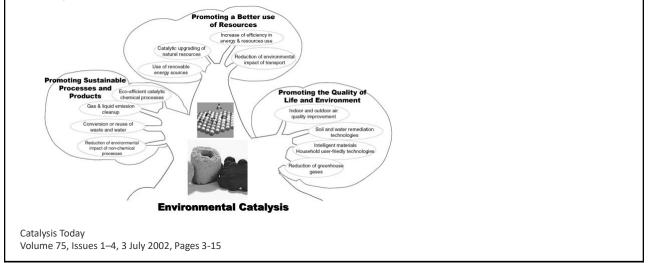

Please fill in the post production information for this clip:


Environmental Catalysis

Name: Jana Roithova Function: Prof Website: https://www.ru.nl/science/spectroscopy-and-catalysis/

Environmental Catalysis

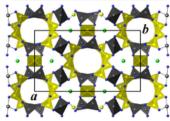
Catalytic technologies for reducing emissions of environmentally unacceptable compounds.

Features of environmental catalysis

Developing environmental catalysts:

- Conditions are often given (e.g., emissions in air, exhaust gases, waste water)
- · Catalysts often operate at unfavorable conditions
 - · low/high temperatures
 - in the presence of catalyst poisons
 - with ultra-low concentrations
 - · under varying conditions

Examples in Environmental Catalysis


- Catalysis for clean air
- Catalysis for clean water
- Catalysis for use of renewables production of H₂
- Catalysis for use of renewables CO₂ reduction
- · Catalysis for use of renewables Biomass conversion
- Catalysis of plastic recycling

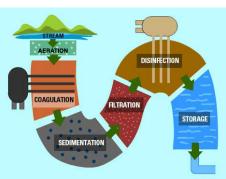
Catalysis for clean air

and a first star from the first star	
nemical / petroleum industry,	
Solvents,	Oxidative
Car exhausts	
Car exhausts	Oxidative
Power plants,	Reductive
Heating	Oxidative
	Solvents, Car exhausts Car exhausts Power plants,

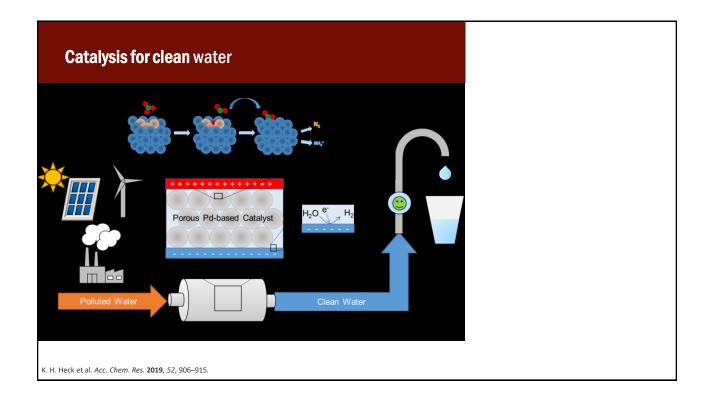
- catalysts: usually precious metals (Pt, Pd, Rh) dispersed on a porous support (e.g., honeycomb ceramics – synthetic cordierite)
- Reduction (Pt, Rh): $NO_x \rightarrow N_2 + O_2$
- Oxidation (Pt, Pd): C0 + $0_2 \rightarrow \frac{1}{2}$ C0₂ and C_nH_m + $0_2 \rightarrow C0_2$ + H₂O
- See also a separate video clip!

Crystal structure of Cordierite. Colors: **Mg/Fe, O, Si/Al**

Waclawek et al. Ecol. Chem. Eng. 2018, 25, 9.

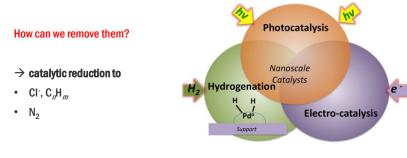

Catalysis for clean water

Contaminants of dirty (grey) water:


- · Physical: particles of soil or organic matter from soil erosion
- Chemical: elements or compounds that are natural or human-made, such as pesticides, bleach, nitrogen, human and/or animal drugs, metals, or toxins produced by bacteria. Some chemical contaminants (such as cesium, plutonium and uranium) are also dangerous because they can emit radiation.
- Biological (or Microbial): organisms that live in water, such as bacteria, viruses, protozoan, and parasites

For details see:

https://youtu.be/oaXth88i7rk


Source: http://www.eschooltoday.com/global-water-scarcity/how-water-is-treated-for-drinking.html K. H. Heck et al. Acc. Chem. Res. **2019**, *52*, 906–915.

Catalysis for clean water

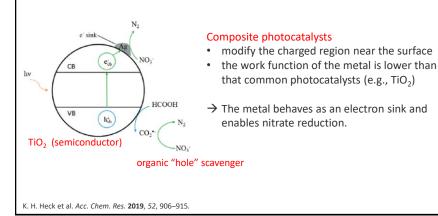
The common contaminants:

- Chlorinated Volatile Organic Compounds
 - low-molecular-weight organic chemicals such as perchloroethylene, trichloroethylene, trichloroethane, vinyl chloride, and chloroform
- Nitrate and Nitrite Contamination

K. H. Heck et al. Acc. Chem. Res. 2019, 52, 906-915.

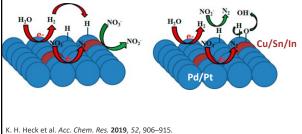
Catalysis for clean water

- Heterogeneous Hydrogenation Catalysis
 - Metal nanoparticles (e.g., Pd) on a support (e.g., SiO₂, Al₂O₃, C)
 - Pd NPs can reduce NO₂⁻ to N₂
 - Pd alone cannot reduce NO₃⁻ → mixed NPs
 - In-on-Pd NPs
 - In catalyzes $NO_3^- \rightarrow NO_2^-$
 - Pd catalyzes $NO_2^- \rightarrow N_2$ and generated H adatoms
 - H adatoms reduce the oxidized In atoms


• Alternatively – catalytic production of H_2O_2

- $H_2 + O_2 \rightarrow H_2O_2$ with the selectivity of >95%
- Catalyst: Palladium-tin
 - Tin oxide surface layer encapsulates small Pd-rich particles
 - Larger Pd-Sn alloy particles exposed

K. H. Heck et al. Acc. Chem. Res. 2019, 52, 906–915.
 S. J. Freakley et al., Science, 2016; 351 (6276): 965.


Catalysis for clean water

- Photocatalytic Nitrate Reduction
 - UV light to generate the electrons required for reduction
 - the best (composite) catalyst: silver-loaded TiO₂

Catalysis for clean water

- Electrochemical Nitrate Reduction
 - Electrolytic reactors at least two electrodes
 - cathode → e.g., nitrate reduction
 - Pt/Pd reduce nitrate and protons → highly reductive H adatoms (H_(ad)) → reduction involves both direct charge transfer via electrocatalysis and catalytic reduction by H_(ad).
 - anode → oxidation reactions occur
 - with a high overpotential → in situ hydroxyl radicals or active chlorine species

Use of renewables: H₂ production

- Electrochemical water splitting
 - HER catalysts: transition metals, metal carbides, C-based materials
 - OER catalyst: Co-, Ni-based
- Also photocatalytic water splitting
 - less efficient
 - TiO₂, ZnO, MOF
 - noble-metals as co-catalysts
 - sacrificial reagents produced from biomass

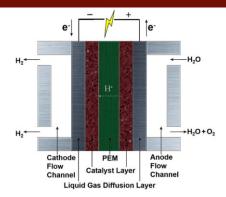
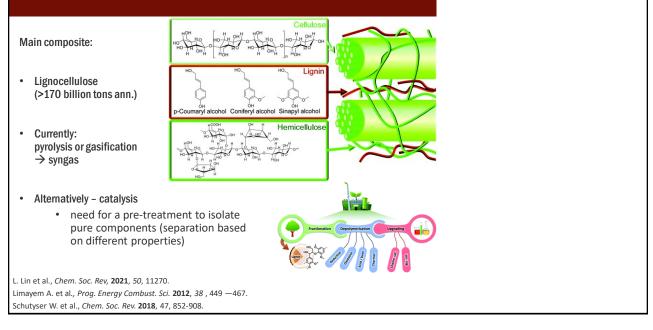


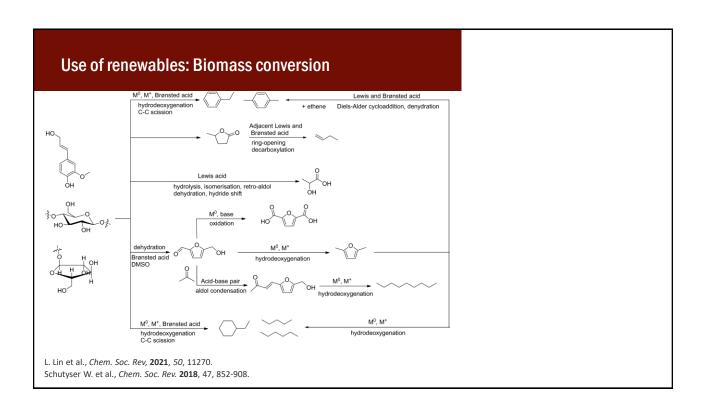
Figure 15. Schematic representation of a PEMEC. Reproduced with permission of ref.^[144] Copyright, 2016 Royal Chemical Society.

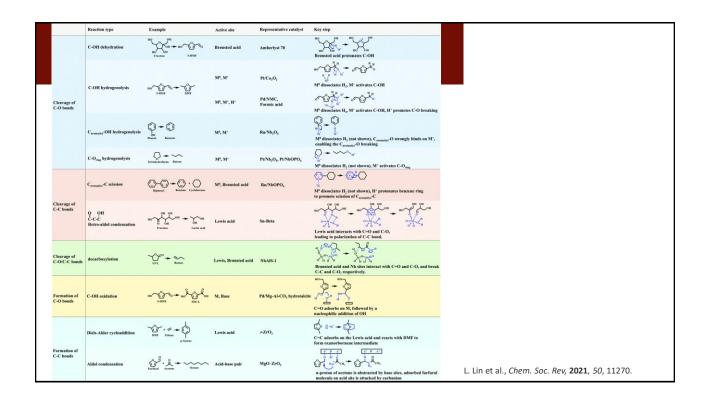
PEMEC= proton exchange membrane electrolyzer cell

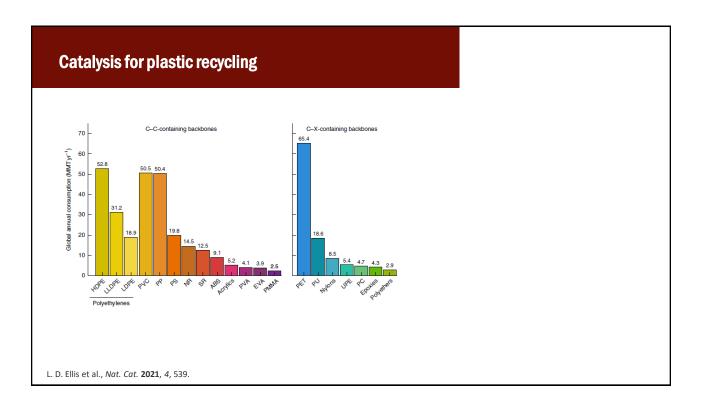
Rodriguez-Padron et al., ChemCatChem 2019, 11, 18-38.

Use of renewables: CO₂ reduction

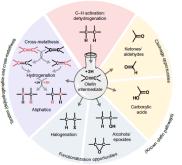

- Electrochemical reduction of CO₂
 → see also the separate
 video clips on
 - CO₂ reduction
 - Fischer-Tropsch synthesis
- Photochemical reduction of CO₂
 - semiconductors


 active field of research, new 2D materials with improved efficiencies and selectivities
 - competition with H₂ evolution

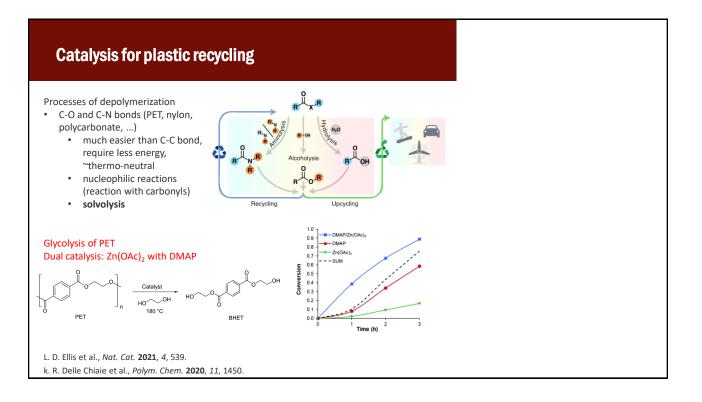



Figure 16. Overview of an electrochemical CO₂ conversion system powered by renewable energy. Reproduced with permission of ref.^[160] Copyright, 2016 Elsevier.

Use of renewables: Biomass conversion


Catalysis for plastic recycling

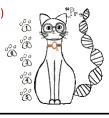
Processes of depolymerization


- C-C bonds (PE, PP, polystyrene, ...)
 - Non-catalyzed pyrolysis (C-C hemolysis, radical mechanism)
 - Catalytic cracking (usually with acidic zeolites, carbocation-based chemistry)
 - Catalytic processes (initiated by C-H activation reactions)

Olefin-intermediate process

- Cracking can be coupled with follow-up reactions leading to valuable feedstocks
 - hydrogenation
 - oxidative C=C cleavage
 - hydration
 - halogenation

L. D. Ellis et al., Nat. Cat. 2021, 4, 539.



Learning objectives

You should be able to explain and understand

- what catalytic processes you can encounter at everyday life
- how is the catalysis used to make air cleaner
- how is the catalysis used to clean water
- how is the catalysis used to convert biomass to useful chemicals
- what would be greener ways to produce H₂
- how the exhaust catalysts for car work (see the extra video clip)
- how does CO₂ reduction work (see the extra video clip)
- how we can recycle plastics and what would be a role of catalysis in it.

Do the quiz and see you in the class!

