved protocol which can yield
details of coupling dynamics in 2D material sys-
tems and their heterostructures.

Methods

UEDS

The total scattered intensity can be decom-
posed into

I(Q, ⌧) = I0(Q, ⌧) + I1(Q, ⌧) + · · ·

The zeroth-order term I0(Q, ⌧) is the elastic
Bragg scattering and the first-order contribu-
tion I1(Q, ⌧) is the inelastic single-phonon ’dif-
fuse’ scattering that is the primary focus of this
work. Adopting phonon normal mode coordi-
nates gives:

I1(Q, t) /
X

⌫

n⌫(q, t) + 1/2

!⌫(q, t)| {z }
|a⌫q|2

��F1⌫(Q, t)
��2

(3a)
where the label ⌫ indicates the specific phonon
branch, Q is the electron scattering vector, q
is the reduced phonon wavevector (i.e. q = Q
- H, where H is the closest Bragg peak), a⌫q
is the vibrational amplitude of mode �, n⌫ is
the mode-resolved occupancy with energy ~!⌫ ,
and F1⌫ are known as the one-phonon structure

factors. I1 provides momentum-resolved infor-
mation on the nonequilibrium distribution of
phonons across the entire Brillouin zone, since
I1(q, ⌧) depends only on phonon modes with
wavevector q = Q - H (Fig 1a). The F1⌫ are
geometrical weights that describe the relative
strength of scattering from di↵erent phonon
modes and depend sensitively on the atomic
polarization vectors {e⌫k}.43 Most importantly,
F1⌫ (Q) are relatively large when the phonon
mode ⌫ is polarized parallel to the reduced scat-
tering vector q. These phonon-scattering selec-
tion rules mean that F1⌫ for the out of plane (Z-
polarized) acoustic and optical bands and the
optical modes of E” symmetry are very weak
in the geometry of these experiments (SI, Fig.
S8). These experiments primarily probe the q-
dependent population dynamics of the E’ op-
tical and LA/TA branches. Terms of higher-
order than I1 represent multi-phonon scatter-
ing. These terms have lower cross-sections and
do not contribute significantly to the interpreta-
tion of the 1L-MoS2 signals reported on here.24

The 1L-MoS2 /Si:N specimens used in these ex-
periments provide two distinct contributions to
I0 that are both evident in Fig1: (i) elastic
scattering from the amorphous Si:N substrate
layer which is distributed as di↵use rings, and
(ii) the Bragg and phonon di↵use scattering
from the 1L-MoS2 . The qualitatively di↵er-
ent character of these signals makes the amor-
phous Si:N contribution to the scattering sig-
nals, Isub(Q, ⌧) = Isub(|Q|), easily subtracted
from the dataset as a background. See Supple-
mentary Information Section 1 for details of the
pump-probe instrument.

Sample Preparation

The techniques of Liu et al were used to gen-
erate the 1L-MoS2 sample onto the supporting
Si3N4 (Si:N) substrate.44 A 150 nm-thick Au
film was deposited onto a Si wafer (from Nova
Electronic Materials) with e-beam evaporation
(0.05 nm/s). Polyvinylpyrrolidone (PVP) solu-
tion (from Sigma Aldrich, mw 40000, 10% wt
in ethanol/acetonitrile wt 1/1) was spin-coated
on the top of the Au film (1500 rpm, acceler-
ation 500 rpm/s, 2 min) and then heated at
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Direct view of phonon dynamics in MoS2 monolayer

Measured energy transfer to the 
lattice: ~7 times slower than theory. 

Si:N substrate

gEPI

freestanding

gEPI/ϵsub
∞

unscreened screened 

Figure 3: Photocarrier-phonon equilibration in 1L-MoS2 as measured via Bragg peak Debye-Waller
dynamics. (a) Relative change in (300) Bragg peak intensity following photoexcition (blue circles).
DFT simulation for free-standing 1L-MoS2 (red curve). DFT simulation including the dielectric
environment provided by the Si:N substrate (orange curve). Prediction of 1D heat equation for
cooling of the 1L-MoS2 via heat di↵usion into the Si:N substrate (black dotted line). The inset
highlights the long-time behaviour of each signal and the blue band represents the 1� uncertainty
bound on the data points. (b) Increase in MSD extracted from Bragg intensity by Eqn 1. Red and
orange curves as in panel a) (c) Average phonon-branch temperature (momentum integrated) from
DFT simulations including Si:N dielectric environment.

Dielectric Screening of the EPI in
1L-MoS2 Heterostructure

Following photoexcitation, all measured 1L-
MoS2Bragg peaks are suppressed due to the
Debye-Waller e↵ect (Fig 3a).36,37 The relative
peak intensity is directly related to the in-
crease in-plane atomic mean-squared displace-
ments (MSD) hu2i(⌧) given by:

hu2i(⌧)� hu2
0i =

� 3

4⇡2

ln{eI0(Hmn, ⌧)/eI0(Hmn, ⌧ < ⌧0)}
|Hmn|2

(1)

where hu2
0i is the average of the equilibrium

in-plane displacement tensor, and Hmn is the
scattering vector of the 1L-MoS2Bragg reflec-
tion with (m,n) Miller index . The measured
changes in MSD following photoexcitation is
shown in Fig 3b.
The transient rise in MSD provides an av-

erage measure of the rate at which photocar-
rier excitation energy is transferred to phonons
in the monolayer, informing on carrier-phonon
equilibration through e-ph coupling. We com-
pare these measurements directly with the re-
sults of an ab initio DFT simulation framework
(see SI) of the same processes23,24 in Figs. 3a-

b. DFT results for a free-standing monolayer
film are shown in red, predicting a much higher
rate of MSD increase than that observed in the
experimental data. When the dielectric envi-
ronment provided by Si:N is included using a
semi-infinite slab model with no free parame-
ters, there is quantitative agreement between
the rise is MSD measured and that predicted
within experimental uncertainties.
The dielectric screening provided by Si:N in

the heterostructure appears to renormalize the
e-ph coupling matrix element, g̃mn⌫(k,q) =
gmn⌫(k,q)/"sub1 , where gmn⌫(k,q) is the un-
screened matrix element. Here, "sub1 = (1 +
"1)/2 is the high-frequency dielectric constant
of the semi-infinite slab, and "1 = 7.8 is di-
electric constant of bulk Si:N.38,39 The aver-
age value of these matrix elements for the LA
and LO (E

0
) phonon branches in free standing

1L-MoS2 are 19 meV and 23 meV respectively.
These are each reduced by a factor of "sub1 = 4.4
due to the presence of the Si:N dielectric en-
vironment, providing a quantitive explanation
for the approximately order-of-magnitude re-
duction in the rate of photocarrier-phonon en-
ergy transfer compared to predictions for a free-
standing film (SI, Table S1).
The excitation energy has equilibrated be-
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Bragg peak dynamics  
(Debye Waller effect)

pre-processing step is applied to all the UEDS patterns. The reported di↵raction intensity

Ĩ(Q, ⌧) is given by Eqn S1b.

Figure S3: (a) Raw di↵raction pattern of amorphous Si:N supported 1L-MoS
2
/ sample. The

beam block obstructs the undi↵racted beam to provide contrast between elastic (Bragg) and
inelastic (di↵use) events. (b) Di↵raction from the amorphous Si:N substrate, determined by
the modified azimuthal approach described in Eqn S1b, is subtracted from the raw data to
obtain (c) UEDS pattern from the 1L-MoS

2
/

Q = (Qx,Qy, 0) ⌘ (Qx,Qy) = |Q|ei arctan{Qy/Qx} ⌘ |Q|ei�

I(Q, ⌧) = I(|Q|,�, ⌧) �! 1

6

6X

i=1

I(|Q|,�� i⇡/3, ⌧) (S1a)

Î(Q, ⌧) = I(Q, ⌧)�
2⇡Z

0

d�

2⇡
I(|Q|,�, ⌧)

Y

mn

(1� �Q
Hmn

) (S1b)

eI(Q, ⌧) =
Î(Q, ⌧)� Î(Q, ⌧ < ⌧0)

Î(Q, ⌧ < ⌧0)
(S1c)

Here, Hmn is the location of the Bragg peak given by mb1 + nb2, � is the peak line-

shape function, and eI is the background subtracted di↵raction intensity normalised to pre-

photoexcitation conditions. It represents the relative change in intensity for a given Q, and

is the value reported in figures in the main text. Explicitly removing the intensity of the

Bragg peaks from the azimuthal average ensures the removal of only the di↵use rings from

the amorphous substrate.
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Figure 4: Momentum-resolved phonon re-equilibration dynamics (a) Di↵use scattering pattern of
1L-MoS2 at ⌧ = 5 ps computed via DFT. Inset (upper left) is the thermal di↵use scattering pattern
expected for an e↵ective lattice temperature corresponding to the observed MSD (380K, see text).
Black hexagons indicate BZ boundaries. Regions for which data is shown in (b-d) are indicated
with the matching colour. (b-d) The relative change in di↵use intensity at scattering vectors (b)
K, (c) M and for (d) TA phonons at Q (d) LA phonons at Q. Acoustic signals are extracted
by integrating over the segmented annuli given in (a) with LA and TA distinction possible due to
phonon scattering selection rules (SI, Fig. S5)

tween carriers and phonons in 1L-MoS2 by ⌧ ⇠
10 ps, as shown by the peak value of MSD in
Fig 3b. The roll-over and decay of MSD for
⌧ > 10 ps indicates the reduction in vibra-
tional energy in the monolayer due to thermal
transport into the Si:N substrate. Since pho-
toexcitation was e↵ectively uniform over the
probed 250µm region (< 10% variation), we ap-
proximate the heat transfer as one dimensional
and extract an e↵ective thermal conductivity
 for the combined TMD-substrate system by
fitting the rate of 1L-MoS2 cooling by the 1D
heat equation. This model provides an excel-
lent fit of the data visualized in Fig 3a, far supe-
rior than a single exponential decays (3a, inset).
This yields  = 313± 4 Wm�1K�1, which is in
reasonable agreement with simulated and ex-
perimental values of  in the c-axis of Si:N,40,41

indicating that the thermal boundary resistance
between 1L-MoS2 and Si:N in the heterostruc-
ture is small.

Mode-Resolved Nonequilibrium
Phonon Dynamics in 1L-MoS2

The increase in MSD determined from the De-
bye Waller suppression of Bragg peak intensi-
ties does not uniquely define the microscopic
state of the phonon system. By contrast, UEDS
measurements provide branch- and momentum-
resolved details of the nonequilibrium phonon
population distributions in the monolayer that
underlie the changes in MSD observed via the
Bragg peak dynamics. The transient UEDS
signals from 1L-MoS2 following photoexcitation
show the strongest increases at K, M and
Q points of the BZ (Fig 4). The time- and
momentum-resolved phonon excitation dynam-
ics at each of these points in the BZ are in good
agreement with the DFT predictions provided
the e↵ects of Si:N substrate dielectric screening
are included (Fig 4b-e).
These combined UEDS and DFT results show

that the nonequilibrium state of the phonon
system several picoseconds after photoexcita-
tion is profoundly anisotropic in momentum.
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show the strongest increases at K, M and
Q points of the BZ (Fig 4). The time- and
momentum-resolved phonon excitation dynam-
ics at each of these points in the BZ are in good
agreement with the DFT predictions provided
the e↵ects of Si:N substrate dielectric screening
are included (Fig 4b-e).
These combined UEDS and DFT results show

that the nonequilibrium state of the phonon
system several picoseconds after photoexcita-
tion is profoundly anisotropic in momentum.
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FIG. 1. (a) In-plane atomic structure of BP. (b) Schematic illustration of femtosecond electron scattering. (c) Exemplary
transmission di↵raction pattern of BP. First Brillouin zones can be drawn around each Bragg reflection, as illustrated by a
rectangle over the (200) reflection. An arbitrary position in reciprocal space, S, can always be expressed as G+ q, where G is
a reciprocal lattice vector defined by the Miller indices and q the phonon wavevector. (d) Electronic band structure calculated
from density-functional theory in the PBE approximation [25]. The conduction bands were shifted by 0.2 eV in energy to match
the experimentally observed bandgap of Eg ' 0.3 eV. (e) Brillouin zone with labeling of high-symmetry points. Our FEIS
experiments probe the blue plane. Below, the momentum distribution of photoexcited carriers approximated by a Fermi-Dirac
function fnk is shown (dark regions: more excited carriers). The colored rectangles indicate phonons groups, see text.

sively generating a non-equilibrium electron population
in the conduction band. Considering our pump photon
energy, one can expect intravalley scattering processes
within the Z pocket to play an important role in the
relaxation dynamics towards the conduction band min-
imum through emission of low-wavevector phonons. In-
tervalley scattering pathways can also transfer electrons
to the neighboring Y, A and A’ valleys along the zigzag
direction. First insight into the non-equilibrium dynam-
ics of the crystal lattice is obtained from the dynamics of
the Bragg reflections. The anisotropic lattice dynamics
of BP is reflected in the time evolution of the elastic scat-
tering signals, shown in Fig. 2(a) and described in detail
in Ref. [19]. Briefly, the dynamics of both armchair and
zigzag reflections are well-captured by bi-exponential de-
cays, with fast time constants of around 500 fs and slower
time constants of approximately 20 ps.

Here, we go beyond the analysis of the elastic scatter-
ing signals and phonon-averaged structural dynamics to-
wards a more detailed picture of lattice relaxation. This
can be obtained by investigating the inelastic scatter-
ing signals around specific Bragg reflections, shown for
selected high-symmetry points in Fig. 2 (b). The di↵rac-
tion pattern can be divided into BZs around each Bragg
reflection, as illustrated in Fig. 1 (c) for the (200) re-
flection. As inelastic scattering occurs primarily through
scattering o↵ of phonons, the signal measured at a given
point in the BZ reflects phonon populations with the
same momentum [20, 21, 33–36]. The red curve in
Fig. 2 (b) represents the relative intensity of the FEIS
signal as a function of time at the A point. Similar dy-
namics are observed at all the investigated A points. A
bi-exponential fit to the data yields a rising time constant
of 1.7 ± 0.1 ps, followed by a slower relaxation of 30 ±

FIG. 2. (a) Exemplary anisotropic elastic scattering signals
for zigzag (squares) and armchair reflections (triangles). (b)
Inelastic scattering signal at A (circles) and X (pentagons)
around the 400 reflection. The data in both panels is the
average over the Friedel pair (e.g. (400) and (4̄00)). The error
estimates represent the standard error of the mean signal over
multiple delay scans.

2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a
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Figure 3: (a-c) Momentum-resolved electron di↵raction signals, I(S, t) � I(S, t < t0), at
pump-probe delays of 2 ps, 10 ps, and 50 ps. Two-fold symmetrized data,36 raw data
shown in Supplemental Material.37 The Bragg reflections (blue dots) are negative due to
the Debye-Waller e↵ect. The di↵use background (red) qualitatively evolves as a function of
pump-probe delay. Selected Brillouin zones are shown in inset for the (004) and the (400)
reflections on the 50 ps map. All data are normalized to a common number. (d-f) Simulated
non-equilibrium scattering signals at pump-probe delays of 2 ps, 10 ps, and 50 ps. The
phonon temperatures are based on the non-thermal model described in the text and shown
in Figure 4 (a). All data are normalized to a common number.

�-A high-symmetry line. This anisotropy becomes more pronounced at later times, as shown

in Figure 4(c) and (d) for t = 0.5 and 2.5 ps, respectively. As anticipated above, the origin

of this behaviour is closely related to the anisotropy of the valence and conduction bands.

Owing to the absence of local minima in conduction band along the armchair direction

(i.e., �-X and Z-Q), the photo-excited electrons are constrained to occupy states with crystal

momenta along the zigzag direction, i.e., where the available local minima are located (arrows

in Figure 1 (d)). This scenario is illustrated by highly-anisotropic electronic occupations f 0
nk

in the conduction band, reported in Figure 1 (f) for the initial electronic excited state defined

above, arising from the partial filling of the available low-energy states. Due to momentum
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Non-equilibrium lattice dynamics in bP from first-principles
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FIG. 4. (a) E↵ective vibrational temperature T̃q for crystal momenta in the X-�-A plane of the Brillouin zone before excitation
(t < 0), and at several time delays throughout the non-equilibrium dynamics of the lattice (b-f). (g) Time-dependence of T̃q

for momenta around the high-symmetry points � (red), A (yellow), and X (blue). Each curve has been obtained by averaging
T̃q for momenta within the regions highlighted in (a) at each time step. (h) Time-dependence of the mode-resolved vibrational
temperature T⌫ (averaged over momentum). ⌫ = 1 � 3 denote the acoustic modes, ⌫ = 10 � 12 the highest-energy optical
phonons, etc. (i-j) Mode and momentum resolved the e↵ective vibrational temperature, superimposed to the phonon dispersion
as a color coding, for t = 0.1 (i), 2.5 (j), and 40 ps (k).

dependence of the one-phonon structure factor is encoded
in hu2

S⌫iT , which is directly related to phonon popula-
tions nS⌫(T ). To account for the influence of the non-
equilibrium lattice dynamics on the FEDS intensity, we
evaluated Eq. (3) at each time snapshot by populating
phonons according to the vibrational temperatures ob-
tained from the solution of the time-dependent Boltz-
mann equation (Fig. 4).

The calculated (non-equilibrium) one-phonon struc-
ture factor is shown in Fig. 3 (d) for t = 2 ps. The
intensity is relative to equilibrium at 100 K. The calcu-
lation agrees well with the experimental FEDS intensity
reported in Fig. 3 (a) and it reproduces the main finger-
prints of non-equilibrium lattice dynamics. In particu-
lar, the faint vertical high-intensity features which con-
nect the Bragg peaks across di↵erent BZ – and constitute
a striking manifestation of the non-equilibrium state of
the lattice – are well captured by the simulations. The
time dependence of the vibrational temperature in the
BZ, illustrated Fig. 4, enable us to attribute these fea-
tures to the higher population of phonons along the �-A
direction which, in turn, arises from the primary role
played by these phonons in the relaxation of the excited
electronic distribution. The calculated FEDS intensities
at 10 ps and 50 ps, shown in Fig. 3 (b) and (c), re-
spectively, further captures the emergence of a diamond-
shaped di↵raction pattern that characterises the return
to thermal equilibrium. By decomposing the one-phonon

structure factor into self ( = 0) and distinct ( 6= 0)
scattering contributions [36], we find that this pattern
arises from the interference of scattered electrons on dif-
ferent atoms in the unit cell (SI), which are accounted
for by the distinct scattering contribution.

These findings enable us to establish the following pic-
ture (sketched in Fig. 5(b)) for the non-equilibrium dy-
namics and thermalization of vibrational degrees of free-
dom in BP: After the creation of an excited electronic
distribution by a laser pulse, electrons (holes) in the con-
duction (valence) band undergo electron-electron scatter-
ing and occupy the band edges according to Fermi-Dirac
statistics. This results into a highly anisotropic distribu-
tion of photo-excited carriers in the BZ, predominantly
populating the Z, Y, A, and A0 pockets. Within 2 ps
after photo-excitation, electrons and holes lose their ex-
cess energy upon emitting phonons. Momentum selectiv-
ity in the phonon emission leads to the primary excita-
tion of phonons with momenta along the zigzag direction
of the crystal, driving the lattice into a non-equilibrium
regime characterized by a highly-anisotropic phonon pop-
ulation in the BZ (Fig. 4(b-d)). Distinctive fingerprints
of this regime are visible in the the FEDS intensity at
t = 2 ps (Fig. 3(b)). The ensuing hot-phonon popula-
tion subsequently thermalizes with other lattice vibra-
tions via phonon-phonon scattering, thereby driving the
lattice towards thermal equilibrium (i.e., Tq⌫ = const.)
within 50 ps, and leading to the thermalized FEDS in-

@fnk
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= Ie�ph
nk [f, n] + I lightnk [f ] + IAuger

nk [f ](1)

@nq⌫

@t
= Ie�ph
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1

Effective vibrational temperature
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FIG. 5. Sketch of the non-equilibrium dynamics and thermal-
ization of the BP lattice following photo-excitation.

tensity reported in Fig. 3(c).
In conclusion, time- and momentum-resolved di↵use

scattering experiments indicate that highly-anisotropic
transient phonon populations are established in BP upon
photo-excitation. By accounting explicitly for electron-
phonon and phonon-phonon scattering within an ab-
initio theoretical description of the coupled electron-
phonon dynamics, we demonstrate that this behaviour

can be attributed to the preferential emission of phonons
along the zigzag direction of the BP lattice throughout
the relaxation of the photo-excited electronic distribu-
tion. This picture is corroborated by the good agreement
between the calculated one-phonon structure factors and
the measured FEDS intensity throughout the di↵erent
stages of the non-equilibrium dynamics of the lattice.
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findings reveal how band-structure anisotropies profoundly
influence the decay path of photoexcited carriers and are at the
origin of nonthermal phonon populations.

■ RESULTS AND DISCUSSION
The layered orthorhombic crystal structure of BP is illustrated
in Figures 1a and 1b from the top and side view, respectively,
whereas its Brillouin zone (BZ) and main high-symmetry
points (labeled according to the convention of ref 34) are
reported in Figure 1e. The equilibrium electron diffraction
pattern of Figure 1c provides a direct view of the reciprocal
lattice for momenta within the X-Γ-A plane in the BZ (shaded
blue plane in Figure 1e). High-intensity features arise for
transferred momenta matching the reciprocal lattice vectors G,
according to Bragg’s law. These measurements are consistent
with previous TEM experiments.35 Besides the pronounced
anisotropy of the BP crystal lattice, signatures of anisotropy
also manifest themselves in the electronic properties.
The electronic band structure, obtained from density

functional theory (DFT) and illustrated in Figure 1d, exhibits
a direct gap at the Z-point and a conduction band
characterized by several local minima in the vicinity of the Y,
A, and A′ high-symmetry points. The local minima in the
conduction band thus involve crystal momenta with an in-
plane component directed primarily along the zigzag direction.
Conversely, no local minima arise in the conduction band
along Γ-X and Z-Q (armchair direction). The anisotropic
character of the band structure is shown below to influence
profoundly the nonequilibrium dynamics of electrons and
phonons in BP, leading to the emergence of a striking
anisotropy in the phonon population following photo-
excitation.
Ultrafast Electron Diffuse Scattering Measurements.

To investigate the nonequilibrium lattice dynamics of BP with
momentum and time resolutions, we perform UEDS measure-
ments on a free-standing thin film of BP. The sample has an
estimated thickness of 39 ± 5 nm and has been obtained by
mechanical exfoliation of a bulk crystal. In UEDS, a laser pulse
is employed to drive the system into an excited electronic state.
After a time delay t, the sample is probed by an electron pulse,
which diffracts off the lattice. The diffraction pattern generated

by this procedure provides a direct probe of the non-
equilibrium dynamics of the lattice in reciprocal space.36 A
schematic illustration of the experiment is reported in Figure
1b. Here, the BP flake is photoexcited with a 50 fs light pulse
with energy hν = 1.61 eV and polarization aligned along the
armchair direction. Additional measurements using a pump
energy hν = 0.59 eV are reported in the Supporting
Information. The duration of the electron pulse is estimated
to be ∼200 fs. All measurements are performed at the
temperature of 100 K. The initial density of photoexcited
electrons and holes induced by the pump pulse is estimated to
ne = 7.3 × 1013 cm−2 (see the Supporting Information).
Figure 2a illustrates the relative intensity changes of the

(400) and (004) Bragg peaks, located along the zigzag
(squares) and armchair (triangles) directions, respectively,
throughout the nonequilibrium dynamics of the lattice. A clear
fingerprint of anisotropic lattice dynamics is revealed by the
different time dependence of these elastic scattering signals.
The dynamics of both armchair and zigzag reflections are well-
captured by biexponential decays, with a fast time constant of
500 fs and a slower time constant of 20 ps. This behavior was
described in detail in ref 37, where some of us investigated the
dynamics of the Bragg reflections in BP, revealing nonthermal
phonon distributions persisting for tens of picoseconds.
To obtain a momentum-resolved picture of the non-

equilibrium lattice dynamics of BP, we go beyond the analysis
of the elastic scattering signals and we inspect the transient
signatures of diffuse (inelastic) scattering processes, as revealed
by UEDS. The contribution of the different high-symmetry
points to the UEDS intensity can be singled out by dividing the
diffraction pattern into BZs around each Bragg reflection peak,
as illustrated by the shaded rectangle in Figure 1c for the (2̅00)
reflection. Exemplary time-resolved UEDS signals around the
(400) Bragg peak are shown in Figure 2b for the A (circles)
and X (pentagons) points in the BZ. As diffuse scattering
occurs primarily through phonon-induced scattering processes,
the signal measured at a given point q in the BZ reflects the
phonon population with the same momentum.28,29,31,38−40

The red curve in Figure 2b indicates the relative intensity of
the UEDS signal as a function of time at point A. Similar
dynamics are observed at all investigated points A. A

Figure 1. (a) Top view of the BP crystal lattice. (b) Schematic illustration of ultrafast electron diffuse scattering, with side view of the BP crystal
lattice. (c) Representative transmission diffraction pattern of BP. The Brillouin zone can be drawn around each Bragg peak, as illustrated by the
rectangle over the (2̅00) reflection. An arbitrary position in reciprocal space, Q, can always be expressed as G + q, where G is a reciprocal lattice
vector and q the phonon wavevector. (d) Electronic band structure as obtained from density functional theory (DFT). A scissor rigid shift of 0.2 eV
has been applied to the conduction manifold to match the experimental band gap (Eg ≃ 0.3 eV).33 (e) Brillouin zone and high-symmetry points of
BP. The blue shading marks the region of reciprocal space probed by our UEDS measurements. (f) Fermi−Dirac occupations of photoexcited
carriers for momenta in the Q-Z-A′ plane in the BZ.
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by this procedure provides a direct probe of the non-
equilibrium dynamics of the lattice in reciprocal space.36 A
schematic illustration of the experiment is reported in Figure
1b. Here, the BP flake is photoexcited with a 50 fs light pulse
with energy hν = 1.61 eV and polarization aligned along the
armchair direction. Additional measurements using a pump
energy hν = 0.59 eV are reported in the Supporting
Information. The duration of the electron pulse is estimated
to be ∼200 fs. All measurements are performed at the
temperature of 100 K. The initial density of photoexcited
electrons and holes induced by the pump pulse is estimated to
ne = 7.3 × 1013 cm−2 (see the Supporting Information).
Figure 2a illustrates the relative intensity changes of the

(400) and (004) Bragg peaks, located along the zigzag
(squares) and armchair (triangles) directions, respectively,
throughout the nonequilibrium dynamics of the lattice. A clear
fingerprint of anisotropic lattice dynamics is revealed by the
different time dependence of these elastic scattering signals.
The dynamics of both armchair and zigzag reflections are well-
captured by biexponential decays, with a fast time constant of
500 fs and a slower time constant of 20 ps. This behavior was
described in detail in ref 37, where some of us investigated the
dynamics of the Bragg reflections in BP, revealing nonthermal
phonon distributions persisting for tens of picoseconds.
To obtain a momentum-resolved picture of the non-

equilibrium lattice dynamics of BP, we go beyond the analysis
of the elastic scattering signals and we inspect the transient
signatures of diffuse (inelastic) scattering processes, as revealed
by UEDS. The contribution of the different high-symmetry
points to the UEDS intensity can be singled out by dividing the
diffraction pattern into BZs around each Bragg reflection peak,
as illustrated by the shaded rectangle in Figure 1c for the (2̅00)
reflection. Exemplary time-resolved UEDS signals around the
(400) Bragg peak are shown in Figure 2b for the A (circles)
and X (pentagons) points in the BZ. As diffuse scattering
occurs primarily through phonon-induced scattering processes,
the signal measured at a given point q in the BZ reflects the
phonon population with the same momentum.28,29,31,38−40

The red curve in Figure 2b indicates the relative intensity of
the UEDS signal as a function of time at point A. Similar
dynamics are observed at all investigated points A. A

Figure 1. (a) Top view of the BP crystal lattice. (b) Schematic illustration of ultrafast electron diffuse scattering, with side view of the BP crystal
lattice. (c) Representative transmission diffraction pattern of BP. The Brillouin zone can be drawn around each Bragg peak, as illustrated by the
rectangle over the (2̅00) reflection. An arbitrary position in reciprocal space, Q, can always be expressed as G + q, where G is a reciprocal lattice
vector and q the phonon wavevector. (d) Electronic band structure as obtained from density functional theory (DFT). A scissor rigid shift of 0.2 eV
has been applied to the conduction manifold to match the experimental band gap (Eg ≃ 0.3 eV).33 (e) Brillouin zone and high-symmetry points of
BP. The blue shading marks the region of reciprocal space probed by our UEDS measurements. (f) Fermi−Dirac occupations of photoexcited
carriers for momenta in the Q-Z-A′ plane in the BZ.
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FIG. 1. (a) In-plane atomic structure of BP. (b) Schematic illustration of femtosecond electron scattering. (c) Exemplary
transmission di↵raction pattern of BP. First Brillouin zones can be drawn around each Bragg reflection, as illustrated by a
rectangle over the (200) reflection. An arbitrary position in reciprocal space, S, can always be expressed as G+ q, where G is
a reciprocal lattice vector defined by the Miller indices and q the phonon wavevector. (d) Electronic band structure calculated
from density-functional theory in the PBE approximation [25]. The conduction bands were shifted by 0.2 eV in energy to match
the experimentally observed bandgap of Eg ' 0.3 eV. (e) Brillouin zone with labeling of high-symmetry points. Our FEIS
experiments probe the blue plane. Below, the momentum distribution of photoexcited carriers approximated by a Fermi-Dirac
function fnk is shown (dark regions: more excited carriers). The colored rectangles indicate phonons groups, see text.

sively generating a non-equilibrium electron population
in the conduction band. Considering our pump photon
energy, one can expect intravalley scattering processes
within the Z pocket to play an important role in the
relaxation dynamics towards the conduction band min-
imum through emission of low-wavevector phonons. In-
tervalley scattering pathways can also transfer electrons
to the neighboring Y, A and A’ valleys along the zigzag
direction. First insight into the non-equilibrium dynam-
ics of the crystal lattice is obtained from the dynamics of
the Bragg reflections. The anisotropic lattice dynamics
of BP is reflected in the time evolution of the elastic scat-
tering signals, shown in Fig. 2(a) and described in detail
in Ref. [19]. Briefly, the dynamics of both armchair and
zigzag reflections are well-captured by bi-exponential de-
cays, with fast time constants of around 500 fs and slower
time constants of approximately 20 ps.

Here, we go beyond the analysis of the elastic scatter-
ing signals and phonon-averaged structural dynamics to-
wards a more detailed picture of lattice relaxation. This
can be obtained by investigating the inelastic scatter-
ing signals around specific Bragg reflections, shown for
selected high-symmetry points in Fig. 2 (b). The di↵rac-
tion pattern can be divided into BZs around each Bragg
reflection, as illustrated in Fig. 1 (c) for the (200) re-
flection. As inelastic scattering occurs primarily through
scattering o↵ of phonons, the signal measured at a given
point in the BZ reflects phonon populations with the
same momentum [20, 21, 33–36]. The red curve in
Fig. 2 (b) represents the relative intensity of the FEIS
signal as a function of time at the A point. Similar dy-
namics are observed at all the investigated A points. A
bi-exponential fit to the data yields a rising time constant
of 1.7 ± 0.1 ps, followed by a slower relaxation of 30 ±

FIG. 2. (a) Exemplary anisotropic elastic scattering signals
for zigzag (squares) and armchair reflections (triangles). (b)
Inelastic scattering signal at A (circles) and X (pentagons)
around the 400 reflection. The data in both panels is the
average over the Friedel pair (e.g. (400) and (4̄00)). The error
estimates represent the standard error of the mean signal over
multiple delay scans.

2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a
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a reciprocal lattice vector defined by the Miller indices and q the phonon wavevector. (d) Electronic band structure calculated
from density-functional theory in the PBE approximation [25]. The conduction bands were shifted by 0.2 eV in energy to match
the experimentally observed bandgap of Eg ' 0.3 eV. (e) Brillouin zone with labeling of high-symmetry points. Our FEIS
experiments probe the blue plane. Below, the momentum distribution of photoexcited carriers approximated by a Fermi-Dirac
function fnk is shown (dark regions: more excited carriers). The colored rectangles indicate phonons groups, see text.
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imum through emission of low-wavevector phonons. In-
tervalley scattering pathways can also transfer electrons
to the neighboring Y, A and A’ valleys along the zigzag
direction. First insight into the non-equilibrium dynam-
ics of the crystal lattice is obtained from the dynamics of
the Bragg reflections. The anisotropic lattice dynamics
of BP is reflected in the time evolution of the elastic scat-
tering signals, shown in Fig. 2(a) and described in detail
in Ref. [19]. Briefly, the dynamics of both armchair and
zigzag reflections are well-captured by bi-exponential de-
cays, with fast time constants of around 500 fs and slower
time constants of approximately 20 ps.

Here, we go beyond the analysis of the elastic scatter-
ing signals and phonon-averaged structural dynamics to-
wards a more detailed picture of lattice relaxation. This
can be obtained by investigating the inelastic scatter-
ing signals around specific Bragg reflections, shown for
selected high-symmetry points in Fig. 2 (b). The di↵rac-
tion pattern can be divided into BZs around each Bragg
reflection, as illustrated in Fig. 1 (c) for the (200) re-
flection. As inelastic scattering occurs primarily through
scattering o↵ of phonons, the signal measured at a given
point in the BZ reflects phonon populations with the
same momentum [20, 21, 33–36]. The red curve in
Fig. 2 (b) represents the relative intensity of the FEIS
signal as a function of time at the A point. Similar dy-
namics are observed at all the investigated A points. A
bi-exponential fit to the data yields a rising time constant
of 1.7 ± 0.1 ps, followed by a slower relaxation of 30 ±

FIG. 2. (a) Exemplary anisotropic elastic scattering signals
for zigzag (squares) and armchair reflections (triangles). (b)
Inelastic scattering signal at A (circles) and X (pentagons)
around the 400 reflection. The data in both panels is the
average over the Friedel pair (e.g. (400) and (4̄00)). The error
estimates represent the standard error of the mean signal over
multiple delay scans.

2 ps. We note that the 1.7 ps time constant does not ap-
pear in an elastic scattering analysis. The green curve in
Fig. 2 (b) shows the time evolution of the inelastic signal
at the X point. The phonon dynamics at the X point
drastically di↵ers from that at the A point. We find the
best fit to be a mono-exponential rise function with a

Figure 3: (a-c) Momentum-resolved electron di↵raction signals, I(S, t) � I(S, t < t0), at
pump-probe delays of 2 ps, 10 ps, and 50 ps. Two-fold symmetrized data,36 raw data
shown in Supplemental Material.37 The Bragg reflections (blue dots) are negative due to
the Debye-Waller e↵ect. The di↵use background (red) qualitatively evolves as a function of
pump-probe delay. Selected Brillouin zones are shown in inset for the (004) and the (400)
reflections on the 50 ps map. All data are normalized to a common number. (d-f) Simulated
non-equilibrium scattering signals at pump-probe delays of 2 ps, 10 ps, and 50 ps. The
phonon temperatures are based on the non-thermal model described in the text and shown
in Figure 4 (a). All data are normalized to a common number.

�-A high-symmetry line. This anisotropy becomes more pronounced at later times, as shown

in Figure 4(c) and (d) for t = 0.5 and 2.5 ps, respectively. As anticipated above, the origin

of this behaviour is closely related to the anisotropy of the valence and conduction bands.

Owing to the absence of local minima in conduction band along the armchair direction

(i.e., �-X and Z-Q), the photo-excited electrons are constrained to occupy states with crystal

momenta along the zigzag direction, i.e., where the available local minima are located (arrows

in Figure 1 (d)). This scenario is illustrated by highly-anisotropic electronic occupations f 0
nk

in the conduction band, reported in Figure 1 (f) for the initial electronic excited state defined

above, arising from the partial filling of the available low-energy states. Due to momentum
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Valley selective circular dichroism in TMDs and chiral valley excitons

to estimate the exciton g factors in the presence of external
magnetic fields in monolayer TMDs38 and CrI3-TMD
heterobilayers.39 A predictive ab initio theory of VCD and
valley excitons in the presence of many-body interactions,
however, is still missing.
In this work, we close this gap and develop a many-body

formalism based on the BSE to investigate the chirality of
valley excitons formed in 2D honeycomb lattices upon
absorption of circularly polarized light. This procedure enables
us to estimate the orbital angular momentum and magnetic
moment of valley excitons directly from the exciton wave
function. We show that valley excitons formed in TMD
monolayers upon absorption of circularly polarized light are
chiral quasiparticles characterized by an orbital degree of
freedom. Besides providing a new rationale to explain the
emergence of VCD in interacting electron systems, these
findings indicate that valley excitons can carry angular
momentum even in their singlet state, and they therefore
constitute a thus far unexplored channel for exchanging angular
momentum with other spin−orbital degrees of freedom and
chiral phonons. The exciton OAM underlies the emergence of
a finite magnetic moment that, concomitantly with an external
magnetic field, lifts the exciton degeneracy at the K and K̅
valleys. This picture is corroborated by the excellent agreement
of our first-principles calculations with recent measurements of
the exciton Zeeman shifts.6,40 To describe these phenomena,
we formulate an ab initio many-body theory of valley excitons
and valley-selective circular dichroism based on the BSE. This
approach provides a versatile route for accurately predicting
the chiral character of excitons upon absorption of circularly
polarized light in an interacting electron−hole gas.
For definiteness, we focus in the following on monolayer

WS2, although similar conclusions can be drawn for WSe2,
MoS2, and MoSe2. Monolayer WS2 is a direct band gap
semiconductor,41 and its valence band is characterized by two
degenerate maxima at K and K̅. The hexagonal BZ and the

energy of the upper valence band are illustrated in panels a and
b of Figure 1, respectively. To investigate the influence of light
polarization on the bound excitons formed at the K and K̅
valleys, we solve the many-body BSE and consider the
imaginary part ε2 of the transverse dielectric function ε = ε1
+ iε2:

42
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where ϵ ̂ denotes the light-polarization unitary vector, Ω the
unit cell volume, and Nk the number of k points. A detailed
discussion of the relation between the macroscopic dielectric
function and the optical absorption spectrum is reported in ref
43. The transition coefficients tλ are defined as
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where p̂ is the momentum operator, ψnk and εnk are single-
particle Bloch orbitals and energies, respectively, and the sum
over v (c) runs over the valence (conduction) bands. Eλ and
Avck
λ are the eigenvalues and eigenvectors,42 respectively,

obtained from the diagonalization of the two-particle BSE
Hamiltonian Σv′c′k′Hvck,v′c′k′Av′c′k′

λ = EλAvck
λ .

The dielectric function evaluated from eq 1 is illustrated in
panels c and d of Figure 1 in black. As long as the total
absorption is considered, i.e., electronic transitions in the
whole BZ (as opposed to the valley-dependent absorption
within a specific valley), the dielectric function of WS2 is
independent of the in-plane orientation of the light-polar-
ization vector ϵ.̂ The absorption onset is dominated by strongly
bound excitons, marked as A and B in panels c and d of Figure
1, in good agreement with earlier calculations and experi-
ments.44,45

Figure 1. (a) Brillouin zone and high-symmetry points of monolayer WS2. The blue and orange shadings mark the K7 and K7 ̅ regions in the BZ,
respectively. The Γ−K−M−K̅−Γ path is shown as a dotted red line. (b) Energy (relative to the valence-band top) of the upper valence band for
momenta in the rhomboidal BZ. The red solid line delimits the two inequivalent regions of the BZ, containing the K and K̅ valleys. (c and d) Total
absorption spectra obtained from the solution of the BSE (black) and the contribution of the inequivalent K (blue) and K̅ (orange) valleys to the
absorption for the cases of linear and circular light polarization, respectively, with left-handed chirality. A and B denote the lower- and higher-energy
excitonic peaks, respectively.
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monolayer MoS2

top valence band

The derivation of Eq. (5) neglects non-diagonal matrix elements of the single-particle OAM

as discussed in detail in the SM41. l
z
nk denotes the single-particle OAM for a Bloch state

 nk, and it is given by29:

l
z
nk =

2h̄

me

X

m 6=n

Im [Mx
nmM

y
mn]

"mk � "nk
, (6)

with the abbreviation M
↵
nm = h nk|p̂↵| mki. The single-particle OAM, evaluated from

Eq. (6), is shown in Fig. 2(a) as a color code superimposed to the band structure of WS2.

The lower and upper valence bands exhibit the largest OAM, with opposite sign at the K and

K points. The single-particle OAM of the top valence band is further illustrated in Fig. 2(b).

The total OAM of each valley, obtained from l
z
K = ⌦�1

PK

R
PK

lvk dk, yields lz = ±0.7 h̄, where

⌦PK is the volume of the PK region of the BZ.

These considerations indicate that excitons inherit the OAM from the underlying band

structure. Upon absorption of linearly polarized light, however, the exciton OAM vanishes

identically owing to the compensating contribution from K and K. To illustrate this point,

we report in Fig. 2(c) the momentum-resolved contribution to the OAM of the A exciton,

obtained from the expression |A�
vck|2[lzck + l

z
v�k] (see also Eq. (5)). Conversely, in presence of

circularly-polarized light, excitons are localized at either K or K, no compensation occurs,

and chiral excitons characterized by a finite OAM can emerge. More precisely, the prerequi-

site for the emergence of chiral excitons is the OAM of the valence and conduction manifold

to di↵er for band indices c, v and momenta k contributing to the exciton formation (that is,

lck 6= lvk for A
�
vck 6= 0). This condition is satisfied by valley excitons localized exclusively

at K or K. Evaluation of Eq. (5) yields L
z
A = ±1.16 h̄ for A valley excitons at K and K,

whereas for the B exciton we obtain L
z
B = ±1.01 h̄. Because valley excitons are formed

by electron-hole pairs in the vicinity of K (K), the exciton OAM can be approximately

described in the independent-particle approximation (IPA) by considering a single electron

(hole) photoexcited to the conduction-band bottom (valence-band top). The IPA neglects

8

Orbital angular momentum (OAM): l = r × p
Modern theory of OAM: 
Thonhauser et al., Phys. Rev. Lett. (2005)

the single orientation character of our sample allows also
for a quantitative determination of the valley polarization
that ultimately can be generated upon optical excitation.
In the further investigations, we performed pump polari-

zation scans with the angle of the QWP in the pump beam
varied over a range of 180° in steps of 10°. The results are
summarized in Fig. 3, which shows normalized integral
photoemission intensities for Δt ¼ 50 fs of the CBM (red)
and the upper VBM (blue) as a function of the QWP angle.
As expected for a dichroic response, we observe distinct
maxima and minima as the circular polarization state is
changed. The inversion of the traces at ‾K and ‾K0 is in
agreement with the valley selectivity of the excitation
process shown above. Notably, the traces exhibit a clear
asymmetry with respect to the QWP angle, shifting the
extrema expected at 135° by approximately −20°. The
polarization scan allows us to quantify the circular dichro-
ism D ¼ ðImax − IminÞ=ðImax þ IminÞ in the photoemission
signal with Imax and Imin being the maxima and minima in
the photoemission signal, respectively. The analysis yields
circular dichroism values of D ¼ 0.7 for the UVB and

D ¼ 0.5 for the CB. Surprisingly, the circular dichroisms in
the photoemission signal from UVB and CB clearly differ.
Further quantitative analysis of the data relies on a

detailed characterization of the changes in the circular
polarization state of the pump pulse as the QWP angle is
changed. Measurements were performed with the Stokes
polarimeter and are presented and discussed in detail in
the Supplemental Material [29]. The upper panels of Fig. 3
show the evaluated normalized Stokes parameter Ŝ3 of the
pump pulses at the sample position as a function of the
QWP angle. We observe a distinct asymmetry in the data,
which can be traced back to the reflection from the final
deflection mirror mounted inside the UHV chamber [29].
Additionally, the quantitative analysis of the data yields a
maximum absolute value for the normalized Stokes param-
eter Ŝ3 of 0.9; i.e., it is not possible in this configuration to
observe a circular dichroism of 100%. A comparison with
the ARPES data in Fig. 3 implies that part of the observed
peculiarities in the photoemission polarization scans directly
reflect the circular polarization state of the pump pulse.
The Stokes polarimeter results enable us to evaluate

the fraction of carriers p excited according to the optical
selection rules and from this the degree of valley polari-
zation P ¼ ð2p − 1Þ. For a given fraction f of preferen-
tially oriented domains, the changes in the integrated

FIG. 2. Detection of valley-selective excitation of the WS2
layer using circularly polarized light. (a) Schematic illustration of
the optical selection rules of single-layer WS2 for valley-selective
excitation at ‾K and ‾K0. (b) Difference photoemission intensity
maps at ‾K and ‾K0 obtained from trARPES spectra recorded upon
excitation with σ− and σþ polarized pump pulses at Δt ¼ 50 fs.
The top (bottom) panels show conduction (valence) band data.
The offset of the signals with respect to ky ¼ 0 arises from the
pronounced momentum dependence of the photoemission cross
section of VB and CB excitation [see Fig. 1(a)]. (c) Comparison
of normalized difference EDCs at ‾K and ‾K0 derived from the data
shown in (b). The signal was integrated over a momentum
window of 0.35 Å−1 and normalized to the VBM peak value.

FIG. 3. Photoemission (PE) signal of CB and UVB at ‾K and ‾K0

as a function of the angle of the quarter-wave plate in the pump
beam (Δt ¼ 50 fs). For the evaluation of the UVB data, an
equilibrium state spectrum (Δt ≪ 0) was subtracted from the
excited state spectrum. CB (UVB) traces are normalized to
maximum (minimum) PE signal. The error bars of the exper-
imental data account for the uncertainties in determining the
signal background not originating from the valley population.
The solid lines are the results of the fits of Eq. (1) to the
experimental data. The errors in the fits (shaded areas) account for
error propagation of the fitting results and the uncertainties in
determining Ŝ3. The top panel displays the normalized Stokes
parameter Ŝ3 determined from the Stokes polarimeter measure-
ments of the pump pulse [29] (red line) in comparison to an
ideally polarized pump pulse (dashed gray line).

PHYSICAL REVIEW LETTERS 123, 236802 (2019)
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Figure 2: (a) Orbital angular momentum l
z
nk� evaluated from Eq. (6) and superimposed

to the band structure of monolayer WS2 for momenta along the �-K-M-K-� line. Energies
are relative to the valence-band top. (b) Momentum-resolved OAM of the top valence band
for crystal momenta spanning a 30⇥30⇥1 homogeneous grid in the BZ. (c) Momentum-
resolved contribution to the OAM of the A valley exciton. The total OAM of the A exciton
(Lz

A = ±1.16 h̄) is recovered via Eq. (5). (d-e) Schematic illustration of valley-selective
circular dichroism and chiral valley excitons in the TMDs.

where we introduced the dichroic tensor: ⇠K↵�(!) =
4⇡2e2

m2
e⌦Nk

P
�

⇣
t
�,↵
K

⌘⇤
t
�,�
K �(E� � h̄!) . The

corresponding expression for K is obtained by replacing K! K. A detailed discussion of

these expression is included in the supplemental material (SM)41.

The emergence of valley-selective circular dichroism can be quantified by introducing the

di↵erential dichroic absorption:

DK(!) = "
(+)
2,K(!) � "

(�)
2,K(!) = �2Im [⇠Kxy(!)]. (4)

In monolayer WS2, the total o↵-diagonal components of the dichroic tensor vanish at all

frequencies (⇠xy(!) = ⇠
K
xy(!)+⇠

K
xy(!) = 0), leading in turn to a vanishing di↵erential dichroic

absorption (D(!) = DK + DK = 0). The total absorption spectrum is thus ultimately

independent of the helicity of light polarization. Conversely, the valley-resolved components

of the dichroic tensor are finite and opposite in sign at K and K(Im [⇠Kxy] = �Im [⇠Kxy] 6= 0)

indicating that, despite the total vanishing dichroism, the individual valleys are characterized

by a non-trivial chiral character, leading to a non-vanishing di↵erential dichroic absorption.
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Figure 2: (a) Orbital angular momentum l
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nk� evaluated from Eq. (6) and superimposed

to the band structure of monolayer WS2 for momenta along the �-K-M-K-� line. Energies
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A = ±1.16 h̄) is recovered via Eq. (5). (d-e) Schematic illustration of valley-selective
circular dichroism and chiral valley excitons in the TMDs.
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Ab-initio theory of chiral valley excitons:

Absorption spectra

• Excitations inPK suppressed for
le�-handed polarized light

• Vice-versa for right-handed pol.

• Total absorption is independent

7

Valley selective circular dichroism in TMDs and chiral valley excitons

Q2: Can we extend valleytronics paradigm 
to vibrational excitations of the lattice?

Q1: How is the lattice dynamics influenced  
by valley selective circular dichroism



Electron dynamics: ultrafast valley depolarization
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Electron dynamics: ultrafast valley depolarization

• Valley depolarization of photoexcited carriers

A. Molina-Sánchez, D. Sangalli, et al., 
Nano Letters 2017, 17, 4549q = K′ 
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fK(t) = f∞ + ( f0 − f∞)e−t/τ H. Beyer, G. Rohde, et al., Phys. Rev. 
Lett. 2019, 123, 236802

S. Dal Conte, F. Bottegoni, et al., 
Phys. Rev B 2015, 92, 235425

• conduction bands:  fast K-K’ intervalley scattering, the decaying time is 150 fs

• valence bands: -K  and K to K’, the decaying time is 2 ps

• Results consistent with other calculations and experiments:

Γ



Phonon dynamics: excitation of chiral valley phonons

3

tronic temperature – becomes more localized. This trend
reflects the lowering of the (e↵ective) electronic temper-
ature as energy is transferred to the lattice and carriers
scatter back to the Fermi energy.

As electrons and lattice approach thermal equilibrium,
the EDF converges towards a Fermi-Dirac function with
final temperature T el

fin = 180 K (dark blue in Fig. 2 (b-c)).
Strikingly di↵erent time scales characterize the relaxation
of excited electrons and holes. While it takes about 800 fs
for excited holes in the valence band to reach thermal-
ization, the electronic relaxation in the conduction band
is slower and is completed within 2 ps. The faster hole
relaxation can be ascribed to the larger phase space for
electron-phonon scattering, which in turn arises from the
co-existence of two quasi-degenerate maxima at � and K
in the valence band. These time scales are in excellent
agreement with recent femtosecond electron di↵raction
measurements on monolayer MoS2? , which estimated
to 2 ps the timescale for electronic thermalization via
electron-phonon scattering.

Overall, Figs. 2 (d-i) provide evidence that, throughout
each step of the dynamics, the excited electrons and holes
remain localized in momentum space in the vicinity of
K and � high-symmetry points in the valence band, and
around K and Q in the conduction band. This anisotropic
population of electronic states in the BZ is responsible for
a stringent momentum selectivity in the phonon emis-
sion, which as discussed below, underpins the emergence
of non-thermal vibrational state of the lattice with a life-
time of several picoseconds.

To inspect the non-equilibrium dynamics of the lattice,
we focus on the (e↵ective) vibrational temperature:

Tq⌫ = ~!q⌫ [kB ln(1 + nq⌫)]
�1 (5)

obtained by inverting the Bose-Einstein distribution
function. The advantage of this choice is that Tq⌫ be-
comes a constant at thermal equilibrium, whereas nq⌫

does not. Interpretation of Tq⌫ as a thermodynamic tem-
perature, however, is rigorously justified only at thermal
equilibrium. In Figs. 3 (a-e), we report the average vibra-
tional temperature T̃q = N�1

ph

P
⌫ Tq⌫ – with Nph being

the number of phonons – for crystal momenta within the
first BZ and for several time steps throughout the dy-
namics. The same color bar (shown beside panel (i)) is
used for panels (a-i).

At t = 0 (a), the system is at thermal equilibrium as re-
flected by the constant vibrational temperature in the BZ
(Tq⌫ = T ph

0 = 100 K). As the coupled electron-phonon
dynamics begins, the excited carriers in the valence and
conduction bands tend to relax back to Fermi level by
transferring energy to the lattice by emitting phonons.
The change in the population of the ⌫-th phonon at mo-
mentum q is reflected, at each time step of the dynam-
ics, by the change of its Bose-Einstein occupation nq⌫

and, via Eq. (5), of the vibrational temperature Tq⌫ . At
t = 100 fs the lattice abandons the initial thermalized
state, as illustrated in Fig. 3 (b) by the emergence of in-
homogeneities in the average vibrational temperature T̃q.

In particular, we observe an increase of the vibrational
temperature for momenta close to � and K, which in
turn, reflects an enhancement of the phonon population.

To understand the origin of these features, we note that
the phonon emission – and, thus, the change of Tq⌫ – is
triggered by electronic transitions within the valence and
conduction bands, which are heavily constrained by en-
ergy and momentum conservation laws. For the excited
electronic distribution of Fig. 2 (a), for instance, phonon-
assisted transitions within the valence band would pri-
marily involve two types of processes: (i) intra-valley
transitions, connecting initial and final states both lo-
cated close to the same high-symmetry point (� or K); (ii)
inter-valley transitions, with the initial and final states
located at � and K, respectively (or vice versa). Due to
momentum conservation, processes of type (i) result in
the emission of long-wavelength phonons (q ' 0) with
momenta close to �, whereas processes of type (ii) can
only involve the emission phonons with momenta around
K. A similar picture applies to transitions in the con-
duction band. Here, however, the presence of the Q
valley also enables the emission of phonons around M
and Q. A schematic illustration of the allowed inter- and
intra-valley phonon-assisted transitions is provided in the
SM. Umklapp processes are also included in this pictures,
since transitions connecting di↵erent BZs can be folded
back to the first BZ via translation by a reciprocal lattice
vector. The anisotropic increase of vibrational tempera-
ture, thus, indicates the preferential emission of phonons
at � and K, which is dictated by momentum selectivity
in the electronic transitions.

As shown in Fig. 2 (c), this mechanism leads to a
further enhancement of the anisotropic population of
phonons in the BZ for t = 500 fs. Additionally, we ob-
serve an increase in vibrational temperature at the M
point and, less pronouncedly, at Q, which arise from tran-
sitions involving the Q pocket in the conduction band (see
SM). As time evolves, phonon-phonon scattering tends to
counterbalance a non-thermal vibrational state, by driv-
ing the lattice towards a thermalized regime (namely,
Tq⌫ = constant). This behaviour is manifested for t = 1.5
and 3 ps – illustrated in Figs. 2 (d-e), respectively – by
a progressive reduction of the temperature anisotropy in
the BZ.

In addition to the momentum anisotropy illustrated
in panels (a-e), the vibrational temperature may change
significantly for di↵erent phonon branches, since the con-
tribution of each phonon to the relaxation process is
dictated by its own electron-phonon coupling strength.
Figures 3 (g-i) illustrates the mode- and momentum-
resolved vibrational temperature Tq⌫ , superimposed to
the phonon dispersion of monolayer MoS2 (obtained from
density-functional perturbation theory at zero temper-
ature) for t = 0.1, 0.5, and 3 ps. Optical phonons,
which are characterized by out-of-phase oscillations of the
atoms in the unit cell, lead to stronger coupling with the
electrons as compared to the acoustic (in-phase) modes,
and they thus provide a more likely decay channel for

(averaged for all phonon polarizations)
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Phonon dynamics: excitation of chiral valley phonons
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Fingerprints of vibrational dichroism in ultrafast diffraction experiments

Ultrafast electron diffuse scattering signal (simulations) 
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vibrational circular dichroism

Vibrational dichroism persisting 
for tens of picoseconds. 

Phonon valleytronics? 

Take-home message: 
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The time-dependent Boltzmann equation

Ultrafast dynamics in 2D 
materials
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