Electron-phonon interactions in light-driven solids: bridging ab-initio theory and pump-probe experiments

Schluchsee, Germany

https://cs2t.de

CAU

Computational Solid-State

Christian-Albrechts-Universität zu Kiel

Fabio Caruso University of Kiel, Germany

September 18th, 2024

SFB1242 International conference

Nonequilibrium Dynamics of Condensed Matter in the Time Domain

Funded by

MARIE CURIE

Photoemission Optical probes de la Torre, et al. Rev Mod. Phys. (2021)

Transport

Research in the Computational Solid-State Theory group @ Uni. Kiel

Electron-phonon + phonon-phonon coupling

Scanning probes

Scattering probes

direct imaging of nuclear degrees of freedom

$\Delta I(t) = I(t) - I(t = 0)$

measurements: Helene Seiler

ultrafast electron diffuse scattering (UEDS) for bulk MoS₂

elastic scattering (Bragg peaks)

diffuse scattering (phononassisted electron scattering

- thermal (temperature increase)
- non-thermal (phonons out of equilibrium)

time- and angle-resolved photoemission spectroscopy (trARPES) for bulk WTe₂

measurements: P. Hein, M. Bauer, et al., Nature Comm. (2020)

In this talk

Ab-initio simulations of the non-equilibrium phonon dynamics: what can we learn?

Non-equilibrium lattice dynamics "a la carte": opportunities for engineering phonons out of equilibrium

Coherent phonons and quasiparticle renormalization in semimetals from first principles

Part 1

Ab-initio simulations of the non-equilibrium phonon dynamics: what can we learn?

Ultrafast dynamics simulations from first principles

Rethfeld, Kaiser et al., Phys. Rev. B 65, 214303 (2002) Bernardi, Louie et al., PNAS (2015) FC, J. Phys. Chem. Lett. (2021) Tong, Bernardi, Phys. Rev. Res. (2021)

Review: FC, Novko, Adv. Phys. X (2022)

Non-equilibrium phonon dynamics from the time-dependent Boltzmann equation (TDBE)

Coupled electron-phonon dynamics in monolayer MoS₂

Modelling ultrafast diffuse scattering from first principles

Zero-phonon term:

$$\langle I_0(\mathbf{S}) \rangle_T = N_p^2 |f_0|^2 \exp(-2W_T) \delta_{\mathbf{S},\mathbf{G}}$$

One-phonon term:

$$I_{1}(\mathbf{Q}) \propto \sum_{v} \frac{n_{\mathbf{q}v}}{\omega_{\mathbf{q}v}} \frac{1/2}{\left|\mathfrak{F}_{1v}(\mathbf{Q})\right|^{2}} \qquad \begin{array}{c} \text{phonon occupation}\\ \text{(available from the}\\ \text{TDBE}) \end{array}$$
$$\mathfrak{F}_{1v}(\mathbf{Q}) = \sum_{\kappa} e^{-W_{\kappa}(\mathbf{Q})} \frac{f_{\kappa}(\mathbf{Q})}{\sqrt{M_{\kappa}}} \left(\mathbf{Q} \cdot \mathbf{e}_{\mathbf{q}v\kappa}\right) \qquad \begin{array}{c} 1\text{-phonon}\\ \text{structure factor} \end{array}$$

G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Cambridge University Press)

The TDBE: $\frac{\partial f_{n\mathbf{k}}}{\partial t} = \Gamma_{n\mathbf{k}}^{e-ph} + \Gamma_{n\mathbf{k}}^{e-e}$ $\frac{\partial n_{\mathbf{q}\nu}}{\partial t} = \Gamma_{\mathbf{q}\nu}^{e-ph} + \Gamma_{\mathbf{q}\nu}^{ph-ph}$

ultrafast diffuse scattering from first principles

pubs.acs.org/NanoLett

Accessing the Anisotropic Nonthermal Phonon Populations in Black Phosphorus

Hélène Seiler,* Daniela Zahn, Marios Zacharias, Patrick-Nigel Hildebrandt, Thomas Vasileiadis, Yoav William Windsor, Yingpeng Qi, Christian Carbogno, Claudia Draxl, Ralph Ernstorfer, and Fabio Caruso*

Ultrafast electron diffuse scattering: the case of bulk MoS₂

H. Seiler (FU Berlin)

0.0 ps

Two distinct non-thermal phonon populations (experiments)

non-thermal phonon populations

$$I_{1}(\mathbf{Q}) \propto \sum_{\nu} \frac{n_{\mathbf{q}\nu} + 1/2}{\omega_{\mathbf{q}\nu}} \left| \mathfrak{F}_{1\nu}(\mathbf{Q}) \right|^{2} \qquad \text{1-phonon contributio}$$
$$\mathfrak{F}_{1\nu}(\mathbf{Q}) = \sum_{\kappa} e^{-W_{\kappa}(\mathbf{Q})} \frac{f_{\kappa}(\mathbf{Q})}{\sqrt{M_{\kappa}}} \left(\mathbf{Q} \cdot \mathbf{e}_{\mathbf{q}\nu\kappa} \right) \qquad \text{1-phonon structure factors}$$

Diffuse scattering from non-equilibrium phonon populations

$$= \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{g_{mn'}^{\nu}(\mathbf{k},\mathbf{q}) = \langle m\mathbf{k}+\mathbf{q} | \Delta |_{\mathbf{q}_{\nu}} \langle u_{\mathbf{k},\mathbf{q}} | u_{\mathbf{m}\mathbf{k}} \rangle |_{\mathbf{q}_{\nu}}^{2} Renormalization of screening due to photoexcited of (independent particles):
$$\delta \chi_{0}(\mathbf{q}) = \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{m'\mathbf{k}+\mathbf{q}}} |\langle u_{m'\mathbf{k}+\mathbf{q}} | u_{m\mathbf{k}} \rangle |_{\mathbf{q}_{\nu}}^{2}$$

$$\delta \chi_{0}(\mathbf{q}) = \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{m'\mathbf{k}+\mathbf{q}}} |\langle u_{m'\mathbf{k}+\mathbf{q}} | u_{m\mathbf{k}} \rangle |_{\mathbf{q}_{\nu}}^{2}$$$$

Electron-phonon matrix elements for photo-doping:

$$\tilde{g}_{mn}^{\nu}(\mathbf{k},\mathbf{q}) = \frac{g_{mn}^{\nu}(\mathbf{k},\mathbf{q})}{1 - \frac{4\pi e^2}{|\mathbf{q}|^2 \epsilon_{\text{undoped}}}} \delta \chi_0(\mathbf{q})$$

carriers

Ultrafast diffuse scattering in MoS₂

Experiments

Poster by Y. Pan

Part 2

Non-equilibrium lattice dynamics "a la carte": opportunities for engineering phonons out of equilibrium

Valley selective optical excitation in MoS₂

- three-fold rotational invariance
- non-centrosymmetryc crystal structure

Valley selective optical excitation in MoS₂

• three-fold rotational invariance

- non-centrosymmetryc crystal structure
- Ultrafast valley depolarization dynamics
- Different timescales for valence and conduction band

Yao, Niu, et al., Phys. Rev. B (2008) Mak, Heinz, et al., Nature Nanotec. (2012) Molina-Sánchez, et al., Nano Lett. 17, 4549 (2017) Dal Conte, et al., Phys. Rev B 92, 235425 (2015) Beyer et al., Phys. Rev. Lett. 123, 236802 (2019) Xu, Duan, et al., Nano Lett. (2021) Lin, Montserrat, et al., Phys. Rev. Lett. (2022)

Pan, FC, Nano Lett. 23, 7463 (2023)

The decay path of valley-polarized carriers in MoS₂

valley-polarized phonons at the K and -K high-symmetry points

Valley-polarized non-equilibrium phonon populations in MoS₂

Pan, FC, Nano Lett. 23, 7463 (2023)

F

Ab-initio theory of coherent phonons in semimetals

Part 2

Coherent phonons in experiments: the example of antimony

Waldecker, Ernstorfer, et al, Phys. Rev. B **95**, 054302 (2017)

The displacive excitation of coherent phonons (DECP)

Comprehensive understanding of coherent-phonon excitation mechanisms:

Dhar, Nelson et al., Chem. Rev. 94, 157 (1994) Kutsenov, Stanton, Phys. Rev. Lett. 73, 3243 (1994) Garrett, Merlin et al., Phys. Rev. Lett. 77, 3661 (1996) Rossi, Kuhn, Rev. Mod. Phys. 74, 895 (2002) Hase, Petek et al., Nature (2003) Wu, Meng, Nature Comm. **15**, 2804 (2024) ... and many more!!!

Challenges for ab-initio many-body methods:

- Develop a theory of phonon decoherence 3.

1. Capture emergence of coherent phonons in materials 2. Account quasiparticle renormalization due to coherent phonons

The electronic structure of antimony

Measurements: S. Jauernik, Sunil, C. E. Jensen, P. Hein, M. Bauer

Measurements: S. Jauernik, Sunil, C. E. Jensen, P. Hein, M. Bauer

Probing coherent phonons via tr-ARPES

Ab-initio approach to coherent phonons in materials (DECP)

Displacement along phonon $q\nu$:

$$\hat{Q}_{\mathbf{q}
u}$$

Heisenberg eq. of motion:

$$i\hbar \frac{\partial \hat{Q}_{\mathbf{q}\nu}(t)}{\partial t} = [\hat{Q}_{t}]$$

Displacive excitation of coherent phonons (DECP):

$$D_{\mathbf{q}\nu}^{\mathrm{eph}}(t) = -\frac{\omega_{\mathbf{q}\nu}}{\hbar N_p^{\frac{1}{2}}} \sum_{n\mathbf{k}} g_{nn}^{\nu}(\mathbf{k},$$

Quasiparticle energy renormalization due to coherent phonons:

$$\varepsilon_{n\mathbf{k}}^{\mathbf{QP}} = \varepsilon_{n\mathbf{k}} + \Sigma_{n\mathbf{k}}^{\mathbf{p}}$$

FC, M. Zacharias, PRB **107**, 054102 (2023)

$$\Sigma_{n\mathbf{k}}^{p}(t) = \sum_{\mathbf{q}\nu} g_{nn}^{\nu}(\mathbf{k},\mathbf{q}) Q_{\mathbf{q}\nu}(t)$$

Workflow for DECP simulations

Emeis, Jauernik, Sunil, Pan, Jensen, Hein, Bauer, FC, ArXiv 2407.17118 (2024)

C. Emeis

Coherent phonons in antimony from first principles

Coherent phonons EOM (DECP):

Band structure renormalization due to coherent phonons

(Static) spectral function due to the electronphonon interaction

$$A_{n\mathbf{k}}(\omega) = -\frac{1}{\pi} \frac{1}{\left[\hbar\omega - \varepsilon\right]}$$

$$\varepsilon_{n\mathbf{k}}(t) = \sum_{\nu} g_{mn}^{\nu}(\mathbf{k}, \mathbf{q}) Q_{\mathbf{q}\nu}$$

$$A_{n\mathbf{k}}(\omega;t) = -\frac{1}{\pi} \frac{1}{[\hbar\omega - \varepsilon_{n\mathbf{k}} - \Sigma_{n\mathbf{k}}^{\mathbf{P}}(t)]}$$

Wavevector

Fluence-dependent measurements of coherent phonons: theory and td-ARPES

band shift due to coherent phonon excitation

Retrieving nuclear trajectories from tr-ARPES

Max. Displacment [Å]

Coherent lattice dynamics in *T_d***-MoTe**₂

s

х

υ

ΓZ

R

Part 1

Ab-initio simulations of ultrafast phonon dynamics: what can we learn?

Part 2

Coherent phonon and quasiparticle renormalization in semimetals from first principles

Emeis, Jauernik, Sunil, Pan, Jesper, Hein, Bauer, FC, ArXiv 2407.17118 (2024)

Acknowledgements

CS2T group @ Uni. Kiel:

- Yiming Pan
- Gowri Sankar Shaju Marlene Abshagen
- Philipp Lauwen

THEORY:

• Marios Zacharias (Uni Rennes)

<u>Christoph Emeis</u>

EXPERIMENTS:

- Michael Bauer (Kiel)
- Stephan Jauernik (Kiel)
- Sunil (Kiel)
- Helene Seiler (FU Berlin)
- Ralph Ernstorfer (TU Berlin)

These slides:

mail: caruso@physik.uni-kiel.de **slides**: cs2t.de/publications

