

Ablauf

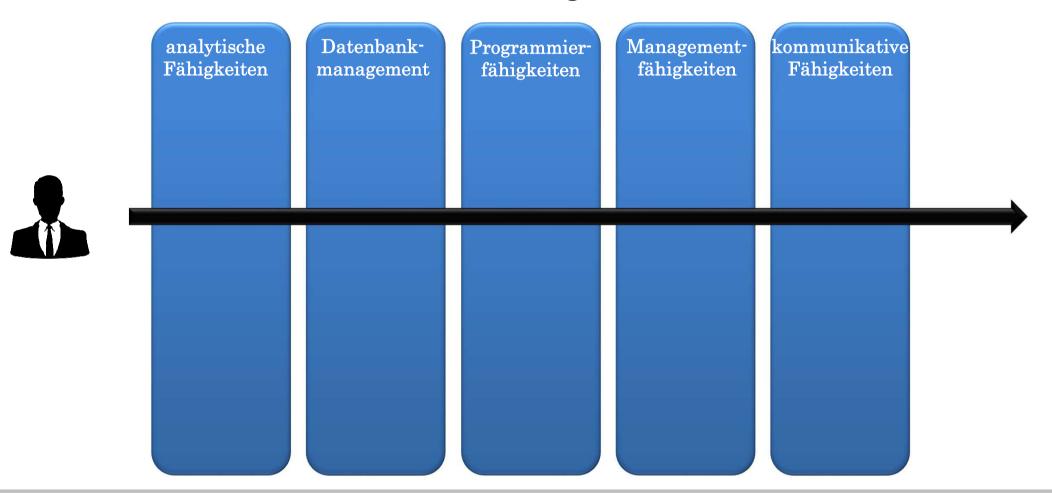
- 1 von der Datenbank zu Data Analytics Wie kann der Schritt gelingen?
- 2 einige Verfahren aus der Praxis Welche Lösung für welches Problem?
- 3 Kooperationen finden Von welchem Partner kann ich was erwarten?
 - 4 Adaption für das produzierende Gewerbe
- 5 Data Science in Deutschland Wo stehen wir im internationalen Vergleich?

Von der Datenbank zu Data Analytics

"Data Scientist:

The Sexiest Job of the 21st Century"-

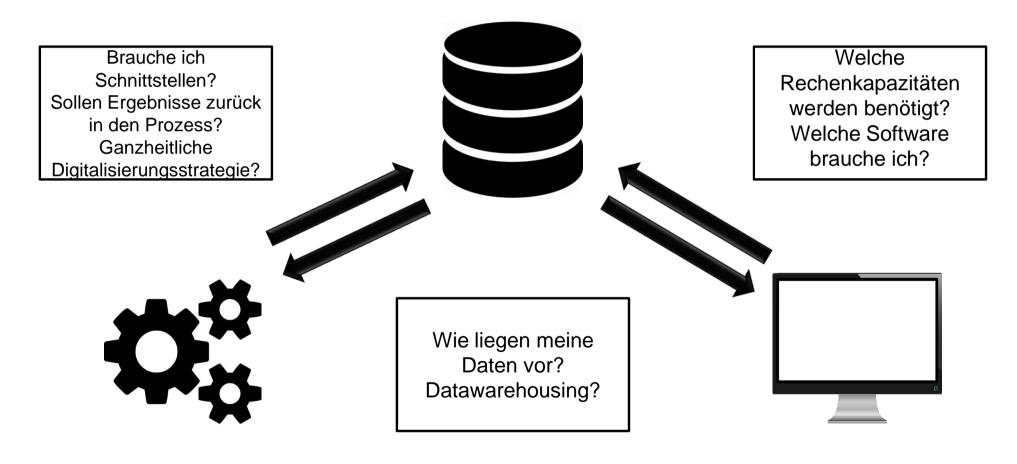
Harvard Business Review im Oktober 2012


Anforderungen an den interne Aufbau

- ① Schaffung personeller Strukturen, um mit dem Aufbau einer Data Science-Unit zu beginnen Welche Lösung ist die beste für mein Unternehmen?
- Informationstechnischer Aufbau für die gewählte Struktur Welche Lösung passt zu welchem Problem?
- die gesammelten Daten nutzbar machen -Welche Software ist die Richtige?
- Data Science im Unternehmen richtig kommunizieren und positionieren Wie stelle ich mich intern auf? Wie beuge ich Widerständen vor?

personelle Anforderungen

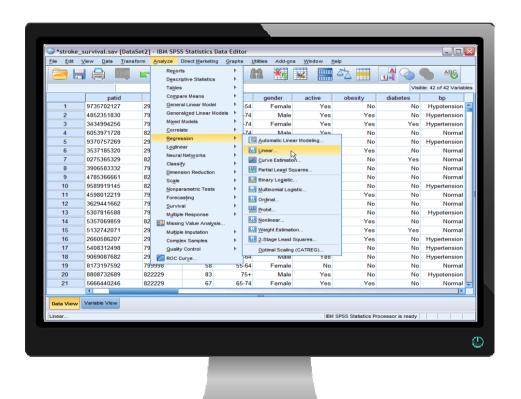
Was muss ein Data Scientist mitbringen?

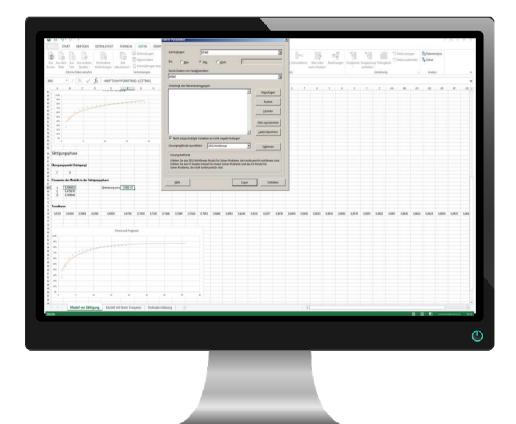


personelle Anforderungen

anstatt Individuallösung – auf Teamlösung zurückgreifen

technische Anforderungen




bestehende Softwarelösungen

	Commercial	Open Source	
Usability	einfache, intuitive Bedienung	komplexere Bedienung	
Kosten	kostenpflichtige Lizenzen	Freeware	
sonstiges	Tooldatenbanken, regelmäßige Updates, Vorhandensein von Schnittstellen	gemeinsame Plattform mit der Wissenschaft, Quellcode einsichtig	
Beispiele	z.B. SPSS, Stata oder Matlab	z.B. python, Octave oder R	
	SPSS® MATLAB	P python™	

Welche Software für welches Problem?

"make or buy" Entscheidung? – zwei Beispiele

Kommunikation & Positionierung

Zentralisierung

- disruptive Kompetenzen an verantwortlicher Stelle verorten
- gelebte Open Door Policy
- wichtig: gemeinsames
 Alignement mit der IT Abteilung und
 Geschäftsführung

Dezentralisierung

- Fokussierung auf das Thema ermöglichen
- Personalressourcen klar regeln
- Sensibilisierung für das Thema schaffen und innerhalb des Unternehmens Data Science als gemeinsames Projekt angehen
- Kommunikationshürden abbauen

Wahl des Zentralisierungsgrades auch eine Ressourcenfrage

Kevin Yam

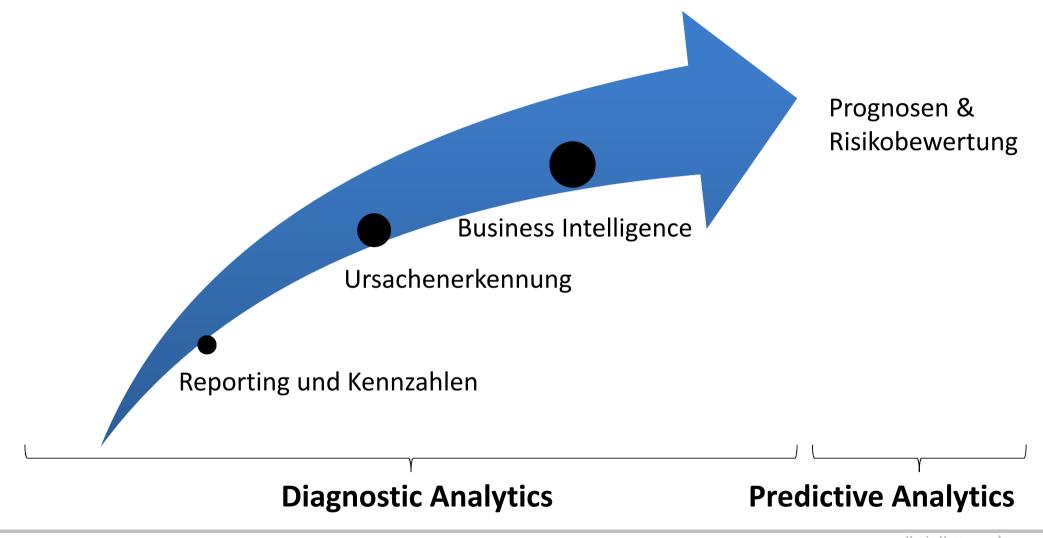
10

einige Verfahren aus der Praxis

"data rich but knowledge poor"

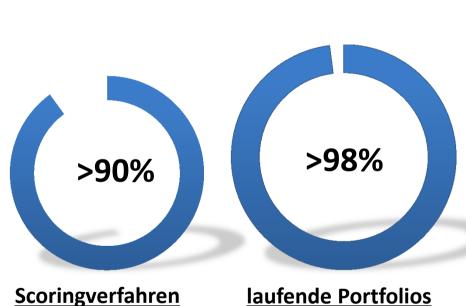
Wozu Data Science im Mittelstand?

branchenfremder Wettbewerb nimmt zu:

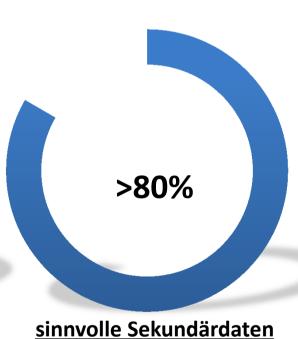

- datengetriebene Unternehmen zerstückeln die Wertschöpfungskette und dringen in konservative Märkte (z.B. Fintech-Unternehmen)
- Digitalisierung macht Data Science notwendig
- Data Science als Vorgabe angelsächsischer Investoren

aktueller Status im Risikomanagement/ Controlling:

- Mittelständler betreiben Risikomanagement mit Standard-Office Produkten
- wenig automatisiertes Risikomanagement
- Entscheidungen werden aufgrund von Bauchgefühl getroffen

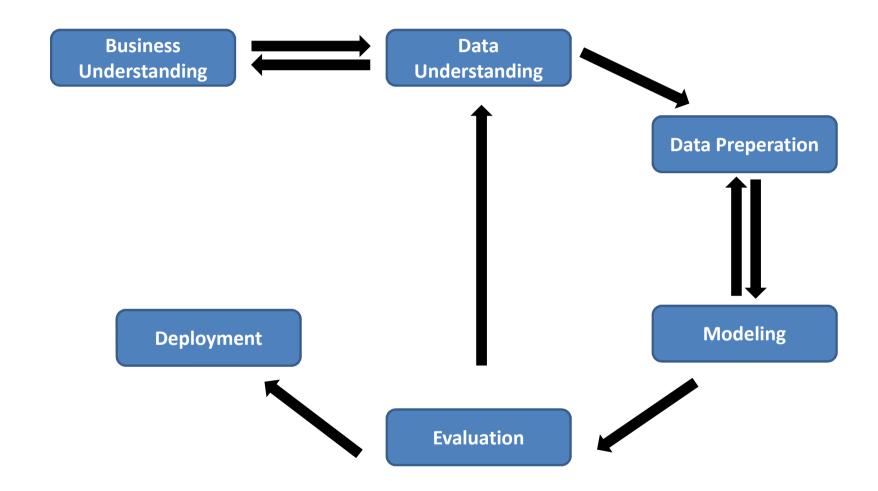


Diagnostic & Predictive Analytics



Business Case Forderungsmanagement

mithilfe von Data Science konnten


- entwickelt werden mit einer Genauigkeit von über 90%
- mit einer Genauigkeit von über 98% prognostiziert werden

zu 80% der bestehenden Daten angefügt werden

- verlustbringende
 Prozessschritte
 identifiziert und
 eingespart werden
- weitreichende
 Automatisierungen der
 Bearbeitungsschritte
 durchgeführt werden
- quantitativeRisikomodelleimplementiert werden

Standardprozess zur Datenanalyse

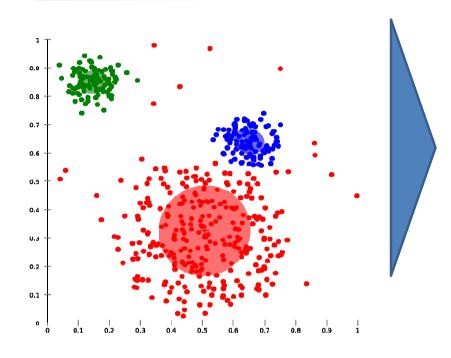
Prozess – und Kosteneinsparungen

Prozesse verstehen

- interne Wertschöpfungskette analysieren
- Handlungsspielräume finden
- rechtliche Parameter berücksichtigen

Einflussfaktoren finden

- Welche sind die entscheidenden Treiber?
- Ist es möglich Einflussfaktoren zu bewerten?


Clusteranalyse

unterschiedliche
 Mandanten anhand der
 Einflussfaktoren in logisch sinnvolle Gruppen klassifizieren

Modellierung

 Suche nach einem Modell, das beobachtetes
 Verhalten bestmöglich abbildet

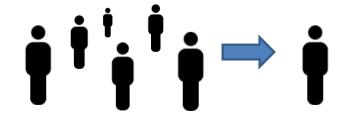
Klassifikation am Beispiel Clusteranalyse

hierarchischer Algorithmus

maximale interne
Homogenität bei maximaler
externen Heterogenität

Klassifizieren von Objekten und Anomalien finden

Ziele:

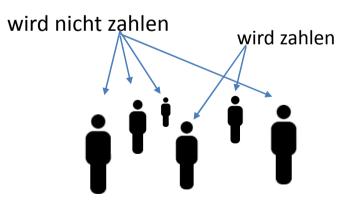

- Transparente Sicht auf den Geschäftsverlauf Wo ist das Problem?
- effiziente Prozesse Was lässt sich vermeiden?

Welche Verfahren eignen sich?

robuste Verfahren

z.B. Portfoliobewertung

- stabile Mittelung
- makroskopische Betrachtung
- spezifisches Anwendungsfeld
- kein Overfitting
- höhere Nachvollziehbarkeit der Ergebnisse



spezifische Verfahren

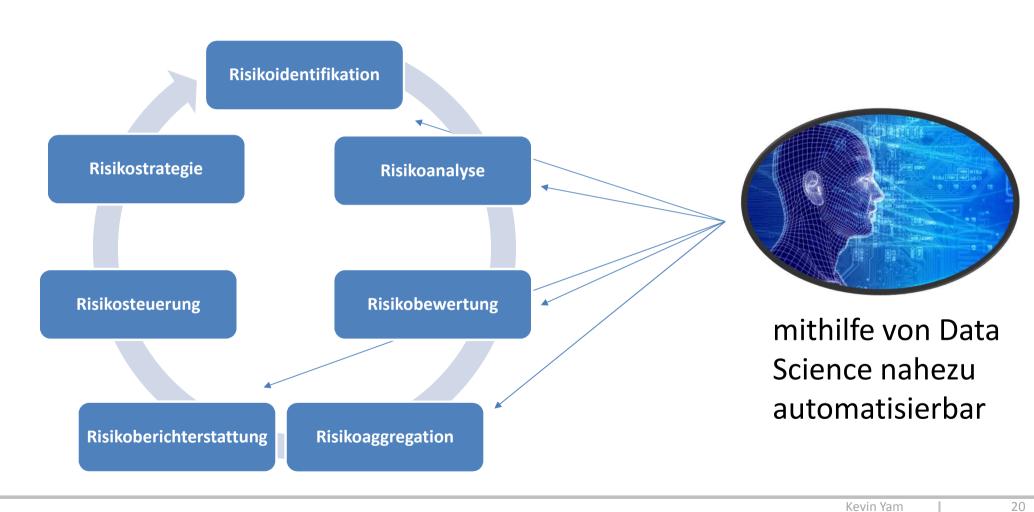
z.B. Scoring

- sehr sensitiv
- detaillierte Betrachtung
- fehleranfällig
- implementierungsaufwändig

Risikomanagement mit Data Science

Datenanalyse ermöglicht:

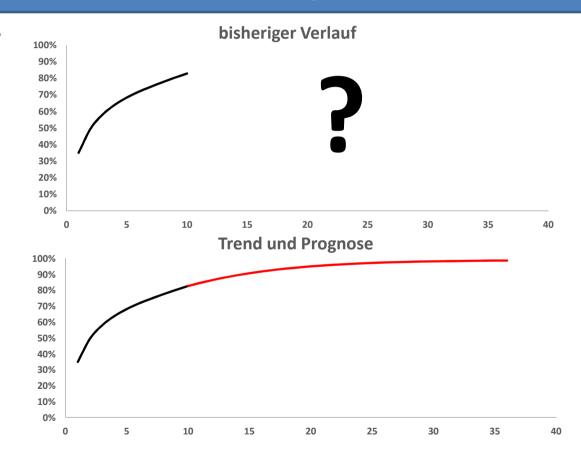
- Erkennung von Einflussfaktoren auf das Ausfallrisiko
- Portfoliotaxierung
- Prozesskostenrisiken


erforderlich aufgrund:

- gesetzliche Regulierungen (z.B. Basel, Solvency und Handelsgesetz)
- Compliance
- Marktanforderungen

Optimierung durch:

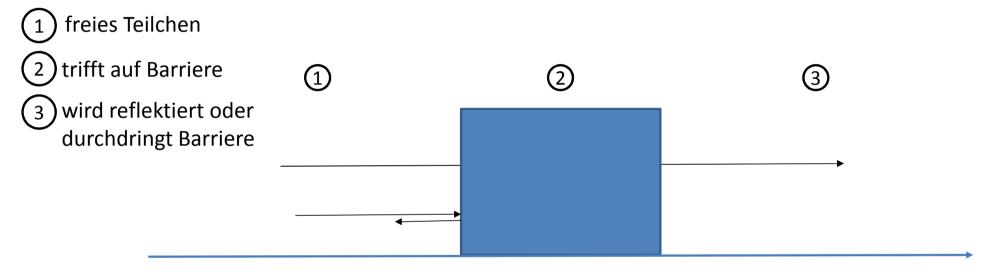
- Erkennen von wichtigen Prädiktoren
- Verbesserung der Datenqualität
- Methodenoptimierung


Risikokreislauf mit Data Science

Praxisbeispiel: Prognoseverfahren

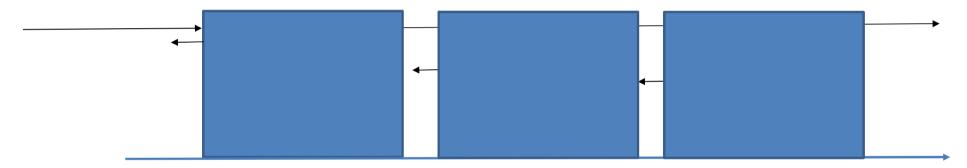
von der Bleistiftmethode zur automatisierten Vorhersage mithilfe von Data Science

- Grundlage: Verlauf der ersten Monate
- Oszillation
- Modell für valide
 Prognosen erstellt und installiert werden



Kevin Yam

21


Anpassung naturwissenschaftlicher Modelle

die Potentialbarriere für freies Teilchen aus der Physik

Charakteristika des Individuellen Modell Score

mehrstufiges Potentialbarriere-Modell

- einzelne Barrieren symbolisieren die unterschiedlichen Mahnstufen
- nach jedem Prozessschritt kann für den Kunden eine neue Zahlungswahrscheinlichkeit berechnet werden
- einzelne Schritte im Mahnprozess können individuell bewertet werden
- Automatisierung im operativen Bereich

Praxisbeispiel: Scoring

Methoden

logistische Regression

Neuronales Netz

Potentialbarriere-Modell **Attribute**

Hauptforderung

Alter

Geschlecht

Wohnort

Prozessdaten

Metadaten

Score

1,000
1,000
1,000
0,700
0,920
1,000
0,714
0,647
0,997
0,940
0,992
0,024
0,017
0,004

Prognose

zahlt/zahlt nicht
zahlt
zahlt nicht
zahlt nicht
zahlt nicht

Kevin Yam

24

Praxisbeispiel: Scoring

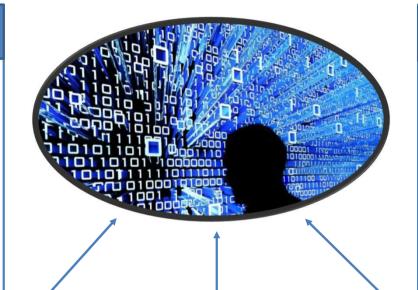
statista 2

Kooperationen finden

wissenschaftliche Kooperationen

als Human-Resources Pool

als Entwickler & Sparringspartner


- Universitäten an Realdaten aus 1. Hand interessiert
- über Kooperationen Risiken teilen
- kostengünstig Projekte auslagern
- Reputationssteigerung durch Publikationen in Journalen

- "war for talents" im Bereich Data Science besonders ausgeprägt
- mit interessanten Themen für Abschlussarbeiten Absolventen für das eigene Unternehmen begeistern
- weitere Möglichkeiten des HR-Marketing

Forschungsverbund

Vorteile

- attraktive Fördergelder
- Synergieeffekte mit anderen Unternehme auf thematischer Ebene
- Anknüpfungspunkte über die thematische Kooperation hinaus
- Reputationssteigerung
- Überwindung der eigenen Betriebsblindheit

Gefahren

- Knowhow an Konkurrenz
- zu viele Interna und Schwachstellen offenbaren
- Betriebsgeheimnisse erschweren Projektarbeit
- hoher Planungsaufwand

Zulieferer

Unternehmen

Kunde

die eigene Wertschöpfungskette als Kooperationspool nutzen

Kevin Yam

28

Adaption für das produzierende Gewerbe

Adaptionspotential

mögliche Anknüpfungspunkte mit Data Science

Beschaffung

z.B.

- Lagerbindung von Produktionsmitteln reduzieren
- bedarfsgerechte
 Produktionsmittelplanung

Fertigung

z.B.

- Kostentreiberanalyse
- Prozessoptimierung

Lagerhaltung

z.B.

- Just-in Time Produktion
- Auswertung bestehender Scanner-Systeme
- Optimierung von Arbeitsabläufen und des Lageraufbaus

Marketing und Vertrieb

z.B.

- individuelle Kundenansprache
- exakte Budgetplanung

Kevin Yam

30

Data Science als Marketingunterstützung

individuelle und abgestimmte Kundenansprache Streuverluste im Marketing können verringert werden

abhängige Variable im Modell einfach Messbar: Umsatz

Klassifikationsanalysen

- effiziente Vertriebsplanung
- Beschwerdemanagement (automatische Bearbeitung von User-Feedback)
- Früherkennung neuer Markttrends (Inhalte von Social-Media Plattformen können ausgelesen werden und komprimiert zur Auswertung bereitgestellt werden)

Regressionsverfahren

- Pricing-Modelle (Erstellen eigener Preis-Absatz-Funktionen mithilfe historischer Daten)
- Optimierung von Marketingkampagnen
- Optimierung von Angeboten

Kevin Yam

31

Adaptionspotential im produzierende Gewerbe

Industrie 4.0 und "smart-factory"

auf der Managementebene

- Entscheidungsgrundlagen
- Handlungsempfehlungen
- Risikofrüherkennung
- Kapitalbindung reduzieren
- Produktqualität verbessern

 Wie kann ich meinen cashconversion cycle optimieren?

im Prozess

- Fehlererkennung
- Wartezeiten verkürzen
- Prozessoptimierung zur Reduktion von Gemeinkosten

- substituieren sich Faktoren im Prozess, sodass diese letztendlich nicht sichtbar werden?
- Welche sind entscheidende Kostentreiber und wie kann ich sie reduzieren?

Data Science in Deutschland

über

2 500 000 000 000 000 000

Bytes an Daten täglich

Marktentwicklung rund um das Thema KI

Umsatzvolumen im KI-Geschäft

Anstieg der Arbeitsproduktivität durch KI bis 2035 in Prozent

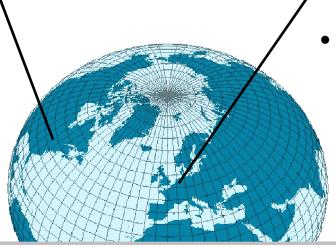
USA +35%
Japan +34 %
Deutschland +29%

Großbritannien +25%

Frankreich +20%

			•
ALITA	maticia	'IINGCNA'	tonzial
AULU	matisier	ulleano	LEHZIAI

Gastgewerbe	66%
Produktion	64%
Logistik	60%
Bergbau	54%
Einzelhandel	54%
Land- und Forstwirtschaft	50%
Großhandel	50%
Versorger	45%
Finanzbranche	44%
Bauwesen	44%
Immobilien	44%
Unterhaltungsbranche	42%
Informationsdienstl.	41%
Verwaltung	41%
Techn. Dienstl.	39%


Wo stehen wir im internationalen Vergleich?

Amerika

- weltweite thematische
 Dominanz der Big Player wie
 Google, Amazon, IBM und
 Wal-Mart
- Google als Miterfinder von
 Big Data Technologien
 (MapReduce Algorithmus, Big\)
 Table etc.)
- universitär: seit einigen
 Jahren explizite Studiengänge
- nur 1/3 der US-Data
 Scientists stammen aus den
 USA

Europa

- aufgrund der Datenschutzes wurde das Thema lange Zeit in Deutschland kritisch betrachtet
- Start-Ups haben eine innovationstreibende Rolle (als Beispiel: Finleap, Pair Finance, Insur-und Legaltechfirmen)
- universitär: erst kürzlich Einzug in die deutschen Universitäten erhalten

Kevin Yam

35

Wo geht's hin im Mittelstand?

- neue Marktfelder entstehen durch Erkenntnisse aus dem Bereich Data Science
- Prozesskosten können reduziert werden
- Controlling wird effizienter
- genauere Prognosen geben Planungssicherheit
- Datenschutzfragen
- Investitionshemmnisse
- Unwissenheit zu gewissen Fragestellungen
- kein externes Personal
- Personal ist schwer zu finden und für den Mittelstand zu begeistern
- Kooperationen nutzen
- Beratungsleistungen in Anspruch nehmen
- Kompetenzteams bilden
- Mut haben

Vielen Dank für Ihre Aufmerksamkeit

yam@seghorn.de

Kevin Yam

