TENS ORMETER

a new dimension of resistance measurements

Tensormeter RTM1 Product Overview

- Tensormeter device front panel with 8 signal connectors, reference and trigger connector
- Simultaneously determine Sheet & Hall resistance at highest precision and extremely low noise
- Measure irregularly shaped samples without need for lithographic patterning
- Replace several other devices (Lock-in Amplifier, Source-Measure-Unit, Digital Multimeter, Analog Matrix Switch)
- Save measuring time, achieve higher throughput

Materials Research and Characterization

- High precision to study small effects
- Flexibility for custom measurement sequences
- Controlled sourcing
- > 2D materials
- Magnetic materials
- Transverse resistance

Improved Wafer and Device Testing

- High stability
- Faster binning
- Tighter specs
- DC and AC
- Fewer contacts
- Integrated calibration

www.tensormeter.de

Interface

Graphical user interface of the server background program, which relays communications between the Tensormeter and the user.

Electrical Specifications

Sensing precision:	<0.1 ppm
Continuous dynamic range:	>8 digits
Symmetrical output:	DC – 20 kHz, ±20 V, ±100 mA
Output noise floor:	< -140 dBFS
Pulse and arbitrary function output with 10 μs resolution	
Input demodulation at multiple frequencies up to 20 kHz	
Differential input noise:	3 nV∕√Hz 500 fA ∕√Hz
Differential input bias current:	1 nA
Optional input transformer for sub-nV ∕ √Hz measuments on low-R DUTs	
Gain change with temperature:	100 ppm/K <1 ppm/K (ratiometric)
DC offset voltage change with temperature:	1 μV/K
Fully controllable integrated 8x4 switching matrix	
Arbitrary function reference input/output:	single-ended ±10 V
Trigger input/output:	single-ended 5V TTL

Software and Communication Protocol Specifications

TCP-based user connection independent of platform and software

Client communication examples for LabView and Python (more on request)

Tensormeter RTM1 connects via USB2.0 to a Windows-PC Software and drivers are provided as Windows Executable Installer

For target OS other than Windows, a small relay computer can be provided

All functions can be controlled from the GUI or via TCP

Hardware, Power and Environmental Specifications

19" rack-mountable device, 3 height units, 25 cm depth

Power demand < 30 W, PSU included, user-specified AC connector

Operation range: 0 – 70 °C, non-condensing humidity

Free convection cooling (can be closed at expense of warmup time)

All front connectors are BNC, 50 Ω type

USB Type B communication connector

Channel and power LED indicators are user-dimmable or can be switched off

Typical Measurement Examples

- Low noise AC & DC 4-wire measurements in standard geometries (Kelvin, Hall layouts)
- Presets for van-der-Pauw switched connection 4-wire measurements
- New Zero-Offset Hall 4-wire preset grants independent longitudinal and transverse resistance

Low Resistive Sensors and Specimen

Differential Input Noise Spectrum of a resistive sensor. Ultra-low wideband & 1/f noise AC measurements allow accurate sensor characterization and operation.

- Ultra-low noise and high stability Hall measurements outclassing other equipment
- > Sub-ppm relative resistance change investigations
- Eliminate sample & device drifts with ratiometric resistance measurements
- High drive harmonic distortion measurements, Pulse & Measure routines, Custom presets

Loss of magnetization during warmup of an antiferromagnetic sample monitored in Hall Resistance. The Zero-Offset Hall preset of the RTM1 (top) clearly shows the loss of signal. On the contrary, parasitic signal contributions overshadow the useful magnetization signal in a regular 4-wire Hall measurement of the same sample (bottom).

Zero-Offset Hall: Eliminate Drift and Parasitics

Differential Input Noise Spectrum of a Hall measurement on a thin film sample. The Zero-Offset Hall preset of the RTM1 eliminates thermal drift and allows long integration and orders of magnitude improved sensitivity compared to regular 4-wire Hall measurements.

Our Offer

Test Send us your sample for first test measurements

Rent Try Tensormeter in your lab for some weeks

Buy Get unlimited Tensormeter performance

Get in Touch

www.tensormeter.de tensometer@hzdri.de HZDR Innovation GmbH Bautzner Landstraße 400 01328 Dresden, Germany

