Increased Temporal Discounting in Social Anxiety Disorder Normalizes after Oxytocin Treatment

René Hurlemann a, b, Dirk Scheele a, Thomas M. Kinfe a, Ruben Berger a, b, Alexandra Philipsen b, Marisol J. Voncken c, Kim P.C. Kuypers d, Koen Schruers e, f

a Division of Medical Psychology, University of Bonn, Bonn, Germany; b Department of Psychiatry, University of Bonn, Bonn, Germany; c Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; d Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; e Research Institute Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; f Department of Health Psychology, Faculty of Psychology, University of Leuven, Leuven, Belgium

Keywords
Anxiety disorder · Oxytocin · Social connectedness · Temporal discounting

Social anxiety disorder (SAD) is a highly pernicious and disabling condition with a lifetime prevalence of >12% [1]. Current cognitive models highlight increased attentional and interpretive biases toward social stimuli as key factors in the etiology of SAD [2]. In accord with this are neurocircuitry models of SAD which emphasize overreactivity of the amygdala and resultant hyperattention to social stimuli due to deficient cognitive (top-down) control [3]. Of particular relevance in this context are findings that individuals with less social connections less often restrained their impulsive behavioral tendencies when there was a greater relative difference in sooner-smaller/later-larger magnitudes.

OXT significantly increased the patient choices (later-larger) across all participants. Separate analyses in the OXT and PLC groups revealed that SAD patients showed more impulsive preferences under PLC compared to CTL (F(1,34) = 4.45, p = 0.04, η² = 0.12), while there was no such difference after OXT treatment (F(1,12) = 0.34, p = 0.56, η² = 0.01). This pattern of results was confirmed in an additional analysis with the discounting parameter k as dependent variable, demonstrating a main effect of treatment (F(1,64) = 5.52, p = 0.02, η² = 0.08) and a trend-to-significant effect of group (F(1,64) = 3.36, p = 0.07, η² = 0.05). There were no further interactions (all p values > 0.17). Thus, participants chose the later-larger option more often when there was a greater relative difference in sooner-smaller/later-larger magnitudes.

Interestingly, across all groups, social connectedness positively correlated with the proportion of patient choices in the PLC condition (r(36) = 0.30 p = 0.07; OXT: r(35) = 0.16, p = 0.36), indicating that individuals with less social connections less often restrained from choosing the sooner-smaller option. This is in line with proposals that reduced social connectedness may lead to decreased cognitive control, since social support is a robust stress buffer, and the experience of social exclusion impairs self-regulation [7]. There was no significant main or interaction effect of treatment in the valuation control task (see also online suppl. section “Results” and online suppl. Table S2), indicating that OXT did not alter the valuation of rewards options.
Collectively, our results implicate OXT in up-regulating cognitive control which is required when a sooner-smaller reward is directly contrasted with a later-larger option. Current concepts of cognitive control as probed in temporal discounting tasks emphasize the role of the prefrontal cortex (PFC) in resisting the temptation of small but immediately available monetary rewards [8]. We have previously shown that OXT not only diminishes amygdala reactivity but also enhances PFC activation during fear extinction [9]. Additionally, an OXT-induced increase in PFC activation correlates with a better cognitive regulation of food craving [6]. Given the association between social connectedness and cognitive control, one possible mode of action could be that OXT modulates regulation abilities by altering feelings of social connectedness. Alternatively, the OXT effects on temporal discounting could be driven by increased confidence to receive the delayed reward or the enhanced anticipatory neural response. However, the absence of an OXT effect on the valuation of single options speaks against this interpretation.

In planning further studies on the additional effect of OXT on psychotherapeutic strategies for SAD patients, it seems worthwhile to focus not only on habituation and attenuation of amygdala hyperreactivity, but also on the augmentation of PFC-driven top-down regulation of fearful and impulsive responses. Modern psychotherapeutic interventions put a strong emphasis on the cognitive mediation of treatment changes in SAD and have been proven more effective than pure exposure therapy alone [10]. Based on the “two-foci-model” of OXT’s impact on the underlying neurocircuitry in SAD, future studies on the augmentation of psychotherapy for SAD with OXT may focus on comprehensive cognitive-behavioral interventions rather than exclusive exposure-based therapy. Considering the relevance of increased temporal discounting in SAD, it seems important that these disorder-tailored approaches motivate patients to resist the urge of avoidance (negative reinforcement) and focus on the delayed social rewards that can be achieved by fear exposure.

In conclusion, our data indicate that SAD associated with reduced social connectedness affects intertemporal choice of monetary rewards, and intranasal OXT induces a preference for more patient choices. As such, beyond pure anxiolysis, OXT signaling may also play a role in the cognitive control of prepotent impulses during reward-based decision-making.

Acknowledgements
The authors wish to thank Paul Jung for programming assistance.

Conflict of Interests
The authors report no competing biomedical financial interests or personal affiliations in connection with the content of this manuscript.

References