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 FOREWORD 
 
 For three-quarters of a century past more has been written about natural selection and 
the struggle for existence that underlies the selective process, than perhaps about any 
other single idea in the whole realm of Biology. We have seen natural selection laid on 
its Sterbebett, and subsequently revived again in the most recent times to a remarkable 
degree of vigor. There can be no doubt that the old idea has great survival value.  
 
      The odd thing about the case, however, is that during all the years from 1859, when 
Darwin assembled in the Origin of Species a masterly array of concrete evidence for the 
reality of the struggle for existence and the process of natural selection, down to the 
present day, about all that biologists, by and large, have done regarding the idea is to 
talk and write. If ever an idea cried and begged for experimental testing and 
development, surely it was this one. Yet the whole array of experimental and statistical 
attempts in all these years to produce some significant new evidence about the nature 
and consequences of the struggle for existence is pitifully meager. Such contributions a3 
those of Bumpus, Weldon, Pearson, and Harris are worthy of all praise, but there have 
been so very, very few of them. And there is surely something comic in the spectacle of 
laboratories overtly embarking upon the experimental study of evolution and carefully 
thereafter avoiding any direct and purposeful attack upon a pertinent problem, the 
fundamental importance of which Darwin surely established. 
 
At the present time there is abundant evidence of an altered attitude; and particularly 
among the younger generation of biologists. The problem is being attacked, frontally, 
vigorously and intelligently. This renewed and effective activity seems to be due 
primarily to two things: first, the recrudescence of general interest in the problems of 
population, with the accompanying recognition that population problems are basically 
biological problems; and, second, the realization that the struggle for existence and 
natural selection are matters concerning the dynamics of populations, birth rates, death 
rates, interactions of mixed populations, etc. These things were recognized and pointed 
out by Karl Pearson many years ago. His words, however, went largely unheeded for a 
long time. But in the last fifteen years we have seen more light thrown upon the 
problems of population by the work of such mathematicians as Lotka and Volterra, such 
statisticians as Yule, and such experimentalists as Allee and Park, than in the entire 
previous history of the subject. There can be no doubt of the fact that population 
problems now constitute a major focal point of biological interest and activity. 
 
The author of the present treatise, Dr. G. F. Gause (who stands in the front rank of 
young Russian biologists, and is, it gives me great pleasure and satisfaction to say, a 
protege of my old student and friend, Prof. W. W. Alpatov) makes in this book an 



important contribution to the literature of evolution. He marshals to the attack on the old 
problem of the consequences of the struggle for existence the ideas and the methods of       
the modern school of population students. He brings to the task the unusual and most 
useful equipment of a combination in his own person of thorough training and 
competence in both mathematics and experimental biology. He breaks new ground in 
this book. It will cause discussion, and some will disagree with its methods and 
conclusions, but no biologist who  
      desires to know what the pioneers on the frontiers of knowledge are doing and 
thinking can afford not to read it. I hope and believe that it is but the beginning of a 
series of significant advances to be made by its brilliant young author. 
 
      Raymond Pearl. 
      Department of Biology, 
      School of Hygiene and Public Health,  
      The Johns Hopkins University. 
 
 
AUTHOR'S PREFACE 
 
This book is the outcome of a series of experimental investigations upon which I have 
been engaged for several years past. In these experiments an attempt was made to make 
use of all the advantages of the controlled study of the struggle for existence in the 
laboratory with various organisms low in the evolutionary scale. It became evident that 
the processes of competition between different species of protozoa and yeast cells are 
sometimes subject to perfectly definite quantitative laws. But it has also been found that 
these processes are extremely complicated and that their trends often do not harmonize 
with the predictions of the relatively simple mathematical theory. There is also a 
continued need for attack upon the problems of the struggle for existence along the lines 
of experimental physiology and biology, even though the results obtained cannot yet be 
adequately expressed in mathematical terminology. 
 
I wish to express my sincere thanks to Professor W. W. Alpatov for interest in the 
experimental investigations and for valuable suggestions. To Professor Raymond Pearl I 
am deeply indebted for great assistance in the publication of this book, without which it 
could never have appeared before the American reader. I am also grateful to the Editors 
of The Journal of Experimental Biology and Archiv fur Protistenkunde for permission 
to use material previously published in these periodicals. 
 
      G. F. Gause. 
      Laboratory of Ecology, 
      Zoological Institute, Malaia Bronnaia 12, Kv. 33. 
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Chapter I 
THE PROBLEM 

(1) The struggle for existence is one of those questions which were very much 
discussed at the end of the last century, but scarcely any attempt was made to 
find out what it really represents. As a result our knowledge is limited to 
Darwin's brilliant exposition, and until quite recently there was nothing that 
we could add to his words. Darwin considered the struggle for existence in a 
wide sense, including the competition of organisms for a possession of 
common places in nature, as well as their destruction of one another. He 
showed that animals and plants, remote in the scale of nature, are bound 
together by a web of complex relations in the process of their struggle for 
existence. "Battle within battle must be continually recurring with varying 
success," wrote Darwin, and "probably in no one case could we precisely say 
why one species has been victorious over another in the great battle of life.... 
It is good thus to try in imagination to give to any one species an advantage 
over another. Probably in no single instance should we know what to do. This 
ought to convince us of our ignorance on the mutual relation of all organic 
beings; a conviction as necessary as it is difficult to acquire. All that we can 
do, is to keep steadily in mind that each organic being is striving to increase in 
a geometrical ratio; that each at some period of its life, during some season of 
the year, during each generation or at intervals, has to struggle for life and to 
suffer great destruction" ('59, pp. 56-57). 

(2) But if our knowledge of the struggle for existence has since Darwin's era 
increased to an almost negligible extent, in other domains of biology a great 
progress has taken place in recent years. If we look at genetics, or general 
physiology, we find that a decisive advance has been made there, after the 
investigators had greatly simplified their problems and taken their stand upon 
the firm basis of experimental methods. The latter presents a particularly 
interesting example about which we would like to say a few words. We mean 
the investigations of the famous Russian physiologist I. P. Pavlov, who 
approached the study of the nervous activity of higher animal by thoroughly 
objective physiological methods. As Pavlov ('23) himself says, it is "the 
history of a physiologist's turning from purely physiological questions to the 
domain of phenomena usually termed psychical." The higher nervous activity 
presents such a complicated system, that without special experiments it is 
difficult to obtain an objective idea of its properties. It is known, firstly, that 
there exist constant and unvarying reflexes or responses of the organism to the 
external world, which are considered as the especial "elementary tasks of the 
nervous system." There exist besides other reflexes variable to an extreme 
degree which Pavlov has named "conditional reflexes." With the aid of 
carefully arranged quantitative experiments in which the animal was isolated 
in a special chamber, all the complicating circumstances being removed, 
Pavlov discovered the laws of the formation, preservation and extinction of 



the conditional reflexes, which constitute the basis for an objective conception 
of the higher nervous activity. "l am deeply, irrevocably and ineradicably 
convinced, says Pavlov, that here, on this way lies the final triumph of the 
human mind over its problem--a knowledge of the mechanism and of the laws 
of human nature." 

(3) The history of the physiological sciences for the last fifty years is very 
instructive, and it shows distinctly that in studying the struggle for existence 
we must follow the same lines. The complicated relationships between 
organisms which take place in nature have as their foundation definite 
elementary processes of the struggle for existence. Such an elementary 
process is that of one species devouring another, or when there is a 
competition for a common place between a small number of species in a 
limited microcosm. It is the object of the present book to bring forward the 
evidence, firstly, that in studying the relations between organisms in nature 
some investigators have actually succeeded in observing such elementary 
processes of the struggle for existence and, secondly, to present in detail the 
results of the author's experiments in which the elementary processes have 
been investigated in laboratory conditions. The experiments made it apparent 
that in the simplest ease we can give a clear answer to Darwin's question: why 
has one species been victorious over another in the great battle of life? 

(4) It would be incorrect to fall into an extreme and to consider the 
complicated phenomena of the struggle for life in nature as simply a sum of 
such elementary processes. Leaving aside the existence in nature of climatic 
factors which undergo rhythmical time-changes, the elementary processes of 
the struggle for life take place there amid a totality of most diverse living 
beings. This totality presents a whole, and the separate elementary processes 
taking place in it are still insufficient to explain all its properties. It is also 
probable that changes of the totality as a whole put an impress on those 
processes of the struggle for existence which are going on within it. 

Nobody contests the complexity of the phenomena taking place in the 
conditions of nature, and we will not enter here into a discussion of this fact. 
Let us rather point out all the importance of studying the elementary processes 
of the struggle for life. At present our position is like that of biophysicists in 
the second half of last century. First of all it had been necessary to show that 
separate elementary phenomena of vision, hearing, etc., can be fruitfully 
studied by physical and chemical methods, and thereupon only did the 
question arise of studying the organism as a system constituting a whole. 

(5) Certain authors at the close of last century occupied themselves with a 
purely logical and theoretical discussion of the struggle for existence. They 
proposed different schemata for classifying these phenomena, and we will 
now examine one of them in order to give just a general idea of those 



elementary processes of the struggle for life with which we will have to deal 
further on. To the first large group of these processes belongs the struggle 
going on between groups of organisms differing in structure and mode of life. 
In its turn this struggle can be divided into a direct and an indirect one. The 
struggle for existence is direct when the preservation of life of one species is 
connected with the destruction of another, for instance that of the fox and the 
hare, of the ichneumon fly and its host larva, of the tuberculosis bacillus and 
man. In the chapter devoted to the experimental analysis of the predator-prey 
relations we will turn our attention to this form of the struggle. In plants, as 
Plate ('13) points out, the direct form of the struggle for existence is found 
only in the case of one plant being a parasite of the other. Among plants it is 
the indirect competition, or the struggle for the means of livelihood that 
predominates; this has also a wide extension among animals. It takes place in 
the case when two forms inhabit the same place, need the same food, require 
the same light. We will later give a great deal of attention to the experimental 
study of indirect competition. To the second group of phenomena of the 
struggle for life belongs the intraspecies struggle, between individuals of the 
same species, which in its turn can be divided into a direct and an indirect one. 

(6) In this book we are interested in the struggle for existence among animals, 
and it is just in this domain that exact data are almost entirely lacking. In large 
compilative works one may meet an indication that the struggle for existence 
"owing to the absence of special investigations has become transformed into a 
kind of logical postulate," and in separate articles one can read that "our data 
are in contradiction with the dogma of the struggle for existence." In this 
respect zoologists are somewhat behind botanists, who have accumulated 
already some rather interesting facts concerning this problem. 

What we know at present is so little that it is useless to examine the questions: 
what are the features common to the phenomena of competition in general, 
and what is the essential distinction between the competition of plants and that 
of animals, in connection with the mobility of the latter and the greater 
complexity of relations into which they enter? What interests us more 
immediately is the practical question: what are the methods by means of 
which botanists study the struggle for existence, and what alterations do these 
methods require in the domain of zoology? 

First of all botanists have already recognized the necessity of having recourse 
to experiment in the investigation of competition phenomena, and we can 
quote the following words of Clements (`24, p. 5): "The opinions and 
hypotheses arising from observation are often interesting and suggestive, and 
may even have permanent value, but ecology can be built upon a lasting 
foundation solely by means of experiment.... In fact, the objectivity afforded 
by comprehensive and repeated experiment is the paramount reason for its 
constant and universal use." 



However, the experiments so far made by botanists are devoted to the analysis 
of plant competition from the viewpoint of ontogenic development. The 
competition began when the young plantlets came in contact with one another, 
and all the decisive stages of the competition took place in the course of 
development of the same plants. 

In such circumstances the question as to the causes of the victory of certain 
forms over others presents itself in the following aspect: By the aid of what 
morphological and physiological advantages of the process of individual 
development does one plant suppress another under the given conditions of 
environment? Clements has characterized this phenomenon in the following 
manner: "The beginning of competition is due to reaction when the plants are 
so spaced that the reaction of one affects the response of the other by limiting 
it. The initial advantage thus gained is increased by cumulation, since even a 
slight increase of the amount of energy or raw material is followed by 
corresponding growth and this by a further gain in response and reaction. A 
larger, deeper or more active root system enables one plant to secure a larger 
amount of the chresard, and the immediate reaction is to reduce the amount 
obtainable by the other. The stem and leaves of the former grow in size and 
number, and thus require more water, the roots respond by augmenting the 
absorbing surface to supply the demand, and automatically reduce the water 
content still further and with it the opportunity of a competitor. At the same 
time the correlated growth of stems and leaves is producing a reaction on light 
by absorption, leaving less energy available for the leaves of the competitor 
beneath it, while increasing the amount of food for the further growth of 
absorbing roots, taller stems and overshading leaves" (Clements, '29, p. 318). 

(7) It is not difficult to see that for the study of the elementary processes of the 
struggle for existence in animals we need experiments of another type. We are 
interested in the processes of destruction and replacing of one species by 
another in the course of a great number of generations. We are consequently 
concerned here with the problem of an experimental study of the growth of 
mixed populations, depending on a very great number of manifold factors. In 
other words we have to analyze the properties of the growing groups of 
individuals as well as the interaction of these groups Let us make for this 
purpose an artificial microcosm, i.e., let us fill a test tube with a nutritive 
medium and introduce into it several species of Protozoa consuming the same 
food, or devouring each other. If we then make numerous observations on the 
alteration in the number of individuals of these species during a number of 
generations, and analyze the factors that directly control these alterations, we 
shall be able to form an objective idea as to the course of the elementary 
processes of the struggle for existence. In short, the struggle for existence 
among animals is a problem of the relationships between the components in 
mixed growing groups of individuals, and ought to be studied from the 
viewpoint of the movement of these groups. 



For the study of the elementary processes of the struggle for existence in 
animals we can have recourse to experiments of two types. We can pour some 
nutritive medium into a test tube, introduce into it two species of animals, and 
then neither add any food nor change the medium. In these conditions there 
will be a growth of the number of individuals of the first and second species, 
and a competition will arise between them for the common food. However, at 
a certain moment the food will have been consumed, or toxic waste products 
will have accumulated, and as a result the growth of the population will cease. 
In such an experiment a competition will take place between two species for 
the utilization of a certain limited amount of energy. The relation between the 
species we will have found at the moment when growth has ceased, will 
enable us to establish in what proportion this amount of energy has been 
distributed between the populations of the competing species. It is also 
evident that one can add to the species "prey" growing in conditions of a 
limited amount of energy the species "predator," and trace the process of one 
species being devoured by the other. Or, in the experiments of the second 
type, we need not fix the total amount of energy as a determined quantity, and 
only maintain it at a certain constant! level, continually changing the nutritive 
medium after fixed intervals of time. In such an experiment we approach more 
closely to what takes place in the conditions of nature, where the inflow of 
solar energy is maintained at a fixed level, and we can study the process of 
competition for common food, or that of destruction of one species by 
another, in the course of time intervals of any duration we may choose. 

(8) Experimental researches will enable us to understand the mechanism of 
the elementary process of the struggle for existence, and we can proceed to the 
next step: to express these processes mathematically. As a result we shall 
obtain coefficients of the struggle for existence which can be exactly 
measured. The idea of a mathematical approach to the phenomena of 
competition is not a new one, and as far back as 1874 the botanist and 
philosopher Nageli attempted to give "a mathematical expression to the 
suppression of one plant by another," taking for a starting point the annual 
increase of the number of plants and the duration of their life. But this line of 
investigation did not find any followers, and the experimental researches on 
the competition of plants which have appeared lately are as yet in the stage of 
nothing but a general analysis of the processes of ontogenesis. 

In past years several eminent men were deeply conscious of the need for a 
mathematical theory of the struggle for existence and took definite steps in 
this domain. It often happened that one investigator was ignorant of the work 
of another but came to the same conclusions as his predecessor. Apparently 
every serious thought on the process of competition obliges one to consider it 
as a whole, and this leads inevitably to mathematics. A simple discussion or 
even a quantitative expression of data often do not suffice to obtain a clear 



idea of the relationships between the competing components in the process of 
their growth. 

(9) About thirty years ago mathematical investigations of the struggle for 
existence would have been premature, or in any case subject to great 
difficulties, due to the absence of the needed preliminary data. Of late years, 
owing to the publication of a number of investigations, these difficulties have 
disappeared of themselves. What is it that these indispensable preliminary 
researches represent? 

There is no doubt that a rational study of the struggle for existence among 
animals can be begun only after the questions of the multiplication of 
organisms have undergone a thoroughly exact quantitative analysis. We have 
mentioned that the struggle for existence is a problem of the relationships 
between species in mixed growing groups of individuals. We must therefore 
begin by analyzing the laws of growth of homogeneous groups consisting of 
individuals of one and the same species, and the competition between 
individuals in such homogeneous groups. During the second half of the last 
century and the beginning of the present much has been said about 
multiplication, and "equations of multiplication'' have even been proposed of 
the following type: the coefficient of reproduction--the coefficient of 
destruction = number of adults. (Vermehrungsziffer--Vernichtungsziffer = 
Adultenziffer; see Plate ('13) p. 246.) Usually, however, things did not go any 
further, and no attempts were made to formulate exactly all these correlations. 
Recently the Russian geochemist, Prof. Vernadsky, has thus characterized 
from a very wide viewpoint the phenomena of multiplication of organisms 
('26, p. 37 and fool.): "The phenomena of multiplication attracted but little the 
attention of biologists. But in it, partly unnoticed by the naturalists 
themselves, several empirical generalizations became established to which we 
have become so accustomed that they appear to us almost self-evident. 

"Among these generalizations the following must be recorded. Firstly, the 
multiplication of all organisms can be expressed by geometric progressions. 
This can be evaluated by a uniform formula:  

2bt = Nt  

where t is time, b the exponent of progression and Nt the number of 
individuals existing owing to multiplication at a certain time t. Parameter b is 
characteristic for every kind of living being. In this formula there are included 
no limits, no restrictions either for t, for b, or for Nt. The process is conceived 
as infinite as the progression is infinite.  

"This infinity of the possible multiplication of organisms can be considered as 
the subordination of the increase of living matter in the biosphere to the rule 



of inertia. It can be regarded as empirically established that the process of 
multiplication is retarded in its manifestation only by external forces; it dies 
off with a low temperature, ceases becomes weaker with an insufficiency of 
food or respiration, with a lack of room for the organisms that are being newly 
created. In 1858 Darwin and Wallace expressed this idea in a form that had 
been long clear to naturalists who had gone into these phenomena, for 
instance, Linnaeus, Buffon, Humboldt, Ehrenberg and von Baer: if there are 
no external checks, every organism can, but at a different time, cover the 
entire globe by its multiplication, produce a progeny equal in size to the mass 
of the ocean or of the earth's crust. 

"The rate of multiplication is different for every kind of organisms in close 
connection with their size. Small organisms, that is organisms weighing less, 
at the same time multiply much more rapidly than large organisms (i.e., 
organisms of a great weight). 

"In these three empirical generalizations the phenomena of multiplication are 
expressed without any consideration of time and space or, more precisely, in 
geometrical homogeneous time and space. In reality life is inseparable from 
the biosphere, and we must take into consideration terrestrial time and space. 
Upon the earth organisms live in a limited space equal in dimensions for them 
all. They live in a space of definite structure, in a gaseous environment or a 
liquid environment penetrated by gases. And although to us time appears 
unlimited, the time taken up by any process which takes place in a limited 
space, like the process of multiplication of organisms, cannot be unlimited. It 
also will have a limit, different for every kind of organisms in accordance with 
the character of its multiplication. The inevitable consequence of this situation 
is a limitation of all the parameters which determine the phenomena of 
multiplication of organisms in the biosphere. 

"For every species or race there is a maximal number of individuals which can 
never be surpassed. This maximal number is reached when the given species 
occupies entirely the earth's surface, with a maximal density of its occupation. 
This number which I will hence forth call the 'stationary number of the 
homogeneous living matter' is of great significance for the evaluation of the 
geochemical influence of life. The multiplication of organisms in a given 
volume or on a given surface must proceed more and more slowly, as the 
number of the individuals already created approaches the stationary number." 

These general notions on the multiplication of organisms have lately received 
a rational quantitative expression in the form of the logistic curve discovered 
by Raymond Pearl and Reed in 1920. The logistic law mathematically 
expresses the idea that in the conditions of a limited microcosm the potentially 
possible "geometric increase" of a given group of individuals at every moment 
of time is realized only up to a certain degree, depending on the unutilized 



opportunity for growth at this moment. As the number of individuals 
increases, the unutilized opportunity for the further growth decreases, until 
finally the greatest possible or saturating population in the given conditions is 
reached. The logistic law has been proved true as regards populations of 
different animals experimentally studied in laboratory conditions. We shall 
have an opportunity to consider all these problems more in detail further on. 
Let us now only note that the rational quantitative expression of growth of 
groups consisting of individuals of the same species represents a firm 
foundation for a further fruitful study of competition between species in 
mixed populations. 

(10) Apart from a great progress as regards the mathematical expression of the 
multiplication of organisms, an important advance bas taken place in the 
theory of competition itself. The first step in this direction was made in 1911 
by Ronald Ross, who at this time interested in the propagation of malaria. 
Considering the process of propagation Ross came to the conclusion that he 
was dealing with a peculiar case of a struggle for existence between the 
malaria plasmodium and man with a participation of the mosquito. Ross 
formulated mathematically an equation of the struggle for existence for this 
case, which closely approached in its conception those equations of the 
struggle for existence which the Italian mathematician Volterra proposed in 
1926 without knowing the investigations of Ross. 

Whilst Ross was working on the propagation of malaria the American 
mathematician Lotka ('10, '20a) examined theoretically the course of certain 
chemical reactions, and had to deal here with equations of the same type. 
Later on Lotka became interested in the problem of the struggle for existence, 
and in 1920 he formulated an equation for the interaction between hosts and 
parasites ('20b), and gave a great deal of interesting material in his valuable 
book, Elements of Physical Biology ('25). Without being acquainted with 
these researches the Italian mathematician Vito Volterra proposed in 1926 
somewhat similar equations of the struggle for existence. At the same time he 
advanced the entire problem considerably} investigating for the first time 
many important questions of the theory of competition from the theoretical 
point of view. Thus three distinguished investigators came to the very same 
theoretical equations almost at the same time but by entirely different ways. It 
is also interesting that the struggle for existence only began to be 
experimentally studied after the ground had been prepared by purely 
theoretical researches. The same has already happened many times in the 
fields both of physics and of physical chemistry: let us recollect the 
mechanical equivalent of heat or Gibbs' investigations. 

(11) The study of the struggle for existence will undoubtedly rapidly progress 
in the future, but it will have to overcome a certain gap between the 
investigations of contemporary biologists and mathematicians. There is no 



doubt that the struggle for existence is a biological problem, and that it ought 
to be solved l)y experimentation and not at the desk of a mathematician. But 
in order to penetrate deeper into the nature of these phenomena we must 
combine the experimental method with the mathematical theory, a possibility 
which has been created by the brilliant researches of Lotka and Volterra. This 
combination of the experimental method with the quantitative theory is in 
general one of the most powerful tools in the hands of contemporary science. 
The gap between the biologists and the mathematicians represents n 
significant obstacle to the application of the combined methods of research. 
Mathematical investigations independent of experiments are of but small 
importance due to the complexity of biological systems, narrowing the 
possibilities of theoretical work here as compared with what can be admitted 
in physics and chemistry. We are in complete accord with the following words 
of Allee ('34): "Mathematical treatment of population problems is necessary 
and helpful, particularly in that it permits the logical arrangement of facts and 
abbreviates their expression by the use of a sort of universal shorthand, but the 
arrangement and statement may lead to error, since for the sake of brevity and 
to avoid cumbersome expressions, variables are omitted and assumptions 
made in the mathematical analyses which are not justified by the biological 
data. Certainly there is room for the mathematical attack on population 
problems, but there is also continued need for attack along the lines of 
experimental physiology, even though the results obtained cannot yet be 
adequately expressed in mathematical terminology." 

 

 



Chapter II 

THE STRUGGLE FOR EXISTENCE IN NATURAL CONDITIONS  

(1) Before beginning any experimental investigation of the elementary 
processes of the struggle for existence we must examine what is the state of 
our knowledge of the phenomena of competition in nature. The regularities 
which it has been possible to ascertain there, and the ideas which have been 
expressed in their discussion, will help us to formulate correctly certain 
fundamental requirements for further experimental work. 

In thorough field observations the fact which strikes the investigator most of 
all is the extreme complexity of the communities of organisms, and at the 
same time their possession of a definite structure. On the one hand they 
undergo changes under the influence of external environment, and on the 
other the slightest changes of some components produce an alteration of 
others and lead to a whole chain of consequences. It is difficult here to arrive 
at a sufficiently clear understanding of the processes of the struggle for 
existence. Elton writes for instance: "We do not get any clear conception of 
the exact way in which one species replaces another. Does it drive the other 
one out by competition? and if so, what precisely do we mean by competition? 
Or do changing conditions destroy or drive out the first arrival, making 
thereby an empty niche for another animal which quietly replaces it without 
ever becoming 'red in tooth and claw' at all? Succession brings the ecologist 
face to face with the whole problem of competition among animals, a problem 
which does not puzzle most people because they seldom if ever think out its 
implications at all carefully. At the present time it is well known that the 
American grey squirrel is replacing the native red squirrel in various parts of 
England, but it is entirely unknown why this is occurring, and no good 
explanation seems to exist. In ecological succession among animals there are 
thousands of similar cases cropping up, practically all of which are as little 
accounted for as that of the squirrels" ('27, p. 27-28). All this suggests that an 
analysis must be made of comparatively simple desert or Arctic communities 
where the number of components is small. Such a tendency to examine certain 
elementary phenomena is clearly seen in the following words of a Russian 
zoologist, N. Severtzov, written as far back as 1855: "It seems to me that the 
study of animal groupings in small areas, the study of these elementary faunas 
is the firmest point of support for drawing conclusions about the general laws 
regulating the distribution of animals on the globe." 

However, besides this first possibility of studying competition phenomena 
among a small number of components, an active intervention into natural 
conditions by means of biotic experiments may also be very important. 
Among such experiments the most frequent ones consist in the transportation 



of animals into countries new to them, which commonly leads to a great 
number of highly interesting processes of the struggle for existence 
(Thomson, '22). The second type of biotic experiments is an "exclusion" of the 
animal from a certain community. Further on we give some examples of the 
struggle for existence observed by such methods, but so far none of them have 
been sufficiently studied. 

TABLE I 
Number of fir trunks on a unit of surface under different conditions 

From Sukatschev ('28) 

 
Type of life 
conditions 

20 years age 60 years age 

  Predominant 
trunks 

Oppressed 
trunks 

Predominant 
trunks 

Oppressed 
trunks 

I 5600  1300 640 

II 5850  1600 680 

III 6620  1950 650 

IV 7480  2280 720 

V 8400  2780 760 
 
 
 

(2) It fell to the lot of botanists to have to deal with the simplest conditions of 
competition, and they arrived at a very instructive conception of the intensity 
of the struggle for existence. Foresters were the first to be confronted with the 
question of competition when they began to estimate the diminution in the 
number of tree trunks accompanying forest growth in different conditions of 
environment. They characterize the struggle for existence by the percentage 
decrease in the number of individuals on a unit of surface in a certain unit of 
time. At first sight one might think that the better the conditions of existence  
the less active is the struggle for life, and the greater the number of trunks that 
can survive with age on a unit of surface. Let us, however, look at the data of 
the foresters. For an example we will give in Table I the number of the fir 
trunks in the government of Leningrad (Northern Russia) corresponding to 
five different types of life conditions (Type I represents the best soil and 
ground conditions; V, the worst ones).  

These data show, contrary to our expectations, that the better are the soil and 
ground conditions, the more active is the struggle for life, or in other words 
the smaller the number of trunks remaining on as unit of surface and, 



consequently, the greater the percentage of those which perish. If we think out 
this phenomenon, it becomes quite understandable: the more favorable the 
environment is for the plants' existence, the more luxuriant will be the 
development of each plant, the sooner will the tops of the trees begin to close 
above, and the earlier the oppressed individuals become isolated. Also, in 
better conditions of existence, every individual in the adult state will be more 
developed and occupy a greater space, but the individuals will be fewer in 
number. Investigations show that this is a general rule for all the forest species 
(Sukatschev, '28, p. 12). Similar data were obtained by Sukatschev ('28) in 
experiments with the chamomile, Matricaria inodora, on fertilized and non-
fertilized soil. In counting up the individuals remaining at the end of summer 
(August 17), the following decrease of the original number of individuals was 
ascertained (see Table II and Fig. 1). 
 

 
 

Fig. 1 Intensity of the struggle for existence in the chamomile  
Matricaria inodora on fertilized and non-fertilized soil (dense culture). 

TABLE II 

Decrease of the number of individuals in the chamomile (Matricaria inodora) 
expressed in percentage of the initial number 

From Sukatschev ('28) 

  PERCENTAGE 

Dense culture (3 x 3 cm): 

   Non-fertilized soil ...................................................
   Fertilized soil ..........................................................  

Culture of middle density (10 x 10 cm): 

   Non-fertilized soil................................................... 
   Fertilized soil..........................................................  

  

5.8 
25.1 

  

0.0 
3.1 



Here likewise in better conditions of existence competition proceeds with 
greater intensity, and the per cent of individuals which perish is greater.  

The results obtained by botanists are certainly characteristic for the 
ontogenetic development of plants but at the same time they give us an 
approach to the quantitative appreciation of the intensity of the struggle for 
existence, the whole significance of which was already clearly understood by 
Darwin. In the next chapter we shall consider the struggle for life in animals, 
and there, using entirely different methods, we shall endeavor to formulate 
quantitatively the intensity of this struggle.  

(3) In field observations the question often arises as to the struggle for 
existence in mixed populations, about which Darwin wrote: "As the species of 
the same genus usually have, though by no means invariably, much similarity 
in habits and constitution, and always in structure, the struggle will generally 
be more severe between them, if they come into competition with each other, 
than between the species of distinct genera." Lately, botanists have tried to 
approach this problem experimentally. It became evident that, actually, in a 
number of cases competition is keenest when the individuals are most similar. 
The more unlike plants are, the greater difference in their needs, and hence 
some adjust themselves to the reactions of others with little or no 
disadvantage. This similarity must rest upon vegetation or habitat form, and 
not merely upon systematic position (Clements, '29). Researches on 
competition in mixed populations consisting of different kinds of cultivated  
plants were undertaken by many investigators (e.g., Montgomery, '12). 
Particularly interesting data concerning wild-growing plants have been 
recently published by Sukatschev ('27) in his "Experimental studies on the 
struggle for existence between biotypes of the same species." First of all he 
studied the competition between local biotypes of the plant, Taraxacum 
officinale Web., from the environs of Leningrad. These biotypes were 
cultivated in similar conditions with a fixed distance between the individuals, 
and the experiments led Sukatschev to the following conclusions: (a) One 
must rigorously distinguish the conditions of the struggle for existence in a 
pure population, formed by a single biotype, and in a mixed population, 
consisting of various biotypes. (b) It is to be noted that a biotype which shows 
itself to be the most resistant in an intrabiotic struggle for existence, may turn 
out to be the weakest one in an interbiotic struggle between different biotypes 
of the same species. (c) The increase in mutual influence of plants upon each 
other with an increase in density of the plant cultures, may completely reverse 
the relative stability of separate biotypes in the process of the struggle for 
existence. The biotypes yielding the greatest percentage of survivors under a 
small density of cultivation may occupy the last place in this respect in 
conditions of a dense culture. This can be illustrated by Table III. 
 
 



TABLE III 
Percentage of eliminated individuals in three biotypes, A, B and C of 

Taraxacum officinale 
From Sukatschev ('27) 

  RACE SPARCE 
CULTURES 

DENSE 
CULTURES 

Pure cultures.....................  

A 

B 

C 

22.9 

31.1 

10.3 

73.2 

51.1 

75.9 

Mixed cultures...................  

A 

B 

C 

16.5 

22.1 

5.5 

77.4 

80.4 

42.0 

 
 

If we arrange the biotypes mentioned in Table III according to decreasing 
stability, we shall find that in the conditions of a not dense, pure culture: C > 
A > B, i.e., the biotype C gives the smallest percentage of non-survivals and is 
the most resistant, whilst the biotype B is the weakest of all. In dense pure 
cultures the relations are entirely different: B > A > C, i.e., the biotype B is 
the most stable one. Lastly, for dense, but mixed cultures, we have: C > A > 
B. Almost similar data have been obtained by Montgomery ('12) in studying 
the competition between two races of wheat. 

In another series of experiments Sukatschev ('27) studied the struggle for 
existence between biotypes of various geographical origin (from various parts 
of U. S. S. R.), and inferred the following: (a) Judging by the percentage of 
non-survivals, one can say that in pure, as well as in mixed not-dense cultures, 
the dying-off is chiefly due to the influence of physico-geographical factors. 
Therefore, the biotypes originating from geographical regions strongly 
differing from a given region in their climate, turn out to be less resistant as 
compared with the local biotypes. But these relations can change under the 
influence of aggregation. (b) In dense mixed cultures, if we are to judge by the 
percentage of perished individuals, it is not the local biotypes that appear the 
most resistant in the struggle for existence, but those introduced from other 
regions. (c) The struggle for existence in mixed cultures of various biotypes is 
not so keen as that in pure cultures of separate biotypes with the same density. 



The analysis of the struggle for existence in mixed populations of plants is 
now only at its very beginning. The exact data are few in number, but there 
exist numerous observations on the stratified distribution of plants (see 
Alechin, '26), considering these strata as a result of complex processes of 
competition and adaptation of the plants to one another in mixed cultures. 

(4) Plants are also very favorable for the study of the influence of environment 
upon the struggle for existence in mixed populations. DeCandolle was already 
interested in this question in 1820, but as regards exact experimental 
researches very little has been done until quite recently when the works of 
Tansley ('17) and others appeared. These investigations show that in pure 
cultures two species can grow for a certain time on various soils, but each of 
the species has an advantage over the others in particular soil conditions. 
Therefore in mixedpopulation in some soils the first species displaces the 
second, but in others the second species displaces the first.1The actual 
relations existing here are, however, somewhat complicated (see Braun-
Blanquet,'28). 
_________________________________ 
1Among animals such observations have been recently made by Timofeeff-Ressovsky ('33), who studied 
the competition between the larvae of Drosophila melanogaster and Drosophila funebris under different 
temperatures. We can mention also certain interesting data of Beauchamp and Ullyott ('32): "When 
Planaria montenegrina and Pl. gonocephala occur in competition with each other, temperature is the 
factor which governs the relative success and efficiency of the two species. Pl. montenegrina is the more 
successful at temperatures below 13-14°C. Above these temperatures Pl. gonocephala is the more 
efficient form." 
_________________________________ 

The problem of the influence of environment on competition presents 
considerable interest, but as yet what we know is very meager. In the majority 
of cases it is observations of a qualitative character, of which we can give an 
example here: "The root-systems of the vegetation in the steppes of Southern 
Russia form, according to Patchossky, three strata. The uppermost one 
consists of short roots belonging to annual plants which vegetate for a short 
time. The second, deeper-lying stratum belongs to the essential plants of the 
steppe vegetable covering, the Gramineae. The third, deepest stratum consists 
of the vertical stem-like roots of perennial dicotyledons (among them the 
steppe Eaphorbia). Usually, the second gramineous stratum dominates. When, 
however, an immoderate pasturing takes place in a given locality, the 
gramineous covering begins to suffer and does not produce a vigorous root-
system. Atmospheric precipitation can now penetrate to those soil horizons 
where roots of the dicotyledons are situated, and the latter begin to dominate. 
As a result appears an unbroken vegetable covering consisting of Euphorbia. 
Analogous results take place in case of increase in yearly atmospheric 
precipitation. In this case, although the water is energetically absorbed by the 
second gramineous root stratum, the rainfall is so considerable that a great 
part of the water penetrates deeper, contributing to the development of 
dicotyledonous plants. The large dicotyledons act depressingly upon the 



Gramineae, and |they change places in respect to their domination" (Alechin, 
'26).  

(5) The part which the quantitative relations between species at the beginning 
of their struggle play in the outcome of competition presents an interesting 
problem. Botanists do not possess exact quantitative data bearing on this 
question, and one meets only with considerations of the following kind: When 
new soils are colonized, if the species concerned do not sharply differ in their 
capacity for spreading, it mostly depends on chance which species colonizes 
the given area first. But this chance determines the further colonizing of the 
given locality. Even when the species that has first established itself is 
somewhat weaker than another species in the same habitat, it can for a 
comparatively long time resist its stronger competitor simply because it was 
the first to occupy this place. Only in case of a considerable weakness of the 
first comer will its domination be merely a temporary one, and the effect of 
the first accidental appearance will be rapidly eliminated (E. Warming ('95), 
Du-Rietz ('30)). 

(6) Let us recapitulate briefly our discussion up to this point. Botanists have 
endeavored to investigate the struggle for existence by experimentation and 
under simplified conditions, but they are only beginning to analyze these 
phenomena. Their experiments are commonly limited to the process of 
ontogenetic development, and in only a few cases, chiefly concerned with 
competition in cereals, has displacement of some forms by others been traced 
through a series of generations (Montgomery ('12) and others). As concerns 
animals we have simply no exact data, and can only mention a few general 
principles which have been developed by zoologists in connection with the 
phenomena of competition. 

One of these ideas is that of the "niche" (see Elton, '27, p. 63). A niche 
indicates what place the given species occupies in a community, i.e., what are 
its habits, food and mode of life. It is admitted that as a result of competition 
two similar species scarcely ever occupy similar niches, but displace each 
other in such a manner that each takes possession of certain peculiar kinds of 
food and modes of life in which it has an advantage over its competitor. 
Curious examples of the existence of different niches in nearly related species 
have recently been obtained by A. N. Formosov ('34). He investigated the 
ecology of nearly related species of terns, living together in a definite region, 
and it appeared that their interests do not clash at all, as each species hunts in 
perfectly determined conditions differing from those of another. This once 
more confirms the thought mentioned earlier, that the intensity of competition 
is determined not by the systematic likeness, but by the similarity of the 
demands of the competitors upon the environment. Further on we shall 
endeavor to express all these relations in a quantitative form. 



(7) The above mentioned observations of A. N. Formosov on different niches 
in nearly related species of terns can be given here with more detail, as the 
author has kindly put at our disposal the following materials from his 
unpublished manuscript: According to the observations in 1923, the island 
Jorilgatch (Black Sea) is inhabited by a nesting colony of terns, consisting of 
many hundreds of individuals. The nests of the terns are situated close to one 
another, and the colony presents a whole system. The entire mass of 
individuals in the colony belongs to four species (sandwich-tern, Sterna 
cantiaca; common-tern S. faviatilis; blackbeak-tern, S. anglica; and little-tern, 
S. minuta), and together they chase away predators (hen-harriers, etc.) from 
the colony. However, as regards the procuring of food, there is a sharp 
difference between them, for every species pursues a definite kind of animal 
in perfectly definite conditions. Thus the sandwich-tern flies out into the open 
sea to hunt certain species of fish. The blackbeak-tern feeds exclusively on 
land, and it can be met in the steppe at a great distance from the sea-shore, 
where it destroys locusts and lizards. The common-tern and the little-tern 
catch fish not far from the shore, sighting them while flying and then falling 
upon the water and plunging to a small depth. The light little-tern seizes the 
fish in shallow swampy places, whereas the common-tern hunts somewhat 
further from the shore. In this manner these four similar species of tern living 
side by side upon a single small island differ sharply in all their modes of 
feeding and procuring food. 

(8) Another ecological notion is also important in connection with our 
experiments. We have in view the degree of isolation of the microcosm. The 
point is that our experimental researches have been mainly made in isolated 
microcosms, i.e., in test tubes filled with nutritive medium and stopped with 
cotton-wool. It must be remembered that the degree of isolation of different 
communities in natural conditions is very different. Such a system as a lake is 
almost isolated, but at times some of the animals inhabiting it go on land. An 
oasis in the desert would also seem to be isolated, but for instance some of the 
species of birds fly away for the winter, and consequently there is no real 
isolation. The habitats not so sharply separated from the surrounding life-area 
are, therefore, still less isolated. All this emphasizes the idea already 
expressed, that the regularities observed in isolated microcosms hold true only 
under certain fixed conditions, and are not sufficient to explain all the 
complicated phenomena taking place in nature. We shall have an opportunity 
to appreciate the role of this factor when experimentally studying the 
predator-prey relations. 

Let us note another important circumstance connected with competition. This 
phenomenon can be particularly pronounced during a periodical food shortage 
connected with certain seasons, etc., whilst at another time with an abundance 
of food it will scarcely take place. This fact has frequently been pointed out in 
various discussions of the struggle for existence. 



(9) It remains but to give some examples of the struggle for existence among 
animals in order to show with what problems the zoologists have to deal, and 
how difficult it is to apply here exact quantitative methods. An instructive 
example of competition among fishes has been recently described by 
Kashkarov ('28). It concerns the supplanting of Schizothorax intermedius by 
wild carp, Cyprinus albus L., in lakes of Middle Asia. Wild carp were 
introduced into the lake Bijly Kul in 1909. Before that only Schizothorax 
intermedius with white-fish (Leuciscus sp.) inhabited this lake. Formerly 
Schizothorax intermedius were very numerous, but after the introduction of 
wild carp their quantity diminished considerably. As an indicator of the 
relatively small number of Schizothorax intermedius the following data on the 
catch may serve: on May 15, 1926, 19 carp and 1 Schizothorax were caught in 
two nets; on May 16, 1926, in the same place the catch was 24 carp and 2 
Schizothorax. Schizothorax keeps chiefly to the south-western part of the lake, 
where there are stones making the casting of nets difficult. Now Schizothorax 
is disappearing even there, as wild carp devour its spawn. The quantity of 
whitefish also decreases because carp devour its young. The particular interest 
of this example lies in the fact that a new species not found in a given 
microcosm before (Cyprinus albus L.) was introduced, and in this way a direct 
proof of one species displacing another was obtained. 

(10) Processes of this kind can often be observed when fish are introduced 
into waters to which they are new. Professor G. C. Embody writes in a letter 
recently received: "Concerning the competition between different species of 
fishes we have two cases in particular in the eastern United States. The 
European carp was introduced in the '70's, and has now in many streams and 
lakes multiplied to such an extent that several native species are found in 
greatly diminished number. This has probably been due to the high 
reproductive capacity of the carp, food competition, destruction of weed beds 
by carp, and the fact that very few of them are captured. 

Carp are not used as extensively for food in America as in Europe and in our 
smaller lakes are not generally fished for commercially. The other case is the 
introduction of the perch (Perca flavescens) into certain lakes in the 
Adirondacks and in Maine, which were naturally populated with the trout 
(Salvelinus fontinalis). The competition for food is believed to be one of the 
causes for the decrease in the number of the trout." 

"These cases are both matters of general observation. I do not know of any 
papers describing them nor in fact, dealing with this subject in American 
waters." 

(11) Another example of competition is the replacing of one species of cray-
fish by another in certain waters of Middle Russia. Some observations on this 
were made by Kessler ('75) and recently by Birstein and Vinogradov ('34). 



Two species of cray-fish inhabit the waters of European Russia: the broad-
legged (Potamobius astacus L.) and long-legged (Potamobius leptodactylus 
Esch.). The broad-legged cray-fish is distributed in the western part, and the 
long-legged in the south-eastern one, but the areas of their distribution largely 
overlap one another. It is observed that the long-legged cray-fish displaces the 
broad-legged one and spreads gradually more and more to the west. It has 
been possible to establish this replacement with particular distinctness in 
White Russia (in the western part of U. S. S. R.). The cray-fish are found there 
in lakes isolated from each other, and most of the lakes are inhabited only by 
the broad-legged cray-fish. In some cases long-legged cray-fish were put into 
such lakes from other waters. As a result the broad-legged cray-fish began to 
decrease, and finally disappeared completely leaving the lake populated 
exclusively by the long-legged species. The following examples can be given. 
(I) Black lake (White Russia) was populated only by the broad-legged cray-
fish. In 1906, 500 specimens of long-legged cray-fish were introduced, and 
now (1930) only this species remains. (II) Forest lake (same region). Up to 
1920 there were no long-legged cray-fish there. Later on they were 
introduced, and at present (1930) there is a considerable number of this 
species. The causes why one species of cray-fish is replaced by another have 
scarcely been studied. 

(12) Curious are the observations reported by Goldman ('30) on the 
competition among predators belonging to different species. Thus, according 
to a resident of Telegraph Creek near the Stikine River, Canada, no coyotes 
were known in that section prior to 1899. About that time, however, they 
came in, apparently following the old goldrush trail, probably attracted by the 
hundreds of dead horses along it. The invasion of Alaska seems destined to 
continue until coyotes have extended their range over practically all of the 
territory. It has been found in Alaska that the coyotes kill many foxes. Since 
the coyotes have increased the foxes have decreased alarmingly. In some 
sections practically none are believed to be left. In many cases a family or 
entire colony of foxes are run out of their dens or are both run out and killed 
by coyotes which then use the dens themselves. Wolves are well known to 
have committed similar depredations, but their killing is not so extensive as is 
that of the coyotes. Serious as are the depredations of wolves throughout most 
of Alaska, the damage done to game and fur bearing animals by coyotes is not 
only far greater but is rapidly increasing in extent. How far the coyotes will 
hold back the normal development in the periodical increase of the snowshoe 
rabbits and the ptarmigan which are important items in the food supply of fur 
bearers, especially the lynx and fox, it is impossible even to approximate. 

(13) The examples just mentioned show that the introduction of aquatic 
animals into waters to which they are new, or the penetration of land animals 
into new regions, often lead to very interesting processes of competition. We 
would now like to say a few words about the direct struggle for existence, in 



which one species devours another. In this case it is very important to 
ascertain the exact numerical relation between the population of the devoured 
species and that of the devouring one, and this can often be attained by 
changing their relative quantities. One of the outstanding facts is the increase 
of the deer accompanying the destruction of wolves, foxes, etc., by early 
settlers in Illinois which, according to Wood, has been recently reported by 
Shelford ('31). Wood depicts a continuous decrease in wolves and wildcats 
from the beginning of settlement to their practical extinction. When the wolf 
population was reduced to about one half, the deer increased rapidly for a little 
less than 10 years, reaching a large maximum of about three times the original 
number. Unfortunately we have no exact data on the change of the numerical 
relations between the wolves and the deer, but such processes are in any case 
of great interest. 

The change of the numerical relation between the predator and the prey 
sometimes takes place as a consequence of a mass appearance of the prey in 
years especially favorable for its multiplication. This frequently happens with 
wild mice, and it gives us the possibility of tracing the process of their being 
devoured by the predator. In this connection we may mention the following 
observations recently made by Kalabuchov and Raewski ('33) in the North 
Caucasus: "The picture of the destruction of mice by different predators is a 
curious one. At the beginning of the destruction about the same number of 
rodents is devoured daily. But as the density of rodents diminishes it becomes 
more and more difficult to catch them, and the number of mice devoured 
gradually decreases. Finally a time comes when the relation between the 
density of the rodents, the presence of cover or refuge (burrows, vegetation, 
etc.) and the biological peculiarities of the predators becomes such that the 
latter can devour the rodents only in rare cases. In this way the number of the 
rodents remains about constant. 

 



 

Fig. 2. The destruction of mice by different predators in heaps of chaff 

 

"The data on the change in the number of mice near the village of Kambulat 
are a good illustration of this regularity. Having established that the 
destruction of mice in this locality was due to owls, polecats and other 
predators that devoured them, we obtained the following picture of the change 
in the number of the rodents in heaps of chaff (Fig. 2). This figure shows that 
with a density of 2.5-0.8 mice per m3 of chaff we have conditions in which the 
destruction of the rodents by the predators became so rare that their number 
scarcely varied." 

Certain interesting observations have been also recently made by ecological 
entomologists (Payne, '33, '34) on the host-parasite balance. It is possible to 
trace the process of the destruction of population of the moth Ephestia by the 
hymenopterous parasite Microbracon in the laboratory, and it appears from 
the observations that a great many factors are important for the process of 
their interaction, and particularly various relations between "susceptible" stage 
of host and "effective" stage of parasite. The beginning of the theoretical 
investigation of this case has been given by the interesting papers of Bailey 
('31, '33) and Nikolson ('33). For such investigations, however, the 
populations of unicellular organisms are somewhat more convenient.  

(14) The few examples given above show sufficiently that the processes of the 
struggle for existence among animals are of extreme importance from a 
practical point of view. They are sharply outlined in isolated microcosms and 
therefore there is nothing surprising if they have attracted the particular 
attention of the workers in the domain of fishery. Lately the problem of the 



relations between predatory and non-predatory fish has been discussed by 
Italian authors (D'Ancona ('26, '27), Marchi ('28, '29), Brunelli ('29)). 
D'Ancona collected the data of a statistical inspection of the fish markets in 
Triest, Venice and Fiume for several years. He claims that the diminished 
intensity of fishing during the war-period (1915-1920) has caused a 
comparative increase of the number of predatory fish. He therefore reasons 
that fishing of normal intensity causes a relative diminution of the number of 
predatory fish and a comparative increase of the non-predatory ones. But his 
data are not convincing and indeed Bodenheimer ('32) has recently shown that 
such variations in the fish population existed before and after the war. They 
are apparently not connected with the intensity of fishing but probably are the 
results of certain changes of the environment. However it may be, the material 
collected by D'Ancona stimulated the highly interesting mathematical 
researches on the struggle for existence of Vito Volterra. Although his 
mathematical theories are not confirmed in any way by D'Ancona's statistical 
data, the importance of Volterra's methods as a new and powerful tool in the 
analysis of biological populations admits of no doubt. 

(15) In concluding this descriptive chapter of our book let us note the 
following picture of the struggle for existence in nature. It is only in the 
domain of botany that these processes are coming to be investigated from a 
certain general viewpoint as (1) intensity of competition, (2) competition in 
mixed populations, (3 ) the influence of environment upon competition in 
mixed cultures, and (4) the role of the quantitative relations between species at 
the beginning of their struggle. Among animals the processes of the struggle 
for existence are much more complex, and as yet one cannot speak of any 
general principles. In this connection an investigation of the elementary 
processes of the struggle for life in strictly controlled laboratory conditions is 
here particularly desirable, and the material just presented will be of great help 
to us in the choice and arrangement of the corresponding experiments. 

 



Chapter III 

THE STRUGGLE FOR EXISTENCE FROM THE POINT OF VIEW OF 
THE MATHEMATICIANS 

 

(1) In this chapter we shall make the acquaintance of the astonishing theories 
of the struggle for existence developed by mathematicians at a time when 
biologists were still far from any investigation of these phenomena and had 
but just begun to make observations in the field. 

The first attempt at a quantitative study of the struggle for existence was made 
by Sir Ronald Ross ('08, '11). He undertook a theoretical investigation of the 
propagation of malaria, and came to conclusions which are of great interest 
for quantitative epidemiology and at the same time constitute an important 
advance in the understanding of the struggle for existence in general. Let us 
examine the fundamental idea of Ross. Our object will be to give an analysis 
of the propagation of malaria in a certain locality under somewhat simplified 
conditions. We assume that both emigration and immigration are negligible, 
and that in the time interval we are studying there is no increase of population 
or in other words the birth rate is compensated by the death rate. In such a 
locality a healthy person can be infected with malaria, according to Ross, if all 
the following conditions are realized: (1) That a person whose blood contains 
a sufficient number of gametocytes (sexual forms) is living in or near the 
locality. (2) That an Anopheline capable of carrying the parasites sucks 
enough of that person's blood. (3) That this Anopheline lives for a week or 
more afterwards under suitable conditions long enough to allow the parasites 
to mature within it, and (4) that it next succeeds in biting another person who 
is not immune to the disease or is not protected by quinine. The propagation 
of malaria in such a locality is determined in its general features by two 
continuous and 5 simultaneous processes: on the one hand, the number of new 
infections among people depends on the number and infectivity of the 
mosquitoes, and at the same time the infectivity of the mosquitoes is 
connected with the number of people in the given locality and the frequency 
of the sickness among them. Ross has expressed in mathematical terms this 
uninterrupted and simultaneous dependence of the infection of the first 
component on the second, and that of the second on the first, with the aid of 
what is called in mathematics simultaneous differential equations. These 
equations are very simple and we shall examine them at once. In a quite 
general form they can be represented as follows: 

 
 
 
 



 

 
 
(2) Translating these relations into mathematical language we shall obtain the 
simultaneous differential equations of Ross. Let us introduce the following notation 
(that of Lotka (51)): 
 

 

p = total number of human individuals in a given locality.
p1 = total number of mosquitoes in a given locality. 

  z = total number of people infected with malaria.
zl = total number of mosquitoes containing malaria parasites. 

 

fz = total number of infective malarians (number of persons with gametocytes in the 
blood; a certain fraction of the total number of malarians).
f1z1 = total number of infective mosquitoes (with matured parasites; a certain 
fraction of the total number of mosquitoes containing parasites).  

  r = recovery rate, i.e., fraction of infected population that reverts to noninfected 
(healthy) state per unit of time. 
M1 = mosquito mortality, i.e., death rate per head per unit of time. 
t = time. 

 

If a single mosquito bites a human being on an average b' times per unit of 
time, then the f'z' infective mosquitoes will place b'f'z' infective bites on 
human beings per unit of time. If the number of people not infected with 

malaria is (p�—z), than taken in a relative form as it will show the 
relative number of healthy people in the total number of individuals of a given 
locality. Therefore, out of a total number of infective bites, equal per unit of 

time to b'f'z', a definite fraction equal to falls to the lot of healthy 
people, and the number of infective bites of healthy people per unit of time 
will be equal to: 



.................................................(2) 

If every infective bite upon a healthy person leads to sickness, then the 
expression (2) will show directly the number of new infections per unit of 
time, which we can put in the second place of the first line of the equations 
(1). By analogous reasoning it follows that if every person is bitten on an 
average b times per unit of time, the total number of infective people fz will 

be bitten bfz times, and a fraction of these bites will be made by 
healthy mosquitoes which will thus become infected. Consequently the 
number of new infections among mosquitoes per unit of time will be: 

............................................(3) 

Now, evidently, the total number of mosquito bites on human beings per unit 
of time will constitute a certain fixed value, which can be written either as 
blpl, i.e., the product of the number of mosquitoes by the number of bites 
made by each mosquito per unit of time, or as bp, i.e., the number of persons 
multiplied by the number of times each human being has been bitten. We have 
therefore bp = blp', and finally 

............................................(4) 

Inserting the expression (4) into the formula (3) we obtain: 

.................................(5) 

The expression (5) fills the second place in the lower line in Ross's differential 
equations of malaria (1). It gives the number of new infections of mosquitoes 
per unit of time. We can now put down the rate of increase of infected 

individuals among the human population as and the rate of increase in the 

number of infected mosquitoes as . The number of recoveries per unit of 
time among human individuals will be rz, as z represents the number of 



people infected and r the rate of recovery, i.e., the fraction of the infected 
population recovering per unit of time. The number of infected mosquitoes 
dying per unit of time can be put down as Ml zl, since zl denotes the number of 
mosquitoes infected, and M1 the death rate in mosquitoes per head per unit of 
time. We can now express the equation of Ross in mathematical symbols 
instead of words:  

.....................................(6) 

These simultaneous differential equations of the struggle for existence express 
in a very simple and clear form the continuous dependence of the infection of 
people on the infectivity of the mosquitoes and vice versa. The increase in the 
number of sick persons is connected with the number of bites made by 
infective mosquitoes on healthy persons per unit of time, and at the same 
moment the increase in the umber of infected mosquitoes depends upon the 
bites made by healthy mosquitoes on sick people. The equations (6) enable us 
to investigate the change with time (t) of the number of person infected with 
malaria (z). 

The equations of Ross were submitted to a detailed analysis by Lotka ('23, 
'25) who in his interesting book Elements of Physical Biology gave examples 
of some other analogous equations. As Lotka remarks, a close agreement of 
the Ross equations with reality is not to be expected, as this equation deals 
with a rather idealized case: that of a constant population both of human 
beings and mosquitoes. "There is room here for further analysis along more 
realistic lines. It must be admitted that this may lead to considerable 
mathematical difficulties" (Lotka ('25, p. 83)). 

(3) The equations of Ross point to the important fact that a mathematical 
formulation of the struggle for existence is a natural consequence of simple 
reasoning about this process, and that it is organically connected with it. The 
conditions here are more favorable than in other fields of experimental 
biology. In fact if we are engaged in a study of the influence of temperature or 
toxic substances on the life processes, or if we are carrying on investigations 
on the ionic theory of excitation, the quantitative method enables us to 
establish in most cases only purely empirical relations and the elaboration of a 
rational quantitative theory presents considerable difficulties owing to the 
great complexity of the material. Often we cannot isolate certain factors as we 



should like, and we are constantly compelled to take into account the 
existence of complicated and insufficiently known systems. This produces the 
well known difficulties in applying mathematics to the problems of general 
physiology if we wish to go further than to establish purely empirical 
relations. As far as the rational mathematical theory of the struggle for 
existence is concerned, the situation is more favorable, because we can 
analyze the properties of our species grown separately in laboratory 
conditions, then make various combinations and in this way can formulate 
correctly the corresponding theoretical equations of the struggle for life. 

(4) Besides the interest of the equations of Ross as the first attempt to 
formulate mathematically the struggle for existence, they allow us to answer a 
very common objection of biologists to such equations in general. It is 
frequent]y pointed out that there is no sense in searching for exact equations 
of competition as this process is very inconstant, and as the slightest change in 
the environmental conditions or in the quantities of each species can lead to 
the result that instead of the second species supplanting the first it is the first 
species itself that begins to supplant the second. As Jennings ('33) points out, 
there exists a strong strain of uniformitarianism in many biologists. The idea 
that we can observe one effect, and then the opposite, seems to them a 
negation of science. In the spreading of malaria something analogous actually 
takes place. Ross came to the following interesting conclusion about this 
matter: (1) Whatever the original number of malaria cases in the locality may 
have been, the ultimate malaria ratio will tend to settle down to a fixed figure 
dependent on the number of Anophelines and the other factors�—that is if 
these factors remain constant all the time. (2) If the number of Anophelines is 
sufficiently high, the ultimate malaria ratio will become fixed at some figure 
between O per cent and 100 per cent. If the number of Anophelines is low 
(say below 40 per person) the ultimate malaria rate will tend to zero�—that is, 
the disease will tend to die out. All these relations Ross expressed 
quantitatively, and later they were worked out very elegantly by Lotka. This 
example shows that a change in the quantitative relations between the 
components can change entirely the course of the struggle for existence. 
Instead of an increase of the malaria infection and its approach to a certain 
fixed value, there may be a decrease reaching an equilibrium with a complete 
absence of malaria. In spite of all this there remains a certain invariable law of 
the struggle for existence which Ross's equations express. In this way we see 
what laws are to be sought in the investigation of the complex and unstable 
competition processes. The laws which exist here are not of the type the 
biologists are accustomed to deal with. These laws may be formulated in 
terms of certain equations of the struggle for existence. The parameters in 
these equations easily undergo various changes and as a result a whole range 
of exceedingly dissimilar processes arises.  

  



II  

(1) The material just presented enables one to form a certain idea as to what 
constitutes the essence of the mathematical theories of the struggle for 
existence. In these theories we start by formulating then dependence of one 
competitor on another in a verbal form, then translate this formulation into 
mathematical language and obtain differential equations of the struggle for 
existence, which enable us to draw definite conclusions about the course and 
the results of competition. Therefore all the value of the ulterior deductions 
depends on the question whether certain fundamental premises have been 
correctly formulated. Consequently before proceeding any further to consider 
more complicated mathematical equations of the struggle for existence we 
must with the greatest attention, relying upon the experimental data already 
accumulated, decide the following question: what are the premises we have a 
right to introduce into our differential equations? As the problem of the 
struggle for existence is a question of the growth of mixed populations and of 
the replacement of some components by others, we ought at once to examine 
this problem: what is exactly known about the multiplication of animals and 
the growth of their homogeneous populations? 

Of late years among ecologists the idea has become very wide spread that the 
growth of homogeneous populations is a result of the interaction of two 
groups of factors: the biotic potential of the species and the environmental 
resistance [Chapman '28, '31]. The biotic potential1 represents the potential 
rate of increase of the species under given condition. It is realized if there are 
no restrictions of food, no toxic waste products, etc. Environmental resistance 
can be measured by the difference between the potential number of organisms 
which can appear during a fixed time in consequence of the potential rate of 
increase, and the actual number of organisms observed in a given microcosm 
at a determined time. Environmental resistance is thus expressed in terms of 
reduction of some potential rate of increase, characteristic for the given 
organisms under given conditions. This idea is a correct one and it clearly 
indicates the essential factors which are operating in the growth of a 
homogeneous population of organisms. 

__________________________  
1What Chapman calls a "partial potential." 
__________________________ 

However, as yet among ecologists the ideas of biotic potential and of 
environmental resistance are not connected with any quantitative conceptions. 
Nevertheless Chapman in his interesting book Animal Ecology arrives at the 
conclusion that any further progress here can only be achieved on a 
quantitative basis, and that in future "this direction will probably be one of the 



most important fields of biological science, which will be highly theoretical, 
highly quantitative, and highly practical. 

(2) There is no need to search for a quantitative expression of the potential 
rate of increase and of the environmental resistance, as this problem had 
already been solved by Verhulst in 1838 and quite independently by Raymond 
Pearl and Reed in 1920. However, ecologists did not connect their idea of 
biotic potential with these classical works. The logistic curve, discovered by 
Verhulst and Pearl, expresses quantitatively the idea that the growth of a 
population of organisms is at every moment of time determined by the 
relation between the potential rate of increase and "environmental resistance." 
The rate of multiplication or the increase of the number of organisms (N) per 

unit of time (t) can be expressed as . The rate of multiplication depends 
first on the potential rate of multiplication of each organism (b), i.e., on the 
potential number of offspring which the organism can produce per unit of 
time. The total potential number of offspring that can be produced by all the 
organisms per unit of time can be expressed as the product of the number of 
organisms (N) and the potential increase (b) from each one of them, i.e., bN. 
Therefore the potential increase of the population in a certain infinitesimal 
unit of time will be expressed thus: 

...................................................(7) 

This expression represents a differential equation of the population growth 
which would exist if all the offspring potentially possible were produced and 
actually living. It is an equation of geometric increase, as at every given 
moment the rate of growth is equal to the number of organisms (N) multiplied 
by a certain constant (b).  

As has been already stated, the potential geometrical rate of population growth 
is not realized, and its reduction is due to the environmental resistance. This 
idea was quantitatively expressed by Pearl in such a form that the potential 
geometric increase at every moment of time is only partially realized, 
depending on how near the already accumulated size of the population (N) 
approaches the maximal population (K) that can exist in the given microcosm 
with the given level of food resources, etc. The difference between the 
maximally possible and the already accumulated population (K�—N), taken in 

a relative form, i.e., divided by the maximal population , shows the 
relative number of the "still vacant places" for definite species in a given 
microcosm at a definite moment of time. According to the number of the still 



vacant places only a definite part of the potential rate of increase can be 
realized. At the beginning of the population growth when the relative number 
of unoccupied places is considerable the potential increase is realized to a 
great extent, but when the already accumulated population approaches the 
maximally possible or saturating one, only an insignificant part of the biotic 
potential will be realized (Fig. 3). Multiplying the biotic potential of the 
population (bN) by the relative number of still vacant places or its "degree of 

realization" we shall have the increase of population per infinitesimal 
unit of time: 

 

Fig. 3. The curve of geometric increase and the logistic curve 
 

.........(8) 
 

Expressing this mathematically we have: 

..............................................(9) 

This is the differential equation of the Verhulst-Pearl logistic curve.2  

______________________________  
2 It is to be noted that we have to do in all the cases with numbers of individuals per unit of volume or 
area, e.g., with population densities (N). 
______________________________ 



(3) Before going further we shall examine the differential form of the logistic 
curve in a numerical example. Let us turn our attention to the growth of a 
number of individuals of an infusorian, Paramecium caudatum, in a small test 
tube containing 0.5 cm3 of nutritive medium (with the sediment; see Chapter 
V). The technique of experimentation will be described in detail further on. 
Five individuals of Paramecium (from a pure culture) were placed in such a 
microcosm, and for six days the number of individuals in every tube was 
counted daily. The average data of 63 separate counts are given in Figure 4. 
This figure shows that the number of individuals in the tube increases, rapidly 
at first and then more slowly, until towards the fourth day it attains a certain 
maximal level saturating the given microcosm. The character of the curve 
should be the same if we took only one mother cell at the start. Indeed, if one 
Paramecium is isolated and its products segregated as a pure culture, the 
generation time of each cell is not identically the same as that of its neighbors, 
and consequently at any given moment some cells are dividing, whereas the 
others are at various intermediate stages of their reproductive cycle; it is, 
however, no longer possible to divide the population up into permanent 
categories, since a Paramecium which divides rapidly tends to give rise to 
daughter cells which divide slowly, and vice versa. The rate of increase of 
such a population will be determined by the percentage of cells actually 
dividing at any instant, and the actual growth of the population can be plotted 
as a smooth curve, instead of a series of points restricted to the end of each 
reproductive period. The smooth curve of Figure 4 is drawn according to the 
equation of the logistic curve, and its close coincidence with the results of the 
observations shows that the logistic curve represents a good empirical 
description of the growth of the population. The practical method of fitting 
such an empirical curve will also be considered further (Appendix II). The 
question that interests us just now is this: what is, according to the logistic 
curve, the potential rate of increase of under our conditions, and how does it 
become reduced in the process of growth as the environmental resistance 
increases?  



 

Fig. 4. The growth of population of Paramecium caudatum  

According to Figure 4, the maximal possible number of Paramecia in a 
microcosm of our type, or the saturating population, K = 375 individuals. As a 
result of the very simple operation of fitting the logistic curve to the empirical 
observations, the coefficient of multiplication or the biotic potential of one 
Paramecium (b) was found. It is equal to 2.309. This means that per unit of 
time (one day) under our conditions of cultivation every Paramecium can 
potentially give 2.309 new Paramecia. It is understood that the coefficient b is 
taken from a differential equation and therefore its value automatically 
obtained for a time interval equal to one day is extrapolated from a 
consideration of infinitesimal sections of time. This value would be realized if 
the conditions of an unoccupied microcosm, i.e., the absence of environmental 
resistance existing only at the initial moment of time, existed during the entire 
24 hours. It is automatically taken into account here that if at the initial 
moment the population increases by a certain infinitesimal quantity 
proportional to this population, at the next moment the population plus the 
increment will increase again by a certain infinitesimal quantity proportional 
no longer to the initial population, but to that of the preceding moment. The 
coefficient b represents the rate of increase in the absence of environmental 
resistance under certain fixed conditions. At another temperature and under 
other conditions of cultivation the value b will be different. Table IV gives the 
constants of growth of the population of Paramecia calculated on the basis of 
the logistic curve. There is shown N or the number of Paramecia on the first, 
second, third and fourth days of growth. These numbers represent the 
ordinates of the logistic curve which passes near the empirical |observations 
and smoothes certain insignificant denations. The values bN given in Table IV 
express the potential rate of increase of the whole population at different 
moments of growth, or the number of offspring which a given population of 
Paramecia can potentially produce within 24 hours at these moments. We 



must repeat here what has been already said in calculating the value b. The 
potential rate bN exists only within an infinitesimal time and should these 
conditions exist during 24 hours the values shown in Table IV would be 

obtained. The expression shows the relative number of yet 
unoccupied places. At the beginning of the population growth when N is very 

small the value approaches unity. In other words the potential rate of 

growth is almost completely realized. As the population grows, 
approaches zero. The environmental resistance can be measured by that part 
of the potential increase which has not been realized�—the greater the 
resistance the larger the unrealized part. This value can be obtained by 

subtracting from unity. At the beginning of growth the environmental 

resistance is small and 1  approaches zero. As the population 

increases the environmental resistance increases also and 1  
approaches unity. This means that the potential increase remains almost 

entirely unrealized. Multiplying bN by for a given moment we obtain 

a rate of population growth , which increases at first and then decreases. 
The corresponding numerical data are given in Table IV and Figure 5. 

 

 

 

 

 

 



TABLE IV 
The growth of population of Paramecium caudatum 
b(coefficient of multiplication; potential progeny per individual per day) = 
2.309. 
K (maximal population) = 375. 

  TIME IN DAYS 

  1 2 3 4 

N (number of individuals according to the logistic 
curve). 20.4 137.2 319.0 

3 

69.0 

bN (potential increase of the population per day) 47.1 316.8 736.6 852.0 

(degree of realization of the potential 
increase) 

0.945 0.633 0.149 0.016 

(environmental resistance) 
0.055 0.367 0.851 0.984 

(rate of growth of the 
population) 

44.5 200.0 109.7 13.6 

(intensity of the struggle for existence) 

0.058 0.584 5.72 61.7 

 
 



 

Fig. 5. The characteristics of competition in a homogeneous population of 
Paramecium caudatum 

(4) We must now analyze a very important principle which was clearly 
understood by Darwin, but which is still waiting for its rational quantitative 
expression. I mean the intensity of the struggle for existence between 
individuals of a given group.3 The intensity of the struggle for existence is 
measured by the resistance which must be overcome in order to increase the 
number of individuals by a unit at a given moment of time. As we measure the 
environmental resistance by the eliminated part of the potential increase, our 
idea can be formulated thus: what amount of the eliminated fraction of the 
potential increase falls upon a unit of the realized part of the increase at a 
given moment of time? The intensity of the struggle for existence keeps 
constant only for an infinitesimal time and its value shows with what losses of 
the potentially possible increment the establishment of a new unit in the 
population is connected. The realized value of increase at a given moment is 
equal to 

 

and the unrealized one:  

 



Then the amount of unrealized potential increase per unit of realized increase, 
or the intensity of the struggle for existence (i), will be expressed thus: 

................(10) 

  

The values of i for a population of Paramecia are given in Table IV and we 
see that at the beginning of the population growth the intensity of the struggle 
for existence is not great, but that afterwards it increases considerably. Thus 
on the first day there are 0.058 "unrealized" Paramecia for every one realized, 
but on the fourth day 61.7 "unrealized" ones are lost for one realized (Fig. 6). 
Figure 5 shows graphically the changes of all the discussed characteristics in 
the course of the population growth of Paramecia. 
______________________________  
3 As we have seen in Chapter II, botanists are beginning to deal with the intensity of the struggle for 
existence, simply characterizing it by the per cent of destroyed individuals. Haldane investigating the 
connection of the intensity of selection ('31) and in his interesting book The Causes of Evolution ('32) 
specifies the intensity of competition by Z and determines it as the proportion of the number of eliminated 
individuals to that of the surviving ones. Thus if the mortality is equal to 9 per cent, Z=9/91, i.e., 
approximately 0.1. 
______________________________ 

(5) The intensity of the struggle for existence can evidently be expressed in 
this form only in case the population grows, i.e., if the number of individuals 
increases continually. If growth ceases the population is in a state of 

equilibrium, and the rate of growth in this case the expression of 
intensity will take another form. Population in a state of equilibrium 
represents a stream moving with a certain rapidity: per unit of time a definite 
number of individuals perishes, and new ones take their places. The number of 
these liberated places is not large if compared with the number of organisms 
that the population can produce in the same unit of time according to the 
potential coefficients of multiplication. Therefore a considerable part of the 
potentially possible increase of the population will not be realized and 
liberated places will be occupied only by a very small fraction of it. If the 
potential increase of a population in the state of equilibrium per infinitesimal 

unit of time is , and a certain part (  ) of this increase takes up the 
liberated places, it is evident that a part (1   ) will remain unrealized. The 
mechanism of this "nonrealization" is of course different in different animals. 



Then as before the intensity of the struggle for existence, or the proportion of 
the unrealized part of the potential increase to the realized part, will be: 

....................................(10') 

 
 

Fig. 6. Intensity of the struggle for existence in Paramecium caudatum. On 
the first day of the growth of the population 0.058 "unrealized" Paramecia are 
lost per one realized, but on the fourth day 61.7 per one. 

(6) We may say that the Verhulst-Pearl logistic curve expresses quantitatively 
and very simply the struggle for existence which takes place between 
individuals of a homogeneous group. Further on we shall see how complicated 
the matter becomes when there is competition between individuals belonging 
to two different species. But one must not suppose that an intragroup 
competition is a very simple thing even among unicellular organisms. Though 
in the majority of cases the symmetrical logistic curve with which we are now 
concerned expresses satisfactorily the growth of a homogeneous population, 
certain complicating factors often appear and for some species the curves are 
asymmetrical, i.e., their concave and convex parts are not similar. Though this 
does not alter our reasoning, we have to take into account a greater number of 
variables which complicate the situation. Here we agree completely with the 
Russian biophysicist P. P. Lasareff ('23) who has expressed on this subject, 
but in connection with other problems, the following words: "For the 
development of a theory it is particularly advantageous if experimental 
methods and observations do not at once furnish data possessing a great 
degree of accuracy and in this way enable us to ignore a number of secondary 
accompanying phenomena which make difficult the establishment of simple 
quantitative laws. In this respect, e.g., the observations of Tycho Brahe which 
gave to Kepler the materials for formulating his laws, were in their precision 
just sufficient to characterize the movement of the planets round the sun to a 



first approximation. If on the contrary Kepler had had at his disposal the 
highly precise observations which we have at present, then certainly his 
attempt to find an empirical law owing to the complexity of the whole 
phenomenon could not have led him to simple and sufficiently clear results, 
and would not have given to Newton the material out of which the theory of 
universal gravitation has been elaborated. 

"The position of sciences in which the methods of experimentation and the 
theory develop hand in hand is thus more favorable than the position of those 
fields of knowledge where experimental methods far outstrip the theory, as is, 
e.g., observed in certain domains of experimental biology, and then the 
development of the theory becomes more difficult and complicated" (p. 6). 

Therefore we must not be afraid of the simplicity of the logistic curve for the 
population of unicellular organisms and criticize it from this point of view. At 
the present stage of our knowledge it is just sufficient for the rational 
construction of a theory of the struggle for existence, and the secondary 
accompanying circumstances investigators will discover in their later work.4  

______________________________  
4The usual objection to the differential logistic equation is that it is too simple and does not reflect all the 
"complexity" of growth of a population of lower organisms. In Chapter V we shall see that this remark is 
to a certain extent true for some populations of Protozoa. The realization of the biotic potential in certain 
cases actually does not gradually diminish with the decrease in the unutilized opportunity for growth. But 
this ought not to frighten any one acquainted with the methodology of modern physics: it is evident that 
the expression is but a first approximation to what actually exists, and, if necessary, it can be easily 
generalized by introducing before ltV a certain coefficient, which would change with the growth of the 
culture (for further diseussion see Chapter V). 

______________________________ 

(7) The application of quantitative methods to experimental biology presents 
such difficulties, and has more than once led to such erroneous results that the 
reader would have the right to consider very sceptically the material of this 
chapter. It is very well known that the differential equations derived from the 
curves observed in an experiment can be only regarded as empirical 
expressions and they do not throw any real light on the underlying factors 
which control the growth of the population. The only right way to go about 
the investigation is, as Professor Gray ('29) says, a direct study of factors 
which control the growth rate of the population and the expression of these 
factors in a quantitative form. In this way real differential equations will be 
obtained and in their integrated form they will harmonize with the results 
obtained by observation. In our experimental work described in the next 
chapter special attention has been given to a direct study of the factors 
controlling growth in the simplest populations of yeast cells. It has become 
evident that the value of the environmental resistance which we have 



determined on the basis of a purely physiological investigation coincides 
completely with the value of the environmental resistance calculated 
according to the logistic equation, using the latter as an empirical expression 
of growth. In this way we have proved that the logistic equation actually 
expresses the mechanism of the growth of the number of unicellular 
organisms within a limited microcosm. All this will be described in detail in 
the next chapter.  

III 

(1) We are now sufficiently prepared for the acquaintance with the 
mathematical equations of the struggle for existence, and for a critical 
consideration of the premises implied in them. Let us consider first of all the 
case of competition between two species for the possession of a common 
place in the microcosm. This case was considered theoretically for the first 
time by Vito Volterra in 1926. An experimental investigation of this case was 
made by Gause ('32b), and at the same time Lotka ('32b) submitted it to a 
further analysis along theoretical lines. If there is competition between two 
species for a common place in a limited microcosm, we can quite naturally 
extend the premises implied in the logistic equation. The rate of growth of 
each of the competing species in a mixed population will depend on (1) the 
potential rate of population increase of a given species (blNl or b2N2) and (2) 
on the unutilized opportunity for growth of this species, just as in the case of a 
population of the first and second species growing separately. But unutilized 
opportunity for growth of a given species in a mixed population is a complex 
variable. It measures the number of places which are still vacant for the given 
species in spite of the presence of another species, which is consuming the 
common food, excreting waste products and thereby depriving the first one of 
some of the places. Let us denote as before by Nl the number of individuals of 
the first species, though, as we shall see further on, we shall have to deal in 
many cases not with the numbers of individuals but with masses of species (= 
the weight of the organisms present or its equivalent) and we shall introduce 
corresponding alterations. The unutilized opportunity for growth, or the 
degree of realization of the potential increase for the first species in a mixed 

population, may be expressed thus: , where Kl is the 
maximal possible number of individuals of this species when grown 
separately under given conditions, Nl is the already accumulated number of 
individuals of the first species at a given moment in the mixed population, and 
m is the number of the places of the first species in terms of the number of 
individuals of this species, which are taken up by the second species at a given 
moment. The unutilized opportunity for growth of the first species in the 
mixed population can be better understood if we compare it with the value of 
the unutilized opportunity for the separate growth of the same species. In the 



latter case the unutilized opportunity for growth is expressed by the difference 
(expressed in a relative form) between the maximal number of places and the 
number of places already occupied by the given species. Instead of this for the 
mixed population we write the difference between the maximal number of 
places and that of the places already taken up by our species together with the 
second species growing simultaneously.  

(2) An attempt may be made to express the value m directly by the number of 
individuals of the second species at a given moment, which can be measured 
in the experiment. But it is of course unlikely that in nature two species would 
utilize their environment in an absolutely identical way, or in other words that 
equal numbers of individuals would consume (on an average) equal quantities 
of food and excrete equal quantities of metabolic products of the same 
chemical composition. Even if such cases do exist, as a rule different species 
do not utilize the environment in the same way. Therefore the number of 
individuals of the second species accumulated at a given moment of time in a 
mixed population in respect to the place it occupies, which might be suitable 
for the first species, is by no means equivalent to the same number of 
individuals of the first species. The individuals of the second species have 
taken up a certain larger or smaller place. If N2 expresses the number of 
individuals of the second species in a mixed population at a given moment, 
than the places of the first species which they occupy in terms of the number 
of individuals of the first species, will be m =  N2. Thus, the coefficient  is 
the coefficient reducing the number of the individuals of the second species to 
the number of places of the first species which they occupy. This coefficient a 
shows the degree of influence of one species upon the unutilized opportunity 
for growth of another. In fact, if the interests of the different species do not 
clash and if the microcosm they occupy places of a different type or different 
"niches" then the degree of influence of one species on the opportunity for 
growth of another, or the coefficient  , will be equal to zero. But if the 
species lay claim to the very same "niche," and are more or less equivalent as 
concerns the utilization of the medium, then the coefficient  will approach 
unity. And finally if one of the species utilizes the environment very 
unproductively, i.e., if each individual consumes a great amount of food or 
excretes a great quantity of waste products, then it follows that an individual 
of this species occupies as large a place in the microcosm as would permit 
another species to produce many individuals, and the coefficient  will be 
large. In other words an individual of this species will occupy the place of 
many individuals of the other species. If we remember here the specificity of 
the metabolic products, and all the very complex relations which can exist 
between the species, we shall understand how useful we may find the 
coefficient of the struggle for existence  , which objectively shows how 
many places suitable for the first species are occupied by one individual of the 
second. 



Taking the coefficient  , we can now express in the following manner the 
unutilized opportunity for growth of the first species in a mixed 

population: . The unutilized opportunity for growth of the 
second species in a mixed population will have a similar expression: 

. The coefficient of the struggle for existence  indicates 
the degree of influence of every individual of the first species on the number 
of places suitable for the life of the second species. These two expressions 
enable one to judge in what degree the potential increase of each species is 
realized in a mixed population. 

(3) As we have already mentioned in analyzing the Ross equations, an 
important feature of mixed populations is the simultaneous influence upon 
each other of the species constituting them. The rate of growth of the first 
species depends upon the number of places already occupied by it as well as 
by the second species at a given moment. 

As growth proceeds the first species increases the number of places already 
occupied, and thus affects the growth of the second species as well as its own. 
We can introduce the following notation: 

= rates of growth of the number of individuals of the first and 
second species in a mixed population at a given moment. 

= number of individuals of the first and second species in a mixed 
population at a given moment. 

= potential coefficients of increase in the number of individuals of the 
first and second species. 

= maximal numbers of individuals of the first and second species 
under the given conditions when separately grown. 

 ,  = coefficients of the struggle for existence. 

The rate of growth of the number of individuals of the first species in a mixed 
population is proportional to its potential rate (b1Nl), which in every 
infinitesimal time interval is realized in greater or less degree depending on 



the relative number of the still vacant places: . An 
analogous relationship holds true for the second species. The growth of the 
first and second species is simultaneous. It can be expressed by the following 
system of simultaneous differential equations: 

..(11) 
 

Translating this into mathematical language we have:  

..............................(12) 

The equation of the struggle for existence which we have written express 
quantitatively the process of competition between two species for the 
possession of a certain common place in the microcosm. They are founded on 
the idea that every species possesses a definite potential coefficient of 

multiplication but that the realization of these potentialities (  and b2N2) 
of two species is impeded by four processes hindering growth: (1) in 
increasing the first species diminishes its own opportunity for growth 
(accumulation of N1), (2) in increasing the second species decreases the 
opportunity for growth of the first species (  N2), (3) in increasing the second 
species decreases its own opportunity for growth (accumulation of N2) and (4) 
the increase of the first species diminishes the opportunity for growth of the 

second species ( ). Whether the first species will be victorious over the 
second, or whether it will be displaced by the second depends, first, on the 
properties of each of the species taken separately, i.e., on the potential 
coefficients of increase in the given conditions (bl, b2) and on the maximal 
numbers of individuals (K1, K2). But when two species enter into contact with 
one another, new coefficients of the struggle for existence  and  begin to 



operate. They characterize the degree of influence of one species upon the 
growth of another, and participate in accordance with the equation (12) in 
producing this or that outcome of the competition.  

(4) It is the place to note here that the equation (12) as it is written does not 
permit of any equilibrium between the competing species occupying the same 
"niche," and leads to the entire displacing of one of them by another. This has 
been pointed out by Volterra ('26), Lotka ('32b) and even earlier by Haldane 
('24), and for the experimental confirmation and a further analysis of this 
problem the reader is referred to Chapter V. We can only remark here that this 
is immediately evident from the equation (12). The stationary state occurs 

whenever and both vanish together , and the 
mathematical considerations show that with usual  and  there cannot 
simultaneously exist positive values for both N1,  and N2,  . One of the species 
must eventually disappear. This apparently harmonizes with the biological 
observations. As we have pointed out in Chapter II, both species survive 
indefinitely only when they occupy different niches in the microcosm in 
which they have an advantage over their competitors. Experimental 
investigations of such complicated systems are in progress at the time of this 
writing. 

(5) We have just discussed a very important set of equations of the 
competition of two species for a common place in the microcosm, and it 
remains to make in this connection a few historical remarks. Analogous 
equations dealing with a more special case of competition between two 
species for a common food were for the first time given in 1926 by the Italian 
mathematician Vito Volterra who was not acquainted with the investigations 
of Ross and of Pearl.  

Volterra assumed that the increase in the number of individuals obeys the law 

of geometric increase: , but as the number of individuals (N) 
accumulates, the coefficient of increase (b) diminishes to a first approximation 
proportionally to this accumulation (b�—  N), where  is the coefficient of 
proportionality. Thus we obtain: 

.............................................(13) 

It can be easily shown, as Lotka ('32) remarks, that the equation of Volterra 
(13) coincides with the equation of the logistic curve of Verhulst-Pearl (9). In 



fact, if we call the rate of growth per individual a relative rate of growth and 

denote it as: , then the equation (13) will have the following form: 

.................................(14) 

This enables us to formulate the equation (13) in this manner: the relative rate 
of growth represents a linear function of the number of individuals N, as b�—  
N is the equation of a straight line. If we now take the equation of the 

Verhulst-Pearl logistic curve (9): and make the following 
transformations: 

, we shall have 

................................(15) 

In other words the logistic curve possesses the property that with an increase 
in the number of individuals the relative rate of growth decreases linearly (this 
has been recently mentioned by Virinsor ('32)). Consequently the expression 
(13) according to which we must subtract from the coefficient of increase b a 
certain value proportional to the accumulated number of individuals in order 
to obtain the rate of growth, and the expression (9), according to which we 
must multiply the geometric increase bN by a certain "degree of its 
realization," coincide with one another. Both are based on a broad 
mathematical assumption of a linear relation between the relative rate of 
growth and the number of individuals. Volterra extended the equation (13) to 
the competition of two species for common food, assuming that the presence 
of a certain number of individuals of the first species (N1) decreases the 
quantity of food by hlNl, and the presence of N2 individuals of the second 
species decreases the quantity of food by h2N2. Therefore, both species 
together decrease the quantity of food by h1 N1 + h2N2, and the coefficient of 
multiplication of the first species decreases in connection with the diminution 
of food: 

..............................(16) 



But for the second species the degree of influence of the decrease of food on 
the coefficient of multiplication b2 will be different (  2), and we shall obtain: 

..............................(17) 

Starting from these expressions Volterra ('26) wrote the following 
simultaneous differential equations of the competition between two species 
for common food: 

.......................(18) 

These equations represent, therefore, a natural extension of the principle of the 
logistic curve, and the equation (12) written by Gause ('32b) coincides with 
them. Indeed the equation (12) can be transformed in this manner: 

or 

.................(19) 

 

The result of the transformation shows that the equation (12) coincides with 
Volterra's equation (18), but it does not include any parameters dealing with 
the food consumption, and simply expresses the competition between species 
in terms of the growing populations themselves. As will be seen in the next 
chapter, the equation (12) is actually realized in the experiment. 

 



IV 

(1) In the present book our attention will be concentrated on an experimental 
study of the struggle for existence. In this connection we are interested only in 
those initial stages of mathematical researches which have already undergone 
an experimental verification. At the same time we are writing for biological 
readers and we would not encumber them by too numerous mathematical 
material. All this leads us to restrict ourselves to an examination of only a few 
fundamental equations of the struggle for existence, referring those who are 
interested in mathematical questions to the original investigations of Volterra, 
Lotka and others. 

We shall now consider the second important set of equations of the struggle 
for existence, which deals with the destruction of one species by another. The 
idea of these equations is very near to those of Ross which we have already 
analyzed. They were given for the first time by Lotka ('20b) and 
independently by Volterra ('26). After the previous discussion these equations 
ought not to present any difficulties. Let us consider the process of the prey N1 
being devoured by another species, the predator N2. We can put it in a general 
form: 

............(20) 

 

We can introduce here the following notation: 

= rate of increase of the number of prey. 

bl = coefficient of natural increase of prey (birth rate minus death rate). 

blNl = natural increase of the number of prey at a given moment. 



= the function characterizing the consumption of prey by 
predators per unit of time. This is the greater the larger is the number of 
predators (N2) and the larger is the number of the prey themselves (N1). 

= rate of increase of the number of predators.  

= the function characterizing simultaneously the natality and the 
mortality of predators. 

We can now translate the equations (20) into mathematical language by 
writing: 

..............................(21) 

 

In a particular case investigated by Volterra in detail, the functions in these 

equations have been somewhat simplified. He put , 
e.g., the consumption of prey by predators is directly proportional to the 

product of their concentrations. Also . Here 

is the increase in the number of predators resulting from the 

devouring of the prey per unit of time, and number of predators 
dying per unit of time (d2 is the coefficient of mortality). This translation of 
(20) gives 

............................(21a) 

 

These equations have a very interesting property, namely the periodic 
solution, which has been discovered by both Lotka ('20) and Volterra ('26). As 



the number of predators increases the prey diminish in number,5 but when the 
concentration of the latter becomes small, the predators owing to all 
insufficiency of food begin to decrease.6 This produces an opportunity for 
growth of the prey, which again increases in number. 

______________________________  
5 When the number of predators (N2) is considerable the number of the prey devoured per unit of time 
(k1N1N2) is greater than the natural increase of the prey during the same time (+b1N1), and (b1N1 - k1N1N2) 
becomes a negative value. 
6 With a small number of prey (N1) the increase of the predators owing to the consumption of the prey  
(+k2N1N2) is smaller than the mortality of the predators (-dN2), and k2N1N2 - dN2) becomes a negative 
value. 
______________________________ 

(2) In our discussion up to this point we have noted how the process of 
interaction between predators and prey can be expressed in a general form 
covering a great many special cases (equation 21), and how this general 
expression can be made more concrete by introducing certain simple 
assumptions (equation 21a). There is no doubt that we shall not obtain any 
real insight the nature of these processes by further abstract calculations, and 
the reader will have to wait for Chapter VI where the discussion is continued 
on the sound basis of experimental data.  

Let us better devote the remainder of this chapter to two rather special 
problems of the natural increase of both predators and prey in a mixed culture 
simply in order to show how the biological reasoning can be translated into 
mathematical terms. In the general form the rate of increase in the number of 
individuals of the predatory species resulting from the devouring of the prey 

can be represented by means of a certain geometrical increase which is 
realized in proportion to the unutilized opportunity of growth. This unutilized 

opportunity is a function of the number of prey at a given moment: . 
Therefore, 

...............................(22) 

 

The simplest assumption would be that the geometric increase in the number 

of predators is realized in direct proportion to the number of prey ( ). 
Were our system a simple one we could say with Lotka and Volterra that the 
rate of growth might be directly connected with the number of encounters of 



the second species with the first. The number of these encounters is 
proportional to the number of individuals of the second species multiplied by 

the number of individuals of the first ( ), where  is the coefficient of 
proportionality. If it were so, the increase of the number of predators would be 
in direct proportion to the number of the prey. Indeed, if the number of the 

prey N1 has doubled and is , the number of their encounters with the 

predators has also doubled, and instead of being is equal to . 
Consequently the increase in the number of predators instead of the former 

would become equal to , and the relative 

increase (per predator) would be therefore: . In other 

words, the relative increase would be a rectilinear function of the 
number of prey N1, i.e., with a rise of the concentration of the prey the 
corresponding values of the relative increase of the predators could be placed 
on a straight line (ab in Fig. 7). But experience shows the following: If we 
study the influence of the increase in the number of the prey per unit of 
volume upon the increase from one predator per unit of time, we will find that 
this increase rises at first rapidly and then slowly, approaching a certain fixed 
value. A further change in density of the prey does not call forth any rise in 
the increase per predator. In the limits which interest us we can express this 
relationship with the aid of a curve rapidly increasing at first and then 
approaching a certain asymptote. Such a curve is represented in Figure 7 (ac). 
The concentration of prey (N1) is marked on the abscissae, and the relative 

increase in the number of predators , or the rate of growth per 
predator at different densities of prey, is marked on the ordinates. The curve 
connecting the relative increase of the predators with the concentration of the 

prey can be expressed by the equation: ,7 which in our case 
takes the following form: 

______________________________  
7 This is the simplest expression of the curve of such a type, which is widely used in modern biophysics. 
It is deduced from the assumption that the rate of increase is proportional to still unutilized opportunity 
for increase taken in an absolute form: For experimental verification see Chapter VI. 
______________________________ 



 

................................(23) 

 

The properties of this curve are such that as the prey becomes more 
concentrated the relative increase of the predators rises also, approaching 
gradually the greatest possible or potential increase b2 (see Fig. 7). The 
meaning of the equation (23) is that instead of the assumption of a linear 
alteration of the relative increase which was justified in the case of the 
competition for common food discussed before, we now take a further step 
and express a non-linear relation of the increase per predator with the 
concentration of the prey. All this will be easier to understand when in 
Chapter VI we pass on the analysis of the experimental material. We shall 
then explain also the meaning of the coefficient  in the equation (23).  

 

Fig. 7. The connection between the relative increase of the predators and 
concentration of the prey. 

 

(3) The question now arises as to how to express the natural increase of the 
prey. As noticed already, the growth of the prey in a limited microcosm in the 
absence of predators can be expressed in the form of a potential geometric 
increase blN1, which at every moment of time is realized in dependence on the 



unutilized opportunity for growth . Therefore, the natural increase 
in the number of prey per unit of time can be expressed thus:  

...........................(24) 

It is easy to see that in the presence of the predator devouring the prey the 
expression of the unutilized opportunity for growth of the latter will take a 
more complex form. The unutilized opportunity for growth will, as before, be 
expressed by the difference (taken in a relative form) between the maximal 
number of places which is possible under given conditions (Kl), and the 
number of places already occupied. But the number of prey (Nl) which in the 
presence of the predator exist at the given moment, does not reflect the 
number of the "already occupied places." In fact the prey which have been 
devoured by the predator have together with the actually existing prey 
participated in the utilization of the environment, i.e., consumed the food and 
excreted waste products. Therefore, the degree of utilization of the 
environment is determined by the total of the present population (Nl) and that 
which has been devoured (n).8 The expression of the unutilized opportunity 
for growth of the prey will have then the following form:  

..........................................(25) 

______________________________ 

 
8These calculations are true only in the case of the competition for a certain limited amount of energy (see 
Chapter V). In other words it is assumed that the nutritive medium is not changed in the course of the 
experiment. With change of the medium at short intervals (as discussed in Chapter V) the term n 
disappears, and the situation becomes more simple. 

______________________________ 

Here we arrive at a very interesting conclusion, namely, that the development 
of a definite biological system is conditioned not only by its state at a given 
moment, but that the past history of the system exerts a powerful influence 
together with its present state. This fact is apparently very widespread, and 
one can read about it in a general form in almost every manual of ecology. 
Lotka and Volterra expressed mathematically the role of this circumstance in 
the processes of the struggle for existence. 



In order to complete the consideration we have to express the number of the 
devoured prey from the moment the predator is introduced up to the present 
time. If in every infinitesimal time interval the predator devours a certain 
definite number of prey then the total number of the devoured prey will be 
equal to the sum of the elementary quantities devoured from the moment the 
predator is introduced up to the given time (t). This total can be apparently 
expressed by a definite integral. 

(4) We cannot at present ignore the difficulties existing in the field of the 
mathematical investigation of the struggle for life. We began this chapter with 
comparatively simple equations dealing with an idealized situation. Then we 
had to introduce one complication after another, and finally arrived at rather 
complicated expressions. But we had in view populations of unicellular 
organisms with an immense number of individuals, a short duration of 
generations and a practically uniform rate of natality. The phenomena of 
competition are reduced here to their simplest. What enormous difficulties we 
shall, therefore, encounter in attempts to find rational expressions for the 
growth of more complicated systems.9 Is it worth while, on the whole, to 
follow this direction of investigation any further? 

______________________________ 

 

9We can have an idea of this from the recent papers of Stanley ('32) and Bailey ('33) who try to formulate 
the equations of the struggle for existence for various insect populations.  
______________________________ 

There is but one answer to this question. We have at present no other 
alternative than an analysis of the elementary processes of the struggle for life 
under very simple conditions. Nothing but a very active investigation will be 
able to decide in the future the problem M of the behavior of the complicated 
systems. Now we can only point out two principal conditions which must be 
realized in a mathematical investigation of the struggle for existence in order 
to avoid serious errors and the consequent disillusionment as to the very 
direction of work. These conditions are: (1) The equations of the growth of 
populations must be expressed in terms of the populations themselves, i.e., in 
terms of the number of individuals, or rather of the biomass, constituting a 
definite population. It must always be kept in mind that even in such a science 
as physical chemistry it is only after the course of chemical reactions has been 
quantitatively formulated in terms of the reactions themselves, that the attempt 
has been made to explain some of them on the ground of the kinetic theory of 
gases. (2) The quantitative expression of the growth of population must go 
hand in hand with a direct study of the factors which control growth. Only in 
those cases, where the results deduced from equations are confirmed by the 
data obtained through entirely different methods, by a direct study of the 



factors limiting growth, can we be sure of the correctness of the quantitative 
theories. 

 



Chapter IV 

ON THE MECHANISM OF COMPETITION IN YEAST CELLS 

(1) No mathematical theories can be accepted by biologists without a most 
careful experimental verification. We can but agree with the following 
remarks made in Nature (H. T. H. P. '31) concerning the mathematical theory 
of the struggle for existence developed by Vito Volterra: "This work is 
connected with Prof. Volterra's researches on integro-differential equations 
and their applications to mechanics. In view of the simplifying hypothesis 
adopted, the results are not likely to be accepted by biologists until they have 
been confirmed experimentally, but this work has as yet scarcely begun." First 
of all, very reasonable doubts may arise whether the equations of the struggle 
for existence given in the preceding chapter express the essence of the 
processes of competition, or whether they are merely empirical expressions. 
everybody remembers the attempt to study from a purely formalistic 
viewpoint the phenomena of heredity by calculating the likeness between 
ancestors and descendants. This method did not give the means of penetrating 
into the mechanism of the corresponding processes and was consequently 
entirely abandoned. In order to dissipate these doubts and to show that the 
above-given equations actually express the mechanism of competition, we 
shall now turn to an experimental analysis of a comparatively simple case. It 
has been possible to measure directly the factors regulating the struggle for 
existence in this case, and thus to verify some of the mathematical theories. 

Generally speaking, biologists usually have to deal with empirical equations. 
The essence of such equations is admirably expressed in the following words 
of Raymond Pearl ('30): "The worker in practically any branch of science is 
more or less frequently confronted with this sort of problem: he has a series of 
observations in which there is clear evidence of a certain orderliness, on the 
one hand, and evident fluctuations from that order, on the other hand. What he 
obviously wishes to do . . . is to emphasize the orderliness and minimize the 
fluctuations about it.... He would like an expression, exact if possible, or, 
failing that, approximate, of the law if there be one. This means a 
mathematical expression of the functional relation between the variables.... 

"It should be made clear at the start that there is, unfortunately, no methods 
known to mathematics which will tell anyone in advance of the trial what is 
either the correct or even the best mathematical function with which to 
graduate a particular set of data. The choice of the proper mathematical 
function is essentially, at its very best, only a combination of good judgment 
and good luck. In this realm, as in every other, good judgment depends in the 
main only upon extensive experience. What we call good luck in this sort of 
connection has also about the same basis. The experienced person in this 



branch of applied mathematics knows at a glance what general class of 
mathematical expression will take a course, when plotted, on the whole like 
that followed by the observations. He furthermore knows that by putting as 
many constants into his equation as there are observations in the data he can 
make his curve hit all the observed points exactly, but in so doing will have 
defeated the very purpose with which he started, which was to emphasize the 
law (if any) and minimize the fluctuations, because actually if he does what 
has been described he emphasizes the fluctuations and probably loses 
completely any chance of discovering a law. 

"Of mathematical functions involving a small number of constants there are 
but relatively few.... In short, we live in a world which appears to be 
organized in accordance with relatively few and relatively simple 
mathematical functions. Which of these one will choose in starting off to fit 
empirically a group of observations depends fundamentally, as has been said, 
only on good judgment and experience. There is no higher guide" (pp. 407-
408). 

(2) We are now confronted by an entirely different problem which has often 
arisen in other domains of exact science and which represents the next step 
after establishing the first empirical relations with out any mathematical 
theory. The problem is that from clearly formulated hypotheses which appear 
probable on the ground of collected experimental material certain 
mathematical consequences are deduced, connecting the experimental values 
in equations accessible to experimental verification. As a result a 
mathematical theory of the phenomena observed in a given field of science is 
obtained. The equations of the struggle for existence are just such theoretical 
equations that have been deduced from hypotheses about potential coefficients 
of multiplication of species and the participation of these species in the 
utilization of a limited opportunity for growth. The verification of such a 
theoretical equation of the struggle for existence may be reduced to the 
following: (1) we must determine experimentally the potential coefficients of 
multiplication of the species; (2) by means of a direct study of the factors 
limiting growth we must evaluate the degree of influence of one species on 
the opportunity for growth of another, i.e., the coefficients of the struggle for 
existence; (3) by inserting all these values into a theoretical equation we must 
obtain a complete agreement with the experimental data, if our mathematical 
theory connects correctly the coefficients furnished by experimentation. It 
seems to us that these three steps of verifying our theoretical equations must 
be somewhat modified, taking into account the complicated situation in the 
competition between two species for a common place in the microcosm. We 
proceed as follows: (1) having determined the potential coefficients of 
multiplication b1,b2 and the maximal biomasses K1, K2 we pass on at once to 
(3), i.e., on the basis of the experimental data, taking our equations as purely 
empirical expressions or, in other terms, considering that they must describe 



the values observed, we calculate those empirical coefficients of the struggle 
for existence with which the equations actually describe the experimental 
data. It is only then that we pass to (2), and compare these empirically found 
coefficients of the struggle for existence with those which are to be expected 
from , direct study of the factors limiting growth. If the empirical coefficients 
coincide with the theoretical ones, the correctness of the mathematical theory 
will be proved. 

This mode of verification of the mathematical theory has been adopted by us 
because the coincidence of theoretical coefficients with the empirical ones is 
but rarely to be expected. Such a rare case representing, most likely, rather an 
exception than a rule is described in this chapter. This small probability of a 
coincidence of the coefficients is connected with the fact that usually the 
growth of populations depends on numerous factors, many of which (e.g., 
waste-products) we often cannot specify exactly, and the influence of one 
species on the opportunity of growth of another under these conditions is 
realized in a very complicated manner. Hence the empirical coefficients of the 
struggle for existence, calculated by an equation which in certain cases has 
already been verified, can serve as a guide for the study of the very 
mechanism of the influence of one species on the growth of another. 

II 

(1) To verify our differential equations of the struggle for existence we had 
recourse to populations of yeast cells. Yeast cells were cultivated in a liquid 
nutritive medium, where they were nourished by various substances dissolved 
in water and excreted certain waste products into the surrounding medium. 
Owing to the considerable practical importance of yeast for the food industry 
a great number of papers has been devoted to investigation of its growth, and 
although the majority deals with purely practical questions that do not at 
present interest us, nevertheless it is pretty well ascertained what substances 
yeast requires for its growth, and what is the chemical composition of the 
waste-products it excretes. 

For the study of competition we took two species of yeast: (1) a pure line of 
common yeast, Saccharomyces cerevisiae stock XII, received from the 
Berliner Gahrungsinstitut, and (2) a pure line of the yeast 
Schizosaccharomyces kephir, cultivated in the Moscow Institute of the 
Alcohol Industry and obtained from Dr. Pervozvansky.1 Both these species 
can grow under anaerobic conditions as well as when oxygen is accessible. It 
is very well known that the processes of life activity are connected with a 
continuous consumption of energy which is supplied by certain chemical 
reactions. In the case when the growth of yeast proceeds in the absence of 
oxygen it is the decomposition of sugar into alcohol and carbon dioxide which 
furnishes the available energy, and in the nutritive medium there takes place a 



considerable accumulation of the waste product ethyl alcohol. If we alter the 
conditions of cultivation and allow a direct access of oxygen to the growing 
yeast cells, although fermentation will still continue, a part of the available 
energy (different for different species) will be furnished by oxidation of sugar 
into carbon dioxide. In the commercial utilization of yeast, when it is desirable 
to accumulate alcohol in the culture, yeast is grown nearly without oxygen. 
But if alcohol is not needed and the object is to obtain a great quantity of yeast 
cells themselves, an intensive aeration of the growing culture is carried on, 
which leads to an enormous increase of oxidation processes. The yeast 
Saccharomyces cerevisiae as well as Schizosaccharomyces kephir produces 
alcoholic fermentation, and both can obtain a part of the available energy by 
oxidation, but they differ from one another in the relative intensities of the 
oxidation and fermentation processes. Common yeast, Saccharomyces 
cerevisiae, develops well in the absence of oxygen as for it fermentation is a 
powerful source of energy. It continues mainly to ferment even in the 
presence of oxygen (when cultivated in Erlenmeyer Hasks without aeration) 
and utilizes the oxidation process only to a very small extent. As regards our 
species of Schizosaccharomyces it grows very slowly under anaerobic 
conditions. However, when oxygen is available it has recourse to this source 
of energy; its rapidity of growth increases and it approaches Saccharomyces in 
its properties. Hence, Saccharomyces represents a species with distinctly 
expressed fermentative capacities, whilst Schizosacchuromyces is a species of 
a more oxidizing type. By mixing these species we obtain a very interesting 
situation for studying the competition between species in different conditions 
of environment. 
________________________________  
1 We began our experiments with yeast in 1930. The first group of experiments on competition between 
species was made in September-December, 1931, and appeared in the Journal of Experimental Biology 
(Gause, '32b). These experiments were extended and repeated in September-December, 1932. Their 
results coincided completely with the data of 1931. Later it appeared that the yeast culture kept in the 
Museum of the Institute of the Alcohol Industry under the name of "Schizosaccharomyces kephir" and 
used under the same name in our experiments, has been incorrectly determined by the specialists of the 
Museum and that it belonged to another species. The culture consists of oval, budding yeast cells much 
more minute than Saccharomyces cerevisiae and producing an alcoholic fermentation. An exact 
systematic determination presented extreme difficulty and seemed not to be indispensable, as this culture 
is kept in the Museum and can be obtained thence under the name of "Schizosaccharomyces kephir". 
____________________________ 

(2) We cultivated yeast in a sterilized nutritive medium which was prepared in 
the following manner: 20 gr. of dry pressed beer-yeast were mixed with 1 liter 
of distilled water, boiled for half an hour in a Kochs boiler, and then filtered 
through infusorial earth. Five per cent of sugar was added to this mixture, and 
then the medium was sterilized in an autoclave. A medium of such a type is 
very favorable for the growth of yeast, because the decoction contains all the 
nutritive substances required. The only disadvantage is our ignorance of the 
exact chemical composition of this medium. Therefore each series of 



experiments must be made with a solution of the very same preparation. But 
on the whole this method enables one to have sufficiently standardized 
conditions for cultivation.  

The nutritive medium was sterilized in a large flask and then aseptically 
poured into small vessels for cultivation. These vessels were previously 
sterilized by dry heat (by heating to 180° for three hours). This method has 
many advantages as compared with the direct sterilization of the nutritive 
medium in small culture vessels. The fact is that when a liquid is heated in 
glass vessels in an autoclave, even if the best kind of glass be used, the latter 
can somewhat alter the composition of the nutritive liquid. This produces a 
considerable variation in the initial conditions of separate microcosms. The 
vessels used for cultivation belonged to two types: (1) in experiments with the 
deficiency in oxygen we used common test tubes with a diameter of 13 mm. 
Ten cm3 of nutritive medium were poured into such a tube, the depth of the 
liquid being about 80 mm. (2) To obtain better aeration, cultures were made in 
small Erlenmeyer flasks of about 50 mm in diameter, and when 10 cm3 of 
nutritive medium were poured in, the liquid reached a depth of 7-8 mm. In 
these conditions the layer of the liquid was almost ten times thinner than in 
the test tubes (Fig. 8). The test tubes as well as Erlenmeyer flasks were closed 
by cotton wool stoppers. The experiments made in the flasks will be described 
in this book as "aerobic" and those in test tubes as "anaerobic." 

 

Fig. 8. The vessels for cultivation of yeast: (a) test tube, (b) Erlenmeyer's 
flask. 

  

(3) An inoculation of yeast cells was made into the sterilized nutritive 
medium. Special attention was given to the standardization of the inoculating 



material, for in order to obtain exact and comparable results the inoculating 
cells had to be in a certain fixed physiological condition. Cells for inoculation 
were always taken from test tubes where the growth was just finished. For an 
anaerobic inoculation of Saccharomyces cultures 48 hours old (at 28°C) were 
used, whilst the slow-growing Schizosaccharomyces for an anaerobic 
inoculation was taken at the age of five days at 28°C. Before inoculation the 
contents of the test tube was shaken, and a fixed number of drops of the liquid 
was introduced into the nutritive medium by means of a sterilized pipette. It 
was also necessary that an equal initial quantity of each species or, in other 
words, equal initial masses should be inoculated. It was found that in 
anaerobic test tubes intended for inoculation a mass of yeast in a unit of 
volume of the nutritive liquid is two and a half times smaller in 
Schizosaccharomyces than in Saccharomyces. Therefore in order to inoculate 
an equal initial quantity two drops of uniform suspension of Saccharomyces 
and five drops of Schizosaccharomyces were always introduced. In the case of 
a mixed culture, two drops of the first species plus five drops of the second 
were taken.2 We must prepare a perfectly uniform suspension of seed-yeast 
and the inoculation itself must be carried out rapidly so as to avoid possible 
errors from a settling of yeast cells in the inoculating pipette. This 
circumstance was pointed out by Richards ('32) and Klem ('33). All the 
experiments were carried out in a thermostat at a temperature of 28°C. 

________________________________  
2 A very strict equality of the masses of two species sown is not absolutely necessary. It is only important 
that the very same quantity of each species should be introduced into the mixed population and into the 
separately grown culture. This is very easy to do with our mode of inoculation. 
____________________________ 

(4) After inoculation it was necessary to study the growth of number and mass 
of yeast cells, and on the other hand to trace and to evaluate the changes in the 
factors of the medium. The counting of the number of yeast cells per unit of 
volume does not present any difficulty and for this purpose the Thoma 
counting chamber is usually employed. In our experiments three test tubes (or 
flasks) of the same age were taken and a uniform suspension of yeast was 
made by shaking. One cm3 of liquid was taken by a pipette from every tube 
and poured into another clean tube, where the three cm3 obtained from three 
tubes were fixed by 3 cm3 of 20 per cent solution of H2SO4. Individual 
fluctuations of separate cultures were thus neutralized, and a certain "average 
suspension" from three test tubes was obtained. The material fixed was more 
or less diluted with water, and then the number of cells per unit of volume was 
counted in the Thoma chamber. Quite recently Richards ('32) in his interesting 
paper describes in detail the methods of studying the growth of yeast, there he 
points out that the counting of the number of yeast cells is a very satisfactory 
method. As regards the possible sources of error, he indicates the following: 
(1) the sample placed in the counting chamber is not truly representative of 



the population sampled; (2) the cells do not settle evenly in the counting 
chamber. To eliminate these errors it is necessary to take several sample 
groups from the "average suspension," and to count a great number of squares 
in the chamber. In our experiments the fixed suspension was carefully mixed 
before the taking of the sample, a few drops were taken with a pipette, placed 
in the chamber, and ten squares were counted. Six such sample groups were 
successively taken, and the total number of counted squares amounted to 
sixty. Sometimes a lesser number of squares sufficed.  

The average number of cells in one large square of a Thoma chamber at the 
dilution corresponding to the material fixed (i.e., twice thinner than the initial 
suspension) is given in our tables. It is understood that the counts sometimes 
were made with considerably stronger dilutions, and they were 
correspondingly reduced to the accepted standard. A few words must be added 
concerning the counting of cells in mixed cultures. After a certain amount of 
practice it is quite easy to distinguish the two species of yeast, as the cells of 
Saccharomyces are much larger than those of Schizosaccharomyces and their 
structure is different. 

(5) The numbers of yeast cells belonging to two different species do not allow 
us to form an idea as to their masses. But it is just the masses of the species 
that are of particular importance in the processes of the struggle for life. This 
is because a unit of mass of a given species is usually connected by definite 
relations with the amount of food consumed or that of the waste-products 
excreted or generally speaking, with the factors limiting growth. Therefore the 
equations of the struggle for existence ought to be expressed in terms of 
masses of the species concerned and not in terms of the numbers of 
individuals, which are connected by more complex relations with the factors 
limiting growth. 

In order to pass on from the number of yeast cells of the first and second 
species counted at a definite moment to the masses of these species, we must 
take into account that: (1) the cells of the first species differ in their average 
volume from those of the second, (2) this average volume of the cell in each 
species can change in the course of growth of the culture. (Richards ('28b) 
showed that the average size of a cell of Saccharomyces cerevisiae is different 
at different stages of growth), and (3) the species can be of different specific 
weight. Therefore, by multiplying the volume of all the cells of a definite 
species at a given moment of time by their specific weight, we shall obtain the 
weight of the given organisms enabling us to judge of their mass. Assuming 
for the sake of simplification that the cells of our yeast species are near to one 
another in their specific weight, we can measure the volumes occupied by 
each species of yeast cells in order to obtain an idea of the masses of these 
cells. 



(6) The volume of yeast was determined by the method of centrifugation. The 
fluid from the test tubes or flasks with the counted number of yeast cells was 
centrifuged for one minute in a special tube placed in an electric centrifuge 
making 4000 revolutions per minute (usually in portions of 10 cm3 each). The 
liquid was then poured off and the yeast cells that had settled on the bottom 
were shaken up with the small quantity of the remaining liquid. The mixture 
thus obtained was transferred by means of a pipette into a short graduate glass 
tube of 3.5 mm in diameter. The mixture in the graduated tube was again 
centrifuged for 1.5 minutes, and then the volume of the sediment was rapidly 
measured with the aid of a magnifying glass. To avoid errors connected with 
the different degree of compression of the yeast in different cases, the quantity 
of the mixture poured into the short graduated tube was always such that the 
sediment did not exceed ten divisions of the graduated tube and, if necessary, 
the secondary centrifugation was made by several doses. The volume of yeast 
occupying one division of the graduated tube was taken for a unit.  

The centrifugation method may be criticized as, according to Richards ('32), 
even in employing the super-centrifuge of Harvey one can not succeed in 
obtaining a solid packing of the cells, and interstices remain between them. If 
we draw our attention to the fact that the size of the cells changes in the 
process of the growth of the culture, and that in mixed populations of the two 
species we have to deal with cells of different sizes then, theoretically, this 
must lead to a very different degree of packing of the cells in different cases, 
and the volume of the cells determined by centrifugation apparently does not 
yet allow us to judge of their mass. However, the measurements, some of 
which will be given further on, show that the errors which actually arise are 
small, and that the centrifugation method is perfectly reliable for our purposes.  

In the study of the population growth of yeast it is difficult to carry on 
observations upon the very same culture, as it is urgent to strictly maintain the 
sterility of the medium and to avoid injury to the cells. For this reason a great 
number of test tubes were inoculated at the beginning of the experiment; at 
certain fixed moments determinations were made upon a group of test tubes 
which were then put aside and further determinations were made upon new 
tubes. 

III 

(1) Having examined the technical details of cultivation of yeast cells we can 
now pass to the problem which interests us first of all: how does the 
multiplication of the yeast proceed in a microcosm with a limited amount of 
energy, and what are the factors which check the growth of the population? 
Let us begin by examining the kinetics of growth under anaerobic conditions. 
Figure 9 represents the growth of volume of the yeast Saccharomyces 
cerevisiae, according to the data of one of our experiments in 1930. It is 



clearly seen that the volume increases slowly at first, then faster, and finally 
slows down on approaching a certain fixed value. The curve of growth is 
asymmetrical, i.e., its concave part does not represent a reverse reflection of 
the convex one (Richards, '28c, Gause, '32a). The first of them is somewhat 
steep but the second comparatively inclined. This asymmetry is, however, not 
sharply expressed, and it can be neglected if we analyze the growth in a first 
approximation to reality. 

In experiments of this type immediately after the yeast cells are inoculated an 
intensive multiplication begins. There is scarcely any lag-period, or period of 
an extremely slow initial growth, while the cells adapt themselves to the 
medium. This is because we used for inoculation fresh yeast cells developed 
in a medium of an identical composition with those used in the experiment. 
This circumstance has been pointed out by Richards ('32). 

(2) An investigation of the shape of the curve which represents the 
accumulation of the yeast volume in the population of yeast cells does not 
enable us to judge what factors control the growth of the population and limit 
the accumulation of the biomass. The fact that the growth curve is S-shaped 
and resembles the well-known autocatalytic curve does not prove at all that 
the phenomenon we are studying has anything in common with autocatalysis. 
The question of the basic nature of the yeast growth in a limited microcosm 
can be elucidated only by means of specially arranged experiments. Such 
experiments were recently carried out by Richards ('28a) and confirmed by 
Klem ('33). 

 

Fig. 9. Growth in volume of the yeast Saccharomyces cerevisiae. From Gause 
('32a). 

We have already mentioned that the process of multiplication of organisms is 
potentially unlimited. It follows the law of geometric increase, and limitations 
are here introduced only by the external forces. In the case of yeast this 



circumstance was noted by Slator ('13), and recently Richards carefully 
verified it in the following manner. A control culture after the inoculation of 
yeast was left to itself, and the growth of the number of cells in this culture 
followed a common S-shaped curve and then stopped. In an experimental 
culture a change of the medium was made at very short intervals of time 
(every 3 hours). Here the conditions were all the time maintained constant and 
favorable for growth. Under these conditions the multiplication of yeast 
followed the law of geometric increase: in every moment of time the increase 
of the population constituted a certain definite portion of the size of the 
population. The relative rate of growth (i.e., the rate of growth per unit of 
population) remained constant all the time, or in other words there was no 
autocatalysis here. Figure 10 represents the data of Richards. To the left are 
shown the growth curves of the number of cells per unit of volume: the S-
shaped curve in the control culture, and the exponentially increasing one with 
continuously renewed medium. One can in the following manner be easily 
convinced that the exponentially increasing curve corresponds to the 
geometric increase: if against the absolute values of time we plot the 
logarithms of cell numbers, a straight line will be obtained (see the right part 
of Figure 10 taken from Richards). As is well known this is a characteristic 
property of a geometric increase. Nearly the same results were recently 
obtained by Klem ('33). 

 

Fig. 10. Growth curves of the yeast Saccharomyces cerevisiae. (a) Growth of 
the number of cells. (b) The same, plotted on logarithmic scale. From 
Richards ('28a). 

The experiments made by Richards show clearly that the growth of the yeast 
population is founded on a potential geometric multiplication of yeast cells 
(b1N1), but the latter can not be completely realized owing to the limited 
dimensions of the microcosm and consequently to the limited number of 
places (K). As a result the geometric increase becomes S-shaped. It is easy to 
see that the experimentation has led us to the very same assumptions that are 
at the bottom of Pearl's logistic equation of growth (see Chapter III, equations 
(8) and (9)). This equation is one that gives us the S-shaped curve starting 
from the point that growth depends on a certain potential geometric increase 



which at every moment of time is realized only in a certain degree depending 
on the unutilized opportunity for growth at that moment. 

In the equation of Pearl the unutilized opportunity for growth is expressed in 
terms of the population itself, i.e., as the relative number of the still vacant 
places. This presents a great advantage as we shall see later on. The unutilized 
opportunity of growth often depends on various factors, and to translate the 
number of "still vacant places" into the language of these factors may become 
a very difficult task. 

(3) Let us now analyze this problem. What is the nature of those factors of the 
environment which depress the growth of the yeast population and finally stop 
it? Of course they may be different in various cases, and we have in view only 
our conditions of cultivation. The nature of the factors limiting growth in such 
an environment has been explained mainly by the investigations of Richards. 
When the growth of yeast ceases in a test tube under almost anaerobic 
conditions, there still exists in the nutritive medium a considerable amount of 
sugar and other substances necessary for growth. A simple experiment made 
by Richards ('28a) is convincing: if at the moment when the growth ceases in 
the microcosm yeast cells from young cultures are introduced, they will give a 
certain increment and the population will somewhat increase. Consequently, 
there is no lack of substances required for growth. The presence of a 
considerable quantity of sugar at the moment when the growth ceases has 
been chemically established, and in our experiments this is even more 
apparent than in those of Richards, as our initial concentration of sugar was 5 
per cent and his only 2 per cent. 

If the growth ceases before the reserves of food and energy have been 
exhausted we must evidently seek an explanation in some kind of changes in 
the environment. This question has been studied by Richards and led him to 
conclude that the decisive influence here is the accumulation of ethyl alcohol. 
As has already been mentioned, when yeast cells grow in test tubes under 
almost anaerobic conditions the decomposition of sugar into alcohol and 
carbon dioxide serves them as a source of energy. Sugar is almost entirely 
utilized to obtain the available energy, and serves as food only in a very slight 
degree. As result a considerable amount of alcohol accumulates in the 
nutritive medium, which corresponds pretty well to the amount of sugar 
consumed. Curves of such accumulation of alcohol, taken from the paper of 
Gause ('32b), are represented in Figure 11. Here are given the results of two 
experiments made in test tubes, but on a nutritive medium of somewhat 
different concentration. In both cases a certain time after the experiment was 
begun the accumulation of alcohol (and, consequently, the consumption of 
sugar) proceeds almost in proportion to the increase of the volume of yeast. In 
other terms, a proportionality exists between the metabolism of the yeast cells 
and the growth of their volume. Later on, conditions arise in which the growth 



of the yeast ceases, but alcohol continues to accumulate. Therefore, at the 
moment when the growth ceases there are still unutilized resources of sugar in 
the medium. The life activity of the yeast cells and the accumulation of 
alcohol continue after the biomass has ceased growing. 

 

Fig. 11. The growth in volume and accumulation of alcohol in Saccharomyces 
cerevisiae in test tubes. From Gause ('32b). 



 

Fig. 12. The effect of additional alcohol upon the level of saturating 
population in Saccharomyces cerevisiae in test tubes. 

The microscopical study of the population of yeast cells made by Richards at 
the moment when growth was ceasing, has shown the following facts. The 
yeast cells continue to bud actively, but as soon as a bud separates from the 
mother cell it perishes. In this way, unfavorable chemical changes in the 
medium destroy the most sensitive link in the population, and lead to a 
cessation of its growth. According to Richards ('28a) the accumulating ethyl 
alcohol is just the factor which kills the young buds and inhibits the growth of 
the population. He showed this experimentally: with an addition of 1.2 per 
cent of ethyl alcohol to the nutritive medium, the maximal yield of population 
was 65 per cent from that of the control population (acidity kept constant). 
Therefore, with the additional alcohol the critical concentration of waste 
products at which growth ceases was reached with a smaller quantity of 
accumulated yeast volume. 

These data were criticized by Klem ('33) who carried out experiments with 
wort and not with William's synthetic medium, which Richards worked upon. 
Klem did not obtain any depression of growth by adding a small quantity of 
alcohol corresponding to the quantity which is usually accumulated in his 
cultures at the moment when the growth ceases. According to Klem, it is only 
at a concentration above 3 per cent that alcohol begins to depress growth, and 
only concentrations of about 7 per cent have a distinctly hindering influence. 
The experiments which I have made with yeast decoction and 5 per cent sugar 
confirm the data of Richards and not those of Klem. Figure 12 presents the 
results of several experiments. The level of the maximal population in the 
control was taken as 100, and the levels of the maximal populations in the 
cultures with this or that per cent of alcohol (added before the yeast was sown, 



all other conditions being equal) were expressed in per cent from the 
population level in the control. This figure shows that even 1 per cent of 
alcohol in our conditions lowers the maximal level of population 
considerably. As we have already seen (Fig. 11, bottom) at the moment the 
growth ceases in our cultures the concentration of alcohol is near to 2 per cent 
(with the usual composition of medium). This concentration is undoubtedly 
sufficiently high to be responsible for the cessation of growth. 

Klem expressed an interesting idea, namely that the cessation of growth is 
connected with the reaching of a definite relation between the concentration of 
the waste-products and the nutritive substances, i.e., alcohol and sugar. In 
other terms, the critical concentration of alcohol checking growth is by no 
means of an absolute character. With a small concentration of sugar, a 
comparatively weak concentration of alcohol hinders growth. But if the 
quantity of sugar be increased, this concentration of alcohol will no longer be 
sufficient for checking growth which will continue. Klem's opinion is 
perfectly justified and many experimental data confirm it. But, as he himself 
remarks, the ratio alcohol/sugar left at the moment growth ceases, also varies 
within rather wide limits. (A critical analysis of Figs. 53-54 on pp. 80-81 of 
his paper ('33) shows that even with concentrations of sugar from 1 to 5 per 
cent the ratio alcohol/sugar left does not remain constant, and that Klem's 
calculations are not quite exact.) 

(4) All we have said may be resumed thus: under our conditions of cultivation 
the cessation of growth of the population of yeast cells begins before the 
exhaustion of the nutritive and energetic resources of the medium. The direct 
cause of this cessation is the accumulation of ethyl alcohol which kills the 
most sensitive members of the population�—the young buds. This critical 
concentration of alcohol is not of an absolute character, and in a first 
approximation we can say that the cessation of growth is connected with the 
establishment of a definite ratio between the concentrations of waste-products 
(alcohol) and the nutritive substances (sugar). We now have to answer the 
question raised earlier: what factors will furnish us with the terminology for 
expressing the "number of vacant places" or "the unutilized opportunity for 
growth" in the population of yeast cells under our conditions of cultivation? 
Since the growth of population ceases with the establishment of a certain ratio 
alcohol/sugar a thought might appear that we ought to connect the unutilized 
opportunity for growth somehow with the ratio. However this would be a false 
deduction from correct premises. We can see at once that we have to deal here 
with two different things. (1) Should we wish to make a purely theoretical 
calculation of the level of saturating population m our microcosm, we would 
certainly be obliged to take into consideration the ratio between the 
concentrations of alcohol and sugar, and to try to calculate the moment when 
this ratio attains a definite value. But certainly we should at once have to 
introduce numerous corrections, as various other factors have also an 



influence here. (2) The conditions of the problem before us are quite different. 
We know beforehand at what level the population ceases to grow, and what is 
the corresponding value of different factors of the environment. We wish only 
for different moments of time preceding the cessation of growth to translate 
"the unutilized opportunity for growth" into terms of the limiting factor. Such 
limiting factor is always alcohol destroying the young buds. However 
considerably other factors of the environment and the condition of the cells 
themselves should alter the absolute value of the critical alcohol 
concentration, this does not essentially change the matter. Consequently "the 
unutilized opportunity for growth" or "the number of still vacant places" can 
simply be determined by the difference between the critical concentration of 
alcohol at the moment of cessation of growth, which is characteristic for the 
given conditions and established experimentally in every case, and the 
concentration of alcohol at a given moment of time.  

The accumulation of the yeast volume at the moment of the cessation of 
growth is everywhere marked by K, and the amount of volume at a given 
moment is N. Alcohol production per unit of yeast volume is rather constant, 
and increases somewhat only before growth is checked (see Fig. 11). Taking 
the alcohol production per unit of yeast volume as a constant for the entire 
process of growth of the population as the very first approximation to reality, 
we can easily pass from the given (N) and maximal (K) amount of yeast, 
through multiplying them by certain coefficients, to the given and critical 
concentrations of alcohol. 

(5) It is easy to see that, while we give up any attempt to discover a certain 
universal growth equation forecasting the level of the saturating population 
under any conditions, if we use the logistic equation we express rationally, 
very simply, and in complete agreement with experimental data, the 
mechanism of growth of a homogeneous population of yeast cells. The 
attempts to find universal equations will scarcely lead to satisfactory results, 
and in any case all this would be too complicated for a mathematical theory of 
the struggle for existence in a mixed population of two species. One of the 
leading ideas of this book is that all the quantitative theories of population 
growth must be only constructed for strictly determined cycles or epochs of 
growth, within which the same limiting factors dominate and a certain 
regulating mechanism remains invariable. 

Experiments with yeast point also to a very important circumstance in the 
experimental analysis of populations. All the conditions of cultivation ought 
to be so arranged that the growth depends distinctly on only one limiting 
factor. In the case of yeast we must have a sufficiently high concentration of 
sugar and other necessary substances in the nutritive medium so that the 
alcohol can in full measure manifest its inhibitory action. As we shall see in 
the next chapter in experimenting with Protozoa, it is very easy to arrange 



experiments under such complicated conditions and with the interference of 
such a great number of various factors that the attempts to discover certain 
fundamental quantitative relations in the struggle for existence will never have 
any success. 

IV 

(1) Our study of the growth of homogeneous populations of yeast cells was 
only a preparation before we pass on to the investigation of the struggle for 
existence between two species in a mixed culture. The simplest way to do this 
is again to begin by an analysis of the kinetics of growth. Let us examine the 
experiments of 1931. In Table 1 (Appendix) data are given on the anaerobic 
growth of the volume and of the number of cells in the two species of yeast: 
Saccharomyces and Schizosaccharomyces, cultivated separately and in a 
mixed population in two independent series of experiments. One hundred and 
eleven separate microcosms were studied in these two series, and every figure 
in Table 1 (Appendix) is founded on three observations. Figure 13 represents 
graphically the growth of the yeast volume. We can see that the growth of 
Schizosaccharomyces under anaerobic conditions is exceedingly slow. Let us 
note also that its population attains a much lower level than that of 
Saccharomyces. The volume of the mixed population is also smaller than the 
volume of the pure culture of Saccharomyces. 

  

 

Fig. 13. The growth in volume of Saccharomyces cerevisiae, 
Schizosaccharomyces kephir and mixed population in two series of 
experiments. Anaerobic conditions. From Gause ('32b). 

The parts taken up by each of the species in the yeast volume of a mixed 
culture have been evaluated in the following manner. First of all, a calculation 
was made of the average number of cells per unit of yeast volume for the 
separate growth of Saccharomyces and Schizosaccharomyces (see Appendix, 
Table 1). It appears that the mean number of cells occupying a unit of yeast 
volume varies in the course of the growth of the culture, as Richards has 



already established. However, these variations are not great, and for further 
calculations average values for the entire cycle of growth can be taken. 
According to the first series of experiments, in Saccharomyces 16.59 cells in a 
square of a Thoma counting chamber correspond to one unit of yeast volume; 
in the smaller species Schizosaccharomyces there are 57.70 cells in one unit of 
yeast volume. Starting from these averages, we have calculated the volumes 
occupied by each species in the mixed population at a given moment, 
according to the number of cells of each species observed in the mixed 
population. (In the experiments of 1932 which are given further on we did not 
use such general averages for our calculations, but started every time from the 
average number of cells observed at a given moment of time.) 

The sum of the calculated volumes of both species in the mixed culture at a 
given moment should agree with the actual volume of mixed population at 
this moment determined by the method of centrifugation. In the first series the 
totals of calculated volumes are somewhat smaller than the volumes actually 
observed, and we know the causes of this disagreement. In the second series 
these causes have been eliminated, and the coincidence between the totals of 
the volumes calculated and the volumes actually observed is a satisfactory 
one. 

(2) Figures 14 and 15 give the curves of the growth of the yeast volume in 
Saccharomyces and Schizosaccharomyces cultivated separately and in a 
mixed population. The curves of the separate growth of each species are 
expressed with the aid of simple logistic curves of the following type (the 
details of these calculations are to be found in the Appendix): 

, 

where N is yeast volume, t is time, b and K are constants. The fitting of the 
logistic curves has given us the following values of the parameters for the 
separate growth of our species (Sp. No. 1 is Saccharomyces, No. 2 is 
Schizosaccharomyces): 

Maximal volumes: K1=13.0; K2 = 5.8 

Coefficients of geometric increase: 

bl = 0.21827; b2= 0.06069 

The calculated coefficients of geometric increase show that per unit of time 
(one hour) every unit of volume of Saccharomyces can potentially give an 
increase equal to 0.21827 of this unit, and in Schizosaccharomyces equal to 
only 0.06069. 



 

Fig. 14. The growth in volume of Saccharomyces cerevisiae cultivated 
separately and in the mixed population in two series of experiments. 
Anaerobic conditions. From Gause ('32b). 

 

Fig. 15. The growth in volume of Schizosaccaromyces kephir cultivated 
separately and in the mixed population in two series of experiments. 
Anaerobic conditions. From Gause (32b). 

Having obtained in this way the potential coefficients of multiplication of our 
species (or, which means the same, the coefficients of geometric increase) we 
must now according to the general plan given at the beginning of this chapter 
pass on to a calculation of the empirical coefficients of the struggle for 
existence. In this we start by assuming that the system of equations of 
competition (see Chap. 3, equations (11) and (12)): 



 

actually describes the experimental data. All the values in these equations 
except the coefficients of the struggle for existence  and , are known to us. 
To find the latter let us solve this system of two equations with two unknown 
values in respect to  and  . We obtain: 

 

The values on the right side of both expressions can easily be calculated from 
experimental data. Thus in the case of the coefficient  : (1) bl and K1 are 
known from the curve of separate growth of the first species, (2) N1 and N2 or 
the volumes of the first and second species in a mixed population at a given 
moment of time (t), can be taken from the graph by measuring the ordinates of 

the corresponding curves of growth, (3) represents the rate of growth of 
the first species in the mixed population, or the increase of volume per unit of 
time, and can also be easily determined from the graph. It will be sufficient for 

this to draw a tangent at a given point and to measure graphically or, 
better, to use a Richards-Roope ('30) tangent meter for graphical 
differentiation.3 As a result we shall obtain the values of the coefficients of the 
struggle for existence (  and ) for different points of the curve, i.e., for 
different moments of growth: t1, t2, etc. The values of the coefficients 
calculated for different moments are subject to fluctuations, but by using the 
middle zone of growth sufficiently constant values will be obtained. Thus, the 
coefficient  in the experiments of 1931 was equal to: 0.501, 0.349, 0.467, 
with an average of 0.439. The fluctuations of the coefficient a were more 
considerable, but the experiments of 1932 give more constant values for a 
also: 3.11, 3.06, 2.85, etc. 

________________________________  
3 Made by Bausch and Lomb Optical Co. 
________________________________ 



The fluctuations in the values of the coefficients of the struggle for existence 
are due in this case in a considerable measure to an imperfect method of their 
calculation.4 However, this is of no serious consequence, as we have a good 
method for verifying the average values of the coefficients of competition. 
This method consists in constructing a curve corresponding to the differential 
equation of competition (the details of this calculation are to be found in the 
Appendix). A close agreement of the calculated curve of growth of each 
species in a mixed population with experimental observations represents a 
good proof of the correctness of the numerical values of the coefficients of the 
struggle for existence. As regards the yeasts Saccharomyces and 
Schizosaccharomyces here concerned, their calculated curves of growth are 
given in Figures 14 and 15. 
________________________________  
4 In Chapter V we shall meet a more complicated situation. 
________________________________ 

In a mixed population of Saccharomyces and Schizosaccharomyces under 
anaerobic conditions the coefficients of the struggle for existence have the 
following values:  (showing the intensity of the influence of 
Schizosaccharomyces on Saccharomyces) = 3.15;  (intensity of the influence 
of Saccharomyces on Schizosaccharomyces) = 0.439. In other words, one unit 
of volume of Schizosaccharomyces decreases the unutilized opportunity for 
growth of Saccharomyces 3.15 times as much as an equal unit of volume of 
Saccharomyces itself. The species Schizosaccharomyces with its 
comparatively small volume takes up "a great number of places" in the 
microcosm. The reverse action of Saccharomyces on Schizosaccharomyces is 
comparatively weak. One unit of volume of Saccharomyces decreases the 
unutilized opportunity for growth of Schizosaccharomyces as much as 0.439 
unit of the latter species' own volume. 

(3) We now pass on to the most important part of this chapter, i.e., to the 
comparison of the empirically established coefficients of the struggle for 
existence with those which are to be expected on the basis of a direct study of 
the factors controlling growth. The values of the coefficients of the struggle 
for existence mentioned above are founded upon an analysis of the kinetics of 
growth of a mixed population. Let us at present leave them aside and endeavor 
to calculate the values of the coefficients of competition starting from the 
alcohol production. As mentioned above, the cessation of growth is connected 
with the reaching of a certain critical concentration of alcohol (characteristic 
for the given species under given conditions). Let us now assume that it is 
mainly alcohol that matters and that other byproducts of fermentation are but 
of subordinate importance. Consequently, every unit of volume in each 
species produces a determined amount of alcohol, and when the latter reaches 
a certain threshold concentration the growth is checked. It follows that when a 



unit of volume of the first species produces an amount of alcohol considerably 
surpassing that produced by a unit of volume of the other species and the 
threshold values of alcohol in both are somewhat near to one another, the 
critical concentration of alcohol and the cessation of growth in the first species 
will be reached with a lower level of accumulated yeast volume. In Table V 
are given the data on the alcohol production in Saccharomyces and 
Schizosaccharomyces under anaerobic conditions. The determinations of the 
alcohol were made for the middle stages of growth, when its accumulation 
was almost strictly in proportion to the increase of the yeast volume. In 
Saccharomyces the alcohol production per unit of volume averages 0.113 per 
cent by weight, and in Schizosaccharomyces 0.247. These data show clearly 
that the latter species utilizes the medium unproductively and it occupies "a 
great number of places" by a comparatively small volume. At the same time 
this is an explanation of the low level of the accumulation of biomass in the 
separate cultures of Schizosaccharomyces, and the diminished volume of the 
mixed population in comparison with the volume of Saccharomyces cultivated 
separately. 

We can now calculate approximately the critical concentrations of alcohol for 
the separate growth of each species of yeast if we multiply the maximal 
volumes of these species (K) by the alcohol production per unit of yeast 
volume. For Saccharomyces we shall have: 13.0  0.113 = 1.47, and for 
Schizosaccharomyces: 5.8  0.247= 1.43. In other words, the critical alcohol 
concentrations for both species are about equal. 

TABLE V 
Alcohol production in Saccharomyces cerevisiae  
and Schizosaccharomyces kephir 
From Gause ('32b) 

 SACCHAROMYCES  SCHIZOSACCHAROMYCES 
  

Age in 
hours 

  

Alcohol, 
per cent 

Yeast 
volume in 
10 c.c. of 
the 
medium 

Alcohol per 
unit of yeast 
volume 

  

Age in 
hours 

  

Alcohol, 
per cent 

Yeast 
volume in 
10 c.c. of 
the 
medium 

Alcohol per 
unit of yeast 
volume 

16 

16 

24 

1.100 

0.480 

1.690 

10.20 

5.33 

12.22 

0.108 

0.090 

0.138 

Mean=0.113

48 

72 

0.728 

1.425 

3.08 

5.51 

0.236 

0.259 

  

 Mean=0.247

 



Let us now calculate the degree of influence of one species upon the 
unutilized opportunity for growth of another in a mixed population, or the 
coefficients of the struggle for existence. If we take as a unit the degree of 
decrease of the unutilized opportunity for growth of Saccharomyces by a unit 
of its own yeast volume, we have then to answer the following question: how 
much more or less does a unit of the yeast volume of Schizosaccharomyces 
decrease the unutilized opportunity for growth of Saccharomyces in the mixed 
population, in comparison with the effect of a unit of the volume of the latter 
species? Then, taking the ratio of the alcohol production per unit of yeast 
volume in Schizosaccharomyces to the alcohol production of Saccharomyces 
we shall find the coefficient of the struggle for  

existence according to the alcohol production: . 

Correspondingly: . 

(4) Comparing the results of the examination of the kinetics of growth of a 
mixed population with the data on the alcohol production, we observe a 
certain agreement in the general features. A very strong influence of 
Schizosaccharomyces upon Saccharomyces made apparent in the analysis of 
the kinetics of growth proved itself to be connected with the great alcohol 
production per unit of yeast volume in the former species. However, a strict 
coincidence of the data of these two independent methods of investigation 
does not occur here. Thus Schizosaccharomyces excretes a quantity of alcohol 
per unit of yeast volume 2.186 times as great as Saccharomyces, but 
influences the growth of the latter 3.15 times as much. Consequently, 
Schizosaccharomyces not only produces a greater amount of alcohol, but the 
alcohol produced by it is so to say "more toxic" for Saccharomyces than the 
alcohol produced by the latter itself. All this tends to imply that the situation is 
here complicated by the influence of certain other waste products getting into 
the surrounding medium in small quantities. The relations between species in 
these experiments are therefore not so simple as has been supposed at the 
beginning of this section  

V 

(1) The above described experiments of 1931 were repeated in 1932, and the 
new data confirmed all the observed regularities. In these new experiments the 
influence of oxygen upon the growth of a mixed population of the same two 
species of yeast was investigated, and this enabled us to further somewhat our 
understanding of the nature of the competitive process. 



The experimental data given in the preceding section have to do with the 
growth of a yeast population under "anaerobic conditions," i.e., in test tubes. 
In order to study the influence of oxygen on the growth of the yeast 
population, together with experiments in test tubes we arranged other 
experiments under conditions of somewhat better aeration. The technique of 
such "aerobic" and "anaerobic" experiments has already been described at the 
beginning of this chapter. Here it must only be remarked that in the "aerobic" 
series the access of oxygen was very limited, and a part of the available 
energy was, as before, obtained by our species through alcoholic fermentation. 
As a result, a considerable amount of alcohol accumulated in the nutritive 
medium (as will be seen in the corresponding tables), and in its essential 
features the mechanism limiting the growth of the yeast population remained 
the same. The experiments of 1932 consisted of two aerobic and two 
anaerobic series. In them 168 separate microcosms were studied. 

In all the experiments of 1932 nutritive medium of the same preparation was 
used. It was made according to the usual method, but the dry beer yeast was of 
another origin. As a result, the absolute values of growth were somewhat 
different. It must also be remarked that in all the new experiments the 
centrifuged volume of yeast was always reduced to 10 cm3 of nutritive 
medium. 

(2) Figure 16 represents the growth curves of Saccharomyces, 
Schizosaccharomyces and of the mixed population according to two series of 
experiments in conditions analogous to the former anaerobic ones. The 
general character of these curves coincides with that of Figure 13. A more 
careful comparison of the anaerobic series of 1932 with that of 1931 shows 
that the first is characterized by considerably smaller absolute values of 
growth (Table VI). At the same time Schizosaccharomyces grown separately 
attains a somewhat higher level in comparison with Saccharomyces than 
formerly. Thus, the volume of the saturating population of the separately 

growing Schizosaccharomyces represented in older experiments 
per cent of that of Saccharomyces (1931), but in the new experiments it is 

per cent (1932). In the experiments of 1932 the relative volume 
of Schizosaccharomyces in the mixed population increased also. As a result 
the decrease of the volume of the mixed population in comparison with the 
volume of separately growing Saccharomyces is more pronounced in 1932 
than in 1931. 



 

Fig. 16. The growth in volume of Saccharomyces cerevisiae, 
Schizosaccharomyces kephir and mixed population. Above: Aerobic 
conditions. Below: Anaerobic conditions (1932). 

In spite of the alterations in the absolute values of growth and a certain change 
in the relative quantities of species, the coefficients of the struggle for 
existence which we had calculated for the anaerobic experiments of 1932 
coincided almost completely with those of the year before. A similar 
coincidence exists in the ratio of the alcohol production of one species to that 
of another, which is to be found in Table VII. In this manner the coefficients 
of the struggle for existence remain invariable under definite conditions in 
spite of the changing absolute values of growth. 

TABLE VI 
Parameters of the logistic curves for separate growth of Saccharomyces 
cerevisiae and Schizosaccharomyces kephir under aerobic and anaerobic 
conditions (1932) 

  K  

(Maximal 
volume) 

b 

(Coefficient of 
geometric 
increase) 

a 

(See Appendix 
II) 

 
The volume of 
N at t=0 

Saccharomyces anaerobic 
Saccharomyces aerobic 
Schizosaccharomyces anaerobic 
Schizosaccharomyces aerobic  

6.25 
9.80 
3.0 
6.9 

0.21529 
0.28769 
0.04375 
0.18939 

4.00652 
4.16358 
2.07234 
2.78615 

0.112 
0.152 
0.335 
0.401 

TABLE VII 
Coefficients of the struggle for existence and the relative alcohol production 
under aerobic and anaerobic conditions 



  Coeffiicients of the struggle 
for existence 

Relative alcohol production 

       1 

 
Anaerobic conditions 
(1931) 
Anaerobic conditions 
(1932) 
Aerobic conditions (1932) 

3.15 

3.05 

1.25 

0.439 

0.400 

0.850 

2.186 

2.080 

1.25 

0.457 

0.481 

0.80 

  

(3) Let us now turn to the aerobic experiments (1932) and compare them to 
the anaerobic ones (1932). As might have been expected, in aerobic 
conditions the absolute values of growth of the yeast increase considerably 
(Fig. 16). What is especially striking is the behavior of Schizosaccharomyces. 
Though it is a slowly growing species under anaerobic conditions, with a low 
level of biomass, it begins to grow rapidly with an access of oxygen and in its 
properties approaches Saccharomyces. The maximal volumes and coefficients 
of geometric increase given in Table VI show these regularities in a 
quantitative form. When there is no oxygen and fermentation is the only 
source of available energy, the coefficient of geometric increase in 
Schizosaccharomyces is very low and equal to 0.04375. Under the influence 
of oxygen this coefficient increases 4.3 times and attains 0.18939, whereas in 
Saccharomyces the coefficient of geometric increase under the same 
conditions rises but slightly (from 0.21529 to 0.28769). 

 



Fig. 17. The growth in volume of Saccharomyces cerevisiae and 
Schizosaccharomyces kephir cultivated separately and in the mixed population 
under aerobic and anaerobic conditions (1932). All curves are drawn 
according to equations. 

  

The sharp changes in the properties of our species under aerobic conditions 
produce a completely new situation for the growth of a mixed population (see 
Fig. 17). As before, we have calculated the coefficients of the struggle for 
existence and Table VII shows that they differ considerably from the 
anaerobic ones. If in anaerobic experiments the coefficient  , which 
characterizes the intensity of influence of Schizosaccharomyces upon 
Saccharomyces, was equal to 3.05-3.15, than under aerobic conditions it is 
equal to 1.25. In other terms the influence of Schizosaccharomyces on 
Saccharomyces is no longer 3.05, but only 1.25 times as strong as the 
influence of the latter upon itself. 

(4) Let us now examine the production of alcohol under aerobic conditions. 
The corresponding data are given in Table 2 (Appendix). As was to be 
expected, in aerobic conditions the amount of alcohol per unit of yeast volume 
is smaller than in anaerobic ones, because a part of the available energy is 
furnished by oxidation. It is interesting to compare the critical concentration 
of alcohol at which growth ceases, in aerobic and anaerobic conditions. Let us 
multiply as before the production of alcohol per unit of yeast volume by the 
maximal volume. For the anaerobic experiments of 1932 we shall obtain: 
Saccharomyces, 6.25  0.245 = 1.53; Schizosaccharomyces, 3.0  0.510 = 
1.53. These threshold concentrations of alcohol coincide in both species, and 
they are sufficiently near to those with which we have had to deal in the 
anaerobic experiments of 1931. As to the threshold concentrations of alcohol 
in aerobic conditions, they prove to be higher than in the anaerobic ones, and 
in Saccharomyces the threshold lies somewhat higher than in 
Schizosaccharomyces: Saccharomyces, 9.80  0.207 = 2.03; 
Schizosaccharomyces, 6.9  0.258 = 1.78. 

If we now calculate for aerobic conditions the degree of influence of 
Schizosaccharomyces upon Saccharomyces starting from the production of 
alcohol per unit of yeast volume, we shall obtain: 

 

Correspondingly the coefficient 



 

Comparing these results with the data of the kinetics of growth, we see (Table 
VII) that in aerobic conditions the degree of influence of one species upon 
another calculated according to the system of equations of the struggle for 
existence fully coincides with the coefficients of the relative alcohol 
production. Therefore, the process of competition between our species in 
aerobic conditions is entirely regulated by alcohol, and there is scarcely any 
interference of other factors. 

(5) We can now appreciate from a more general viewpoint the results of the 
aerobic experiments as well as those of this chapter. It has been shown that 
under aerobic conditions the theoretical equation of competition between two 
species of yeast for a common place in the microcosm given for the first time 
by Vito Volterra is completely realized. In other words, if we know the 
properties of two species growing separately, i.e., their coefficients of 
geometric increase, their maximal volumes, and alcohol production per unit of 
volume when alcohol limits the growth, then connecting these values into a 
theoretical equation of the struggle for existence we can calculate in what 
proportion a certain limited amount of energy will be distributed between the 
populations of two competing species. This means that we can calculate 
theoretically the growth of species and their maximal volumes in a mixed 
population. The equation of the struggle for existence expresses the idea that a 
potential geometric increase of each species in every infinitesimal interval of 
time is only realized up to a certain degree depending on the unutilized 
opportunity for growth at that moment, and that the species possesses certain 
coefficients of seizing this unutilized opportunity. Such theoretical 
calculations agree completely with the experimental data only under aerobic 
conditions, where the limitation of growth in both species depends almost 
completely on the ethyl alcohol. In the case of anaerobic conditions the 
situation becomes more complicated as a result of the influence of certain 
other waste products. This shows that extreme care is necessary in the 
investigation of biological systems, because various and often unexpected 
factors may participate in the process of interaction between two species. 

 



Chapter V 

COMPETITION FOR COMMON FOOD IN PROTOZOA 

I 

(1) At the end of the last century Boltzmann, considering the struggle for 
existence in the biosphere as a whole, remarked that there exists a 
considerable quantity of essential mineral substances needed by all living 
beings, but that the resources of available solar energy are comparatively more 
restricted and they constitute the narrow link representing the principal object 
of competition. This circumstance has since been pointed out by many 
biophysicists, and we will quote the words of Boltzmann himself ('05): "The 
general struggle for existence of all living beings is not the struggle for the 
fundamental substances, for these fundamental substances indispensable for 
all living creatures exist abundantly in the air, the water and the soil. This 
struggle is not a struggle for the energy which in the form of heat, 
unfortunately not utilizable, is present in a great quantity in every object, but it 
is a struggle for entropy, which is available when energy passes from the hot 
sun to the cold earth. In order to utilize in the best manner this passage, the 
plants spread under the rays of the sun the immense surface of their leaves, 
and cause the solar energy before reaching the temperature level of the earth 
to make syntheses of which as yet we have no idea in our laboratories. The 
products of this chemical kitchen are the object of the struggle in the animal 
world." This idea of Boltzmann that the available solar energy represents the 
narrow link for the living matter in the biosphere taken as a whole is in a 
certain agreement with the data of the modern geochemists. Thus Professor 
Vernadsky ('26) points out that a part of the solar energy which is capable of 
producing chemical work on the earth is to the very end utilized in the 
mechanism of the biosphere. In other words, the transforming surface of the 
green living matter utilizes entirely the rays of a definite wave-length in the 
process of photosynthesis.  

(2) However that may be, the energetic side of the struggle for existence in the 
biosphere as a whole has as yet been little studied, and at the present level of 
our knowledge we will have to undertake a detailed analysis of the most 
simple cases only. But the words of Boltzmann compel us to turn our 
particular attention to those narrow links in the conditions of our microcosm 
which constitute the real objects of the competition. In the foregoing chapter 
we had to deal with a competition of the yeast cells for the utilization of a 
certain limited amount of energy in the test tube. The limit for the growth of 
the biomass in these organisms was connected with the accumulation of the 
waste product (alcohol), and this factor stopped the growth before the 
exhaustion of the energetic resources of the microcosm. As a result the entire 



process of competition could be expressed in terms of the narrow link�—
alcohol production. Thus the situation in these experiments was a peculiar 
one.  

In the present chapter we will try to approach the regularities which, as 
Boltzmann supposed, are characteristic for the biosphere as a whole. We will 
examine the struggle for existence in carefully controlled populations of 
Protozoa. Here the growth will be limited by an insufficiency of organic 
nutritive substances, a factor analogous to an insufficiency of available 
energy. The second peculiarity is that the energetical resources of the 
microcosm will be maintained continuously at a certain fixed level in the 
course of the experiment. This approaches somewhat to what exists in nature, 
where the level of energy is maintained by the uninterrupted influx of solar 
energy. As before we will be concerned in these experiments with the problem 
in what proportion the energy of the microcosm will be distributed between 
the populations of the two competing species. But besides this first stage we 
shall be enabled to examine here the following fundamental question: Will one 
species drive out the other after all the available energy of the microcosm has 
been already taken hold of? And if so, will one species in these conditions 
drive the other one out completely, or will a certain equilibrium become 
established between them?  

(3) It has been already tried more than once to use Protozoa for the study of 
the communities of organisms and their succession under laboratory 
conditions. But as an ecologist has recently remarked, the mere fact of a 
community set up in a laboratory dish does not mean at all that it is simple. 
Interesting observations have been made on the succession of communities of 
Protozoa in a hay infusion by Woodruff ('12) Skadowsky ('15) and more 
recently by Eddy ('28). However, in experiments of this type there exists a 
great number of different factors not exactly controlled, and a considerable 
difficulty for the study of the struggle for existence is presented by the 
continuous and regular changes in the environment. It is often mentioned that 
one species usually prepares the way for the coming of another species. 
Recollecting what we have said in Chapter II it is easy to see that in such a 
complicated environment it is quite impossible to decide how far the 
supplanting of one species by another depends on the varying conditions of 
the microcosm which oppress the first species, and in what degree this is due 
to direct competition between them. In this connection one of the main 
problems of our experiments with Protozoa has been to eliminate the 
complicating influence of numerous secondary factors, and to apply such a 
technique of cultivation as would enable one to form a perfectly clear idea as 
to the nature of the factor limiting growth. This could not be done at once and 
the technique of our first experiments presented all the usual defects. Only 
later, taking into account certain suggestions of American authors, we made 
use of a synthetic medium for cultivating the Protozoa, and the result 



furnished exceedingly clear data to a detailed description of which we will 
soon pass.  

(4) A new property of the infusorian population distinguishing it from that of 
yeast cells is that the infusorian population constitutes a secondary population 
living at the expense of bacteria which it devours. Thus here appears an 
elementary food chain: bacteria  infusoria. In our initial experiments the 
standardization of the conditions of cultivation was only a quite superficial 
one. Without taking any precautions as to an exact control of the 
physicochemical properties of the medium and the number of growing 
bacteria, we prepared the nutritive medium in the following manner: to 100 
c.c. of tap water 0.5 gr. of oatmeal was added; the whole was boiled for 10 
minutes, left to stand and then the upper liquid was carefully poured off, 
diluted 1.5 times by water, and sterilized in an autoclave. After this an 
inoculation of Bacillus subtilis was made, and the medium was put into the 
thermostat at 32° for seven days in order to obtain an abundant growth of 
bacteria. Before using, the medium was diluted twice by tap-water, and 
without any further sterilization was put into test tubes. (This was the so-
called "oaten medium without sediment." The "oaten medium with sediment" 
mentioned in Chapter VI differs in its not being diluted by water before using, 
and a small quantity of sediment originating from the oatmeal was allowed to 
remain.) The cultivation was made in tubes with a flat bottom (about 1 cm in 
diameter and 5-6 cm high) of the nutritive solution. The tubes were closed by 
cotton wool stoppers and kept in a moist thermostat at 26°C. Close 
paraffinized cork stoppers were not found convenient because if we use them 
the population begins to die off immediately after cessation of growth, and the 
curves take the form described by Myers ('27). At the same time under 
optimal conditions after the growth of the population has ceased the level of 
the population is maintained unchanged for a certain time, and only later 
Paramecia begin to die off.  

In the initial experiments no change of the medium in the course of growth of 
the population was made, and the increase in the number of individuals was 
studied according to the average values for the test tubes of a definite age. The 
contents of the tube was destroyed every time after examination just as in the 
experiments with yeast. The counting was made under a magnifying glass on 
a slide plate. Figure 18 represents the growth of the number of individuals in 
pure lines of Paramecium caudatum and Stylonychia mytilus cultivated 
separately and in a mixed population. These data are founded on two 
experiments which gave similar results. At the beginning of the experiment 
into each tube were placed five Paramecium, or five Stylonychia, or five 
Paramecium plus five Stylonychia in the case of a mixed population. 
Stylonychia for inoculation must be taken from young cultures to avoid an 
inoculation of degenerating individuals.  



(5) The growth curves of the number of individuals in Figure 18 are S-shaped 
and resemble our well known yeast curves. After growth has ceased the level 
of the saturating population is maintained for a short time, and then begins the 
dying off of the population which is particularly distinct in Stylonychia. It is 
evident that this dying off is regulated by factors quite different from those 
which regulate growth, and that a new system of relations comes into play 
here. Therefore there is no reason to look for rational equations expressing 
both the growth and dying off of the populations.  

Figure 18 shows that Stylonychia, and especially Paramecium, in a mixed 
culture attain lower levels than separately. The calculated coefficients of the 
struggle for existence have the following values: a (influence of Stylonychia 
on Paramecium) = 5.5 and  (influence of Paramecium on Stylonychia) = 
0.12. This means that Stylonychia influences Paramecium very strongly, and 
that every individual of the former occupies a place available for 5.5 
Paramecia. With our technique of cultivation it is difficult to decide on what 
causes this depends. As a supposition only one can point to food consumption.  

 

Fig. 18. The growth in number of individuals of Paramecium caudatum and 
Stylonychia mytilis cultivated separately and in the mixed population. d 
denotes lower asymptote. From Gause ('34b) 



(6) We have but to change slightly the conditions of cultivation and we shall 
obtain entirely different results. Figure 19 represents the growth of 
populations of the same species on a dense "oaten medium with sediment" 
sown with various wild bacteria. Here owing to an increase in the density of 
food the absolute values of the maximal population in both species have 
considerably increased. The character of growth of the mixed population now 
essentially differs from the former one: Paramecium strongly influences 
Stylonychia, while Stylonychia has almost no influence upon Paramecium. 
We simply have here an "alchemical stage" of investigation, and the absence 
of an exact control of the conditions of the medium creates the impression of a 
complete arbitrariness of the results of our experiments. Unfortunately many 
protozoological researches are still in this stage, and the idea is very 
widespread that "Protozoa are not entirely satisfactory for the study of 
populations as they require bacteria for food, and it is very difficult to measure 
accurately and to analyze the relations between protozoan population and the 
bacterial population."  

 

Fig. 19. The growth in number of individuals of Paramecium caudatum and 
Stylonychia mytilus cultivated separately and in the mixed population. 
Medium contains wild bacteria.  

In order to draw any reliable conclusions as to the quantitative laws of the 
struggle for existence in Protozoa we must begin by elaborating the technique 
of cultivation, keeping in mind the following excellent words of Raymond 
Pearl: "When the biologist exercises something approaching the same 
precision and infinitely painstaking care, over all the most trivial details of a 
biological experiment that the physicist does over his, the results tend to take 
on a degree of precision and uniformity not so far short of that usual in the 
older science, as we are accustomed to expect" ('28, p. 35). 



II 

(1) Jennings pointed out the necessity of a careful control of bacteria in the 
cultures of Protozoa in 1908, and one of the first attempts to grow Paramecia 
in pure cultures of bacteria was made by Hargitt and Fray ('17), Oehler ('20) 
and Jollos ('21). Since then numerous researches have appeared and a good 
review of them can be found in the recently published book of Sandon ('32) 
The Food of Protozoa as well as in Hartmann ('27) and Belar ('28). It can be 
noted in a quite general form that in order to standardize the conditions of 
cultivation of Protozoa it is necessary: (1) to standardize the quality of food�— 
to cultivate the Protozoa on bacteria of a definite species, (2) to standardize 
the quantity of food�—the number of bacteria per unit of volume must have a 
fixed value, and (3) to standardize the physicochemical conditions of the 
medium. These difficult and as one may think hardly realizable problems have 
been solved very simply for Oxytrichia by Johnson ('33), who has been partly 
preceded by Barker and Taylor ('31). The method is this: a culture of a certain 
bacterium is made on a solid medium and then a fixed quantity of bacteria is 
taken off the solid medium and transferred into a balanced physiological salt 
solution, where these bacteria do not multiply and serve as food for the 
Protozoa. Like Johnson we used Osterhout's salt solution, the composition of 
which is given in Table VIII. As will be shown further on, in certain 
experiments this medium was buffered and kept at a definite hydrogen ion 
concentration (pH). Special experiments made by Johnson showed that the 
bacteria do not multiply in this medium, and that their number scarcely 
changes within 24 hours.  

TABLE VIII 
Balanced physiological salt solution of Osterhout  

NaCl 2.35 g 
MgCl2 0.184 g 
MgSO4 0.089 g 
KCl 0.050 g 
CaCl2 0.027 g 
Bidistilled water to 100 c.c.   

This solution is diluted with bidistilled water 225 times.  

Beginning our experiments on the growth of pure and mixed populations of 
Paramecium caudatum, Paramecium aurelia and Stylonychia pustulata, we 
devoted a certain time to finding a culture of bacteria suitable as food for all 
three species of Protozoa. Using the data published by Philpot ('28) we chose 
finally the pathogenic bacterium Bacillus pyocyaneus, which was cultivated in 



Petri dishes at 37°C on a solid medium of the following composition: peptone, 
1 g; glucose, 2 g; K2HPO4, 0.02 g; agar-agar, 2 g, per 100 cm3 of tap-water. 
One standardized uniformly filled platinum loop of fresh Bacillus pyocyaneus 
taken off the solid medium was placed in 10 cm3 of Osterhout's salt solution. 
This mixture was prepared anew every day, and we will speak of it as the 
"one-loop" medium.  

(2) Such a standard and convenient technique of cultivation enables us to 
approach the experimental investigation of an important problem: the course 
of the process of competition for a source of energy kept continually at a 
certain level. With this object the cultivation was carried on in graduate tubes 
for centrifugation of 10 c.c. capacity, which were filled with nutritive medium 
up to 5 c.c. and closed with cotton wool stoppers. Twenty individuals of the 
corresponding species were placed in every tube, or 20 plus 20 in case of a 
mixed culture. The medium was changed daily in the following manner. The 
tube was placed in a centrifuge, and after two minutes of centrifugation with 
3500 revolutions per minute the infusoria fell to the bottom, the liquid above 
was very gently drawn off by means of a pipette with a caoutchouc ball and a 
freshly made nutritive medium was poured in. Besides this, every other day 
each culture was washed with the salt solution free of bacteria, in order to 
prevent the accumulation of waste products in the few drops of liquid 
remaining at the bottom of the tube with the Paramecia at the moment when 
the medium was changed. For this purpose after the pouring off of the old 
medium the tubes were filled with a pure salt solution, centrifuged and the 
liquid was drawn off a second time. Every day before the medium was 
changed each culture was carefully stirred up, 0.5 c.c. of the liquid was taken 
out and the number of infusoria in it counted. After counting the sample was 
destroyed. All the experiments were made in a moist thermostat at 26°C with 
pure lines of infusoria.  

(3) In an experiment of such a type all the properties of the medium are 
brought to a certain invariable "standard state" at the end of every 24 hours. 
Hence, we acquire the possibility of investigating the following problem: can 
two species exist together for a long time in such a microcosm, or will one 
species be displaced by the other entirely? This question has already been 
investigated theoretically by Haldane ('24), Volterra ('26) and Lotka ('32b). It 
appears that the properties of the corresponding equation of the struggle for 
existence are such that if one species has any advantage over the other it will 
inevitably drive it out completely (Chapter III). It must be noted here that it is 
very difficult to verify these conclusions under natural conditions. For 
example, in the case of competition between two species of crayfish (Chapter 
II) a complete supplanting of one species by another actually takes place. 
However, there is in nature a great diversity of "niches" with different 
conditions, and in one niche the first competitor possessing advantages over 
the second will displace him, but in another niche with different conditions the 



advantages will belong to the second species which will completely displace 
the first. Therefore side by side in one community, but occupying somewhat 
different niches, two or more nearly related species (e.g., the community of 
terns, Chapter II) will continue to live in a certain state of equilibrium. There 
being but a single niche in the conditions of the experiment it is very easy to 
investigate the course of the displacement of one species by another.  

TABLE IX 
Contents of the microcosms in the experiments with Osterhout's medium 

  

Contents of the microcosm 

  

Number of microcosms 

(1) Paramecium caudatum separately............................... 

(2) Stylonychia pustulata separately.................................. 

(3) Paramecium aurelia separately.................................... 

(4) P. caudatum + P. aurelia............................................ 

(5) P. caudatum + S. pustulata......................................... 

(6) P. aurelia + S. pustulata............................................. 

4 

5 

3 

3 

3 

3 

(4) Two series of experiments were arranged by us in which the process of 
competition was studied in 21 microcosms for a period of 25 days. Table IX 
shows the combinations of separate species of Protozoa which were used. Let 
us first of all analyze the competition between Paramecium caudatum and 
Paramecium aurelia. The data on the growth of pure and mixed populations 
of these species are presented in Table 3 (Appendix) which gives the number 
of individuals in a sample of 0.5 cm3 taken from a culture of 5 cm3 in volume. 
(A separate counting of the number of individuals in every culture was 
discontinued from the twentieth day, and we began to take average samples 
from the similar cultures.) 



 

Fig. 20. Paramecium caudatum (1) and Paramecium aurelia (2) according to 
Kalmus ('31). (3) Measurements for the calculation of volume of 
Paramecium. 

In order to investigate the process of competition, we had to pass from the 
number of individuals of P. caudatum and P. aurelia to their biomasses, as 
these species differ rather strongly in size (see Fig. 20). In order to obtain an 
idea of the biomass we had recourse to the volumes of these species. P. 
caudatum and P. aurelia were measured under the conditions of our 
experiments (Table X) and on the basis of these measurements the volumes 
were calculated. As in shape Paramecium after fixation approaches somewhat 

closely to an ellipsoid of rotation with the half-axes: (see Fig. 20), 
the calculation of the volumes was made according to the formula for this 
body. 

TABLE X 
Measurements of Paramecium caudatum and Paramecium aurelia (after 
fixation) 
Specification of measurements is taken from Figure 20 

 
Origin of Paramecia 

Average values for P. 
caudatum in divisions 
of ocular micrometer 

Average values 
for P. aurelia in 
divisions of 
ocular 
micrometer 

Calculated 
volume of P. 
aurelia (volume 
of P. caudatum 
= 1) 

Growing culture with Osterhout's medium  

    

  



Old culture with Osterhout's medium  

  

Culture with the buffered medium  

 

 

 

 

0.39  

  

0.429 

Taking the volume of the larger P. caudatum equal to unity, the volume of P. 
aurelia can be easily expressed in a relative form. Under different conditions 
the relative volume of P. aurelia varies somewhat, but for Osterhout's medium 
it can be taken as equal on an average to 0.39 of the volume of P. caudatum. 
In this way, in order to pass from the growth of the number of individuals of 
the two species of Paramecia to the growth of their volumes, we can leave 
without alteration the number of individuals of P. caudatum, and only 
diminish the number of individuals of the small P. aurelia by multiplying it in 
every case by 0.39. 

(5) Figure 21 represents graphically the growth in the number of individuals 
and in the volumes of P. caudatum and P. aurelia cultivated separately in a 
medium changed daily for 25 days. The general character of the curves shows 
that the growth of population under these conditions has an S-shaped form. At 
a certain moment the possibility of growth in a given microcosm is apparently 
exhausted, and with a continuously maintained level of nutritive resources a 
certain equilibrium of population is established. The oscillations of population 
round this state of equilibrium are not governed by any apparent law, and 
depend on various accidental causes (variation in temperature of the 
thermostat, a slight variability in the composition of the synthetic medium, 
etc.). A comparison of the curves of growth of P. caudatum and P. aurelia 
shows that as regards the number of individuals the level of the saturating 
population of P. aurelia is considerably higher than that of P. caudatum. 
Nevertheless, the comparison of the volumes shows something completely 
different; in this respect P. aurelia only slightly surpasses P. caudatum, 
accumulating at the expense of a certain definite level of food resources a 
scarcely larger biomass. As will be shown further on, the Osterhout salts 
medium is not quite favorable in its properties for the Paramecia, and this 
complicates the question as to the factors limiting growth. On the one hand, 
the insufficiency of food plays a part here which we can judge of by a direct 
observation of the cultures: with a population in equilibrium the turbid 
bacterial medium introduced daily becomes quite transparent after a certain 
time, as the bacteria are entirely devoured by the Paramecia. However, owing 
to a comparatively high concentration of bacteria and a somewhat unoptimal 
reaction of the medium a depressory action of certain other influences plays 
also a role here. 



 

Fig. 21. The growth of the number of individuals and of the "volume" in 
Paramecium caudatum and Paramecium aurelia cultivated separately on the 
medium of Osterhout. From Gause ('34d). 

(6) The data on the growth of the volumes of P. caudatum and P. aurelia in a 
mixed population are given in Figure 22. The curves of growth of each species 
in a mixed culture are presented here on the background of control curves 
corresponding to the free growth of the same species. It is easy to see that the 
growth of a mixed population consists of two periods: (a) during the first 
period (till the eighth day), the species grow and compete for the seizing of 
the still unutilized energy (food resources). But the moment approaches 
gradually when all the utilizable energy is already taken hold of, and the total 
of the biomasses of the two species tends to reach the maximal possible 
biomass under given conditions. (This happens on the eighth day; the total 
biomass is equal to about 210.) This first period corresponds to what we have 
already observed in yeast cells. (b) After this there can only arise the 
redistribution of the already seized energy between the two species, i.e. the 
displacement of one species by another. Figure 22 shows that such a 
displacement is actually observed in the experiment: the number of P. 
caudatum gradually diminishes as a result of its being driven out by P. 
aurelia. As several further experiments have shown (see Fig. 24), the process 
of competition under our conditions has always resulted in one species being 
entirely displaced by another, in complete agreement with the predictions of 
the mathematical theory.  



 

Fig. 22. The growth of the "volume" in Paramecium caudatum and 
Paramecium aurelia cultivated separately and in the mixed population on the 
medium of Osterhout. From Gause ('34d). 

If we consider the curves in Figure 22 more in detail, we shall note that they 
generally are of a rather complicated character. It is interesting to note that P. 
caudatum in a mixed culture at the beginning of the experiment grows even 
better than separately. This is apparently a consequence of the more nearly 
optimal relationships between the density of the Paramecia and that of the 
bacterial food, in accordance with the observations of Johnson ('33).  

III 

(1) Although the situation in our experiments with Osterhout's medium has 
been considerably simpler than in the case of the "oaten medium," it is still 
too complicated for a clear understanding of the mechanism of competition. In 
fact, why has one species been victorious over another? In the case of yeast 
cells we answered that the success of the species during the first stage of 
competition depends on definite relations between the coefficients of 
multiplication and the alcohol production, and that it can be exactly predicted 
with the aid of an equation of the struggle for existence. What will be our 
answer for the population of Paramecia?  

To investigate this problem we made the conditions of the experimentation the 
next step in the simplification. We endeavored to make a medium with a very 
small concentration of nutritive bacteria and optimal in its physicochemical 
properties for Paramecia. Under such conditions the competition for common 
food between two species of Protozoa has been reduced to its simplest form. 



(2) As Woodruff has shown ('11, '14), the waste products of Paramecia can 
depress the multiplication and be specific for a given t species. In any case we 
are very far from an exact knowledge of their role and chemical composition. 
Therefore first of all we must eliminate the complicating influence of these 
substances. This problem is the reverse of the one we had to do with in the 
preceding chapter. There in the experiments with yeast we tried to set up 
conditions under which the food resources of the medium should be very 
considerable at the time when the concentration of the waste products had 
already attained a critical value. Now with Paramecia our object is that the 
concentration of the waste products should still be very far from the critical 
threshold at the moment when the food is exhausted. 

First of all we turned our attention to the hydrogen ion concentration (pH), 
which in the light of the researches of Darby ('29) can be of great importance 
for our species. When Paramecia are cultivated in Osterhout's medium, pH is 
near to 6.8 and unstable, whereas the reaction in our wild cultures is 
commonly near to 8.0. Therefore we, like Johnson, buffered Osterhout's 

medium by adding 1 cm3 of KH2PO4 to 30 cm3 of diluted salt solution, 

and bringing the reaction of the medium with the aid of KOH to pH = 8.0. 
At the same time we isolated new pure lines of Paramecia out of our wild 
culture, as the Paramecia which had been cultivated for a long time on 
Osterhout's medium could not stand a sudden transfer into a buffered medium.  

 



Fig. 23. The growth of the "volume" in Paramecium caudatum and 
Paramecium aurelia cultivated separately on the buffered medium ("half-
loop" and "one-loop" concentrations of bacteria). From Gause ('34d).  

In order to diminish the concentration of the bacteria we made a new smaller 
standard loop for preparing the "one-loop medium," and also arranged 
experiments in which the one loop medium was diluted twice ("half-loop 
medium"). The data obtained are given in Table 4 (Appendix) where every 
figure represents a mean value from the observations of two microcosms. This 
material is represented graphically in Figures 23, 24 and 25. 

Let us examine Figure 23. The curves of growth of pure populations of P. 
caudatum and P. aurelia with different concentrations of the bacterial food 
show that the lack of food is actually a factor limiting growth in these 
experiments. With the double concentration of food the volumes of the 
populations of the separately growing species also increase about twice (from 
64 up to 137 in P. caudatum; 64  2 = 128; from 105 up to 195 in P. aurelia; 
105  2 = 210). Under these conditions the differences in the growth of 
populations of P. aurelia and P. caudatum are quite distinctly pronounced: the 
growth of the biomass of the former species proceeds with greater rapidity, 
and it accumulates a greater biomass than P. caudatum at the expense of the 
same level of food resources.1 If we now express the curves of separate 
growth of both species under a half-loop concentration of bacteria with the aid 
of logistic equations we shall obtain the data presented in Table XI. This table 
shows clearly that P. aurelia has perfectly definite advantages over P. 
caudatum in respect to the basic characteristics of growth. 

______________________________  
1 This is apparently connected with the resistance of P. aurelia to the waste products of the pathogenic 
bacterium, Bacillus pyocyaneus (see Gause, Nastukova and Alpatov, '35).  
______________________________ 

TABLE XI 

Parameters of the logistic curves for separate growth  
of Paramecium caudatum and Paramecium aurelia 

Buffered medium with the "half-loop" concentration of bacteria 

  P. aurelia P. caudatum 

Maximal volume (K)  

Coefficient of geometric increase (b) 

K 1= 105 

b1 = 1.1244 

K2 = 64 

b2 = 0.7944 



(3) We will now pass on to the growth of a mixed population of P. caudatum 
and P. aurelia. The general character of the curves on Figures 22, 24 and 25 is 
almost the same, but there are certain differences concerning secondary 
peculiarities. For a detailed acquaintance with the properties of a mixed 
population we will consider the growth with a half-loop concentration of 
bacteria (Fig. 24). First of all we see that as in the case examined before the 
competition between our species can be divided into two separate stages: up to 
the fifth day there is a competition between the species for seizing the so far 
unutilized food energy; then after the fifth day of growth begins the 
redistribution of the completely seized resources of energy between the two 
components, which leads to a complete displacement of one of them by 
another. The following simple calculations can convince one that on the fifth 
day all the energy is already seized upon. At the expense of a certain level of 
food resources which is a constant one in all "half-loop" experiments and may 
be taken as unity, P. aurelia growing separately produces a biomass equal to 
105 volume units, and P. caudatum 64 such units. Therefore, one unit of 

volume of P. caudatum consumes = 0.01562 of food, and one unit of 

volume of P. aurelia = 0.00952. In other words, one unit of volume of P. 
caudatum consumes 1.64 times as much food as P. aurelia, and the food 
consumption of one unit of volume in the latter species constitutes but 0.61 of 
that of P. caudatum. These coefficients enable us to recalculate the volume of 
one species into an equivalent in respect to the food consumption volume of 
another species. 



 

Fig. 24. The growth of the "volume" in Paramecium caudatum and 
Paramecium aurelia cultivated separately and in the mixed population on the 
buffered medium with the "half-loop" concentration of bacteria. From Gause 
('34d). 

 



Fig. 25. The growth of the "volume" in Paramecium caudatum and 
Paramecium aurelia cultivated separately and in the mixed population on the 
buffered medium with the "one-loop" concentration of bacteria. From Gause 
('34d). 

On the fifth day of growth of a mixed population the biomass of P. caudatum 
(in volume units) is equal to about 25, and of P. aurelia to about 65. If we 
calculate the total of these biomasses in equivalents of P. aurelia, we shall 
have: (25  1.64) + 65 = 106 (maximal free growth of P. aurelia is equal to 
105). The total of the biomasses expressed in equivalents of P. caudatum will 
be (65  0.61) + 25 = 65 (with the free growth 64). This means that on the 
fifth day of growth of the mixed population the food resources of the 
microcosm are indeed completely taken hold of. 

(4) The first period of competition up to the fifth day is not all so simple as we 
considered it in the theoretical discussion of the third chapter, or when 
examining the population of yeast cells. The nature of the influence of one 
species on the growth of another does not remain invariable in the course of 
the entire first stage of competition, and in its turn may be divided into two 
periods. At the very beginning P. caudatum grows even somewhat better in a 
mixed population than separately (analogous to Fig. 22), apparently in 
connection with more nearly optimal relations between the density of 
Paramecia and that of the bacteria in accordance with the already mentioned 
data of Johnson ('33). At the same time P. aurelia is but very slightly 
oppressed by P. caudatum. As the food resources are used up, the Johnson 
effect disappears, and the species begin to depress each other as a result of 
competition for common food. 

It is easy to see that all this does not alter in the least the essence of the 
mathematical theory of the struggle for existence, but only introduces into it a 
certain natural complication: the coefficients of the struggle for existence, 
which characterize the influence of one species on the growth of another, do 
not remain constant but in their turn undergo regular alterations as the culture 
grows. The curves of growth of every species in a mixed population in Figure 
24 up to the fifth day of growth have been calculated according to the system 
of differential equations of competition with such varying coefficients. In the 
first days of growth the coefficient B is negative and near to  1, i.e., instead 
of   N1 we obtain +Nl. In other words, the presence of P. aurelia does not 
diminish, but increases the possibility of growth of P. caudatum, which 
proceeds for a certain time with a potential geometrical rate, outrunning the 

control culture (  remains near to unity). At this time the 
coefficient  is equal to about +0.5; in other words, P. aurelia suffers from a 
slight depressing influence of P. caudatum. Later the inhibitory action of one 



species upon the growth of another begins to manifest itself more and more in 
proportion to the quantity of food consumed, because the larger is the part of 
the food resources already consumed the less is the unutilized opportunity for 
growth. In our calculations for P. caudatum from the second and for P. 
aurelia from the fourth days of growth we have identified the coefficients of 
competition with the coefficients of the relative food consumption, i.e.,  = 
1.64,  = 0.61. It is obvious that this is but a first approximation to the actual 
state of things where the coefficients gradually pass from one value to 
another. The entire problem of the changes in the coefficients of the struggle 
for existence in the course of the growth of a mixed population (which 
apparently are in a great measure connected with the fact that the Paramecia 
feed upon living bacteria) needs further detailed investigations on more 
extensive experimental material than we possess at present.  

(5) It remains to examine the second stage of the competition, i.e., the direct 
displacement of one species by another. An analysis of this phenomenon can 
no longer be reduced to the examination of the coefficients of multiplication 
and of the coefficients of the struggle for existence, and we have to do in the 
process of displacement with a quite new qualitative factor: the rate of the 
stream which is represented by population having completely seized the food 
resources. As we have already mentioned in Chapter III, after the cessation of 
growth a population does not remain motionless and in every unit of time a 
definite number of newly formed individuals fills the place of those which 
have disappeared during the same time. Among different animals this can take 
place in various ways, and a careful biological analysis of every separate case 
is here absolutely necessary. In our experiments the principal factor regulating 
the rapidity of this movement of the population that had ceased growing was 

the following technical measure: a sample equal to of the population was 
taken every day and then destroyed. In this way a regular decrease in the 
density of the population was produced and followed by the subsequent 
growth up to the saturating level to fill in the loss.  

During these elementary movements of thinning the population and filling the 
loss, the displacement of one species by another took place. The biomass of 

every species was decreased by daily. Were the species similar in their 

properties, each one of them would again increase by , and there would 
not be any alteration in the relative quantities of the two species. However, as 
one species grows quicker than another, it succeeds not only in regaining what 
it has lost but also in seizing part of the food resources of the other species. 



Therefore, every elementary movement of the population leads to a 
diminution in the biomass of the slowly growing species, and produces its 
entire disappearance after a certain time. 

(6) The recovery of the population loss in every elementary movement is 
subordinate to a system of the differential equations of competition. In the 
present stage of our researches we can make use of these equations for only a 
qualitative analysis of the process of displacement. They will show us exactly 
what particular species in the population will be displaced. However, the 
quantitative side of the problem, i.e., the rate of the displacement, still requires 
further experimental and mathematical researches and we will not consider it 
at present. 

The qualitative analysis consists in the following. Let us assume that the 

biomass of each component of the saturating population is decreased by . 
Then according to the system of differential equations, inserting the values of 
the coefficients of multiplication and of the coefficients of food consumption, 
we shall be able to say how each one of the components can utilize the now 
created possibility for growth. The result of the calculations shows that P. 
aurelia, primarily owing to its high coefficient of multiplication, has an 
advantage and increases every time comparatively more than P. caudatum.2 
______________________________  
2 It is obvious that in these calculations it is necessary to introduce varying coefficients of the struggle for 
existence. At the same time with our technique of cultivation corrections to the "elementary movements" 
must be also included in an analysis of the first stage of growth of a mixed population (an approximation 
to the asymptote). But at the present stage of our researches we have neglected them. 
______________________________ 

In summing up we can say that in spite of the complexity of the process of 
competition between two species of infusoria, and as one may think a 
complete change of conditions in passing from one period of growth to 
another, a certain law of the struggle for existence which may be expressed by 
a system of differential equations of competition remains invariable all the 
time. The law is that the species possess definite potential coefficients of 
multiplication, which are realized at every moment of time according to the 
unutilized opportunity for growth. We have only had to change the 
interpretation of this unutilized opportunity. 

(7) It seems reasonable at this point to coordinate our data with the ideas of 
the modern theory of natural selection. It is recognized that fluctuations in 
numbers resembling the dilutions we have artificially produced in our 
microcosms play in general a decisive role in the removal of the less fitted 
species and mutations (Ford, '30). An interesting mathematical expression of 



this process proposed by Haldane ('24, '32) can be formulated thus: how does 
the rate of increase of the favorable type in the population depend on the value 
of the coefficient of selection k? In its turn the coefficient of selection 
characterizes an elementary displacement in the relation between the two 
types per unit of time�—one generation. Therefore the problem resolves itself 
into a determination of the functional relationship between the increase of 
concentration of the favorable type and the elementary displacement in its 
concentration. A recent theoretical paper by Ludwig ('33) clearly shows how 
the fluctuation in the population density alters the relation between the two 
types owing to the fact that one of them has a somewhat higher probability of 
multiplication than the other. It seems to us that there is a great future for the 
Volterra method here, because it enables us not to begin the theory by the 
coefficient of selection but to calculate theoretically the coefficient itself 
starting from the process of interaction between the two species or mutations. 

IV 

(1) How complicated are processes of competition under the conditions 
approaching those of nature can be seen from the experiments made by Gause, 
Nastukova and Alpatov ('35). They studied the influence of biologically 
conditioned media on the growth of a mixed population of Paramecium 
caudatum and P. aurelia. The analysis of the relative adaptation of the two 
species at different stages of population growth has shown that P. caudatum 
has an advantage over P. aurelia in the coefficient of geometric increase (in 
the absence of Bacillus pyocyaneus in the nutritive medium which in the 
experiments described above inhibited P. caudatum by its waste products) 
whilst P. aurelia surpasses P. caudatum in the resistance to waste products. 
Therefore if the decisive factor of competition is a rapid utilization of the food 
resources, P. caudatum has an advantage over P. aurelia; but if the resistance 
to waste products is the essential point, then P. aurelia will take place of P. 
caudatum. 

It is interesting to note also that in the complicated situation of these 
experiments the superiority of one species over another in competition did not 
simply reflect the properties of these species taken independently, but was 
often essentially modified by the process of their interaction. 



 

Fig. 26. The growth of the number of individuals of Stylorzychia pustulata 
cultivated separately, and in the mixed populations with Paramecium 
caudatum and Paramecium aurelia (on the medium of Osterhout). 

(2) If we turn to the population growth of Stylonychia pustulata and its 
competition with two species of Paramecium, we shall encounter extremely 
complicated processes. The corresponding data are given in Table 5 
(Appendix) and Figure 26. These experiments were made with Osterhout's 
medium containing Bacillus pyocyaneus, simultaneously with those 
mentioned above. Therefore, the data on the separate growth of P. caudatum 
and P. aurelia given in Appendix Table 3 serve as a control for these 
experiments. 

First of all, the separate growth of Stylonychia pustulata is very peculiar: 
having attained a certain maximum, the density of population decreases and 
remains stationary at a lower level. Direct observation shows that the bacteria 
at the close of the twenty-four hour intervals between the changes of medium 
remain partly unconsumed, and the limiting factor here is apparently an 
accumulation of waste products and not an insufficiency of food. The 
fluctuations in the density of population of the separately growing S. pustulata 
are probably connected with some complex processes of the influence of 
metabolic products on growth. As to the mixed populations, the same 
regularity with which we had to deal previously repeats itself here: one 
species finally completely displaces another, and the species displaced is 
always Stylonychia pustulata.  

(3) Let us summarize the data of this chapter. We have studied the 
competition between two species for a source of energy kept continually at a 
certain level. This process may be divided into two periods. In the first period 



the two species compete for the still unutilized resources of energy. In what 
proportion this energy will be distributed between the two species is 
determined by the system of Vito Volterra's differential equations of 
competition, but the coefficients of the struggle for existence in these 
equations change in the course of the growth of the population and are 
therefore more complicated than in the preceding chapter. In the second 
period there is but a redistribution of the completely seized energy between 
the two species, which is again controlled by the differential equations of 
competition. Owing to its advantages, mainly a greater value of the coefficient 
of multiplication, one of the species in a mixed population drives out the other 
entirely. 

 



Chapter VI 

THE DESTRUCTION OF ONE SPECIES BY ANOTHER 

(1) In the two preceding chapters our attention has been concentrated on the 
indirect competition, and we have to turn now to an entirely new group of 
phenomena of the struggle for existence, that of one species being directly 
devoured by another. The experimental investigation of just this case is 
particularly interesting in connection with the mathematical theory of the 
struggle for existence developed on broad lines by Vito Volterra. 
Mathematical investigations have shown that the process of interaction 
between the predator and the prey leads to periodic oscillations in numbers of 
both species, and all this of course ought to be verified under carefully 
controlled laboratory conditions. At the same time we approach closely in this 
chapter to the fundamental problems of modern experimental epidemiology, 
which have been recently discussed from a wide viewpoint by Greenwood in 
his Herter lectures of 1931. The epidemiologists feel that the spread of 
microbial infection presents a particular case of the struggle for existence 
between the bacteria and the organisms they attack, and that the entire 
problem must pass from the strictly medical to the general biological field.  

(2) As the material for investigation we have taken two infusoria of which 
one, Didinium nasutum, devours the other, Paramecium caudatum (Fig. 27). 
Here, therefore, exists the following food chain: bacteria  Paramecium  
Didinium. This case presents a considerable interest from a purely biological 
viewpoint, and it has more than once been studied in detail (Mast ('09), 
Reukauf ('30), and others). The amount of food required by Didinium is very 
great and, as Mast has shown, it demands a fresh Paramecium every three 
hours. Observation of the hunting of Didinium after the Paramecia has shown 
that Didinium attacks all the objects coming into contact with its seizing 
organ, and the collision with suitable food is simply due to chance (Calcins 
'33). Putting it into the words of Jennings ('15) Didinium simply "proves all 
things and holds fast to that which is good." 

All the experiments described further on were made with pure lines of 
Didinium ("summer line") and Paramecium. In most of the experiments the 
nutritive medium was the oaten decoction, "with sediment" or "without 
sediment," described in the preceding chapter. Attempts were also made to 
cultivate these infusoria on a synthetic medium with an exactly controlled 
number of bacteria for the Paramecia, but here we encountered great 
difficulties in connection with differences in the optimal physicochemical 
conditions for our lines of Paramecium and Didinium. The introduction of a 
phosphate buffer and the increase of the alkalinity of the medium above pH = 
6.8-7.0 has invariably favored the growth of Paramecium, but hindered that of 



Didinium. Satisfactory results have been obtained on Osterhout's medium, but 
here also Didinium has grown worse than on the oaten medium. Therefore, 
absolute values of growth under different conditions can not be compared 
with one another though all the fundamental laws of the struggle for existence 
remained the same. The experiments were made in a moist thermostat at a 
temperature of 26°C. 

 

Fig. 27. Didinium nasutum devouring Paramecium caudatum 

(3) Let us first of all analyze the process of interaction between the predator 
and the prey from a qualitative point of view. It is well known that under 
natural conditions periodic oscillations in the numbers of both take place but 
in connection with the complexity of the situation it is difficult to draw any 
reliable conclusions concerning the causes of these oscillations. However, 
quite recently Lotka (1920) and Volterra (1926) have noted on the basis of a 
purely mathematical investigation that the properties of a biological system 
consisting of two species one of which devours the other are such that they 
lead to periodic oscillations in numbers (see Chapter III). These oscillations 
should exist when all the external factors are invariable, because they are due 
to tile properties of the biological system itself. The periods of these 
oscillations are determined by certain initial conditions and coefficients of 
multiplication of the species. Mathematicians arrived at this conclusion by 
studying the properties of the differential equation for the predator-prey 
relations which has already been discussed in detail in Chapter III (equation 
21a). Let us now repeat in short this argument in a verbal form. When in a 
limited microcosm we have a certain number of prey (N1), and if we introduce 
predators (N2),1 there will begin a decrease in the number of prey and an 
increase in that of the predators. But as the concentration of the prey 
diminishes the increase of the predators slows down, and later there even 



begins a certain dying off of the latter resulting from a lack of food. As a 
result of this diminution in the number of predators the conditions for the 
growth of the surviving prey are getting more and more favorable, and their 
population increases, but then again predators begin to multiply. Such 
periodic oscillations can continue for a long time. The analysis of the 
properties of the corresponding differential equation shows that one species 
will never be capable of completely destroying another: the diminished prey 
will not be entirely devoured by the predators, and the starving predators will 
not die out completely, because when their density is low the prey multiply 
intensely and in a certain time favorable conditions for hunting them arise. 
Thus a population consisting of homogeneous prey and homogeneous 
predators in a limited microcosm, all the external factors being constant, must 
according to the predictions of the mathematical theory possess periodic 
oscillations in the numbers of both species.2 These oscillations may be called 
"innate periodic oscillations", because they depend on the properties of the 
predator-prey relations themselves, but besides these under the influence of 
periodic oscillations of external factors there generally arise "induced periodic 
oscillations" in numbers depending on these external causes. The classic 
example of a system which is subject to innate and induced oscillations is 
presented by the pendulum. Thus the ideal pendulum the equilibrium of which 
has been disturbed will oscillate owing to the properties of this system during 
an indefinitely long time, if its motion is not impeded. But in addition to that 
we may act upon the pendulum by external forces, and thereby cause induced 
oscillations of the pendulum. 

______________________________  
1 It is assumed that all individuals of prey and predator are identical in their properties, in other words, we 
have to do with homogeneous populations. 

2 According to the theory, such oscillations must exist in the case of one component depending on the 
state of another at the same moanent of time, as well as in the case of a certain delay in the responses of 
one species to the changes of the other. 

______________________________ 

If we are asked what proof there is of the fact that the biological system 
consisting of predator-prey actually possesses "innate" periodic oscillations in 
numbers of both species, or in other terms that the equation (21a) holds true, 
we can give but one answer: observations under natural conditions are here of 
no use, as in the extremely complex natural environment we do not succeed in 
eliminating "induced" oscillations depending on cyclic changes in climatic 
factors and on other causes. Investigations under constant and exactly 
controlled laboratory conditions are here indispensable. Therefore, in 
experimentation with two species of infusoria one of which devours the other 
the following question arose at the very beginning: does this system possess 



"innate" periodic oscillations in numbers, which are to be expected according 
to the mathematical theory? 

(4) The first experiments were set up in small test tubes with 0.5 cm3 of oaten 
medium (see Chapter V). If we take an oaten medium without sediment, place 
in it five individuals of Paramecium caudatum, and after two days introduce 
three predators Didinium nasutum, we shall have the picture shown in Figure 
28. After the predators are put with the Paramecia, the number of the latter 
begins to decrease, the predators multiply intensely, devouring all the 
Paramecia, and thereupon perish themselves. This experiment was repeated 
many times, being sometimes made in a large vessel in which there were 
many hundreds of thousands of infusoria. The predator was introduced at 
different moments of the growth of population of the prey, but nevertheless 
the same result was always produced. Figure 29 gives the curves of the 
devouring of Paramecia by Didinium when the latter are introduced at 
different moments of the growth of the prey population (in 0.5 cm3 of oaten 
medium without sediment). This figure shows the decrease in the number of 
Paramecia as well as the simultaneous increase in number and in volume of 
the population of Didinium. (We did not continue these curves beyond the 
point where Didinium attained its maximal volume.) It is evident that the 
Paramecia are devoured to the very end. As it is necessary that the nutritive 
medium should contain a sufficient quantity of bacteria in order to have an 
intense multiplication of Paramecia, we arranged also experiments in the test 
tubes on a daily changed Osterhout's medium containing Bacillus pyocyaneus 
(see Chapter V). In Figure 30 are given the results of such an experiment 
which has led up, as before, to the complete disappearance of both 
Paramecium and Didinium. Thus we see that in a homogeneous nutritive 
medium under constant external conditions the system Paramectum-Didinium 
has no innate periodic oscillations in numbers. In other words, the food chain: 
bacteria + Paramecium + Didiniurn placed in a limited microcosm, with the 
concentration of the first link of the chain kept artificially at a definite level, 
changes in such a direction that the two latter components disappear entirely 
and the food resources of the first component of the chain remain without 
being utilized by any one. 



 

Fig. 28. The elementary interaction between Didinium nasutum and 
Paramecium caudatum (oat medium without sediment). Numbers of 

individuals pro 0.5 c.c. From Gause ('35a). 

We have yet to point out that the study of the properties of the predator-prey 
relations must be carried out under conditions favorable for the multiplication 
of both prey and predator. In our case, there should be an abundance of 
bacteria for the multiplication of Paramecia, and suitable physicochemical 
conditions for the very sensitive Didinium. It is self-evident that if at the very 
beginning we set up unfavorable conditions under which Didinium begins to 
degenerate, and as a result is unable to destroy all the prey, or if the 
diminishing prey should perish not in consequence of their having been 
devoured by the predators but from other causes, we could not be entitled to 
draw any conclusions in respect to the properties of the predator-prey relations 
in the given chain. 



 

Fig. 29. The destruction of Paramecium caudatum by Didinium nasutum. (a) 
Growth of P. caudatum alone. (b) Didinium is introduced at the very 

beginning of growth of Paramecia population. (c) Didinium is introduced after 
24 hours. (d) Didinium is introduced after 36 hours. (e) Didinium is introduced 

after 48 hours. Numbers of individuals pro 0.5 c.c. 

(5) We may be told that after we have "snatched" two components out of a 
complex natural community and placed them under "artificial" conditions, we 
shall certainly not obtain anything valuable and shall come to absurd 
conclusions. We will therefore point out beforehand that under such 
conditions it is nevertheless possible to obtain periodic oscillations in the 
numbers of the predators and prey, if we but introduce some complications 
into the arrangement of the experiments. As yet we have only separated the 
elementary interaction between two species, and noted some of its 
fundamental properties. 



 

Fig. 30. The elementary interaction between Didinium nasutum and 
Paramecium caudatum (medium of Osterhout). The environment is not 

completely favorable for Didinium, and it begins to die out too early. Numbers 
of individuals pro 5 c.c. From Gause ('35a). 

However, why is the theoretical equation of the mathematicians not realized in 
our case? The cause of this is apparently that a purely biological property of 
our predator has not been taken into account in the equation (21a). According 
to this equation a decrease in the concentration of the prey diminishes the 
probability of their encounters with the predators, and causes a sharp decrease 
in the multiplication of the latter, and afterwards this even leads to their partly 
dying out. However, in the actual case Didinium in spite of the insufficiency 
of food continues to multiply intensely at the expense of a vast decrease in the 
size of the individual. The following data give an idea of the diminution in 
size of Didinium: three normal individuals of this species placed in a medium 
free of Paramecia continue to multiply intensely, and in an interval of 24 
hours given on an average 7.1 small individuals able to attack the prey. This 
vast increase of the "seizing surface" represents, metaphorically speaking, 
those "tentacles by means of which the predators suck out the prey 
completely." Translating all this into mathematical language, we can say: the 
function characterizing the consumption of prey by predators [f1(N1, N2)], as 
well as the natality and the mortality of predators [F(N1, N2)],* are apparently 
more complicated than Lotka and Volterra have assumed in the equation 
(21a), and as a result the corresponding process of the struggle for existence 
has no periodic properties. We shall soon return to a further analysis of this 
problem along mathematical lines. 

______________________________  

 See Chapter III, equation (21). 

___________________________ 



II 

(1) We have but to introduce a slight complication into the conditions of the 
experiment, and all the characteristic properties of our biological system will 
be altogether changed. In order to somewhat approach natural conditions we 
have introduced into the microcosm a "refuge" where Paramecia could cover 
themselves. For this purpose a dense oaten medium "with sediment" was 
taken (see Chapter V). Direct observations have shown that while the 
Paramecia are covered in this sediment they are safe from the attack of 
predators. It must be noted that the taxis causing the hiding of Paramecia in 
this "refuge" manifests itself in a like manner in the presence of the predators 
as in their absence. 

We must have a clear idea of the role which a refuge plays in the struggle for 
existence of the species under observation, as a lack of clearness can lead 
further on to serious misunderstandings. If Didiniurn actively pursued a 
definite Paramecium which escaping from it hid in the refuge, the presence of 
the refuge would be a definite parameter in every elementary case of one 
species devouring another. In other words, the nature and the distribution of 
refuges would constitute an integral part of the expressions f1(N1, N2), and 
F(N1, N2) of the corresponding differential equation of the struggle for 
existence. 

Such a situation has recently been analyzed by Lotka ('32a). We might be told 
in this case that in experimenting with a homogeneous microcosm without 
refuges we have sharply disturbed the process of elementary interaction of 
two species. Instead of investigating "in a pure form" the properties of the 
differential equation of the struggle for existence we obtain a thoroughly 
unnatural phenomenon, and all the conclusions concerning the absence of 
innate oscillations in numbers will be entirely unconvincing. But for our case 
this is not true. We have already mentioned that Didinium does not actively 
hunt for Paramecia but simply seizes everything that comes in its way. In its 
turn Paramecium fights with the predator by throwing out trichocysts and 
developing an intense rapidity of motion, but never hiding in this connection 
in the refuge of our type. In this manner, we have actually isolated and studied 
"in a pure form" the elementary phenomenon of interaction between the prey 
and the predators in a homogeneous microcosm. The refuge in our experiment 
presents a peculiar "semipermeable membrane," separating off a part of the 
microcosm into which Pararnbecium can penetrate owing to its taxis, in 
general quite independently of any pursuit of the predator, and which is 
impenetrable for Didinium. 

When the microcosm contains a refuge the following picture can be observed 
(see Fig. 31): if Pararnecium and Didinium are simultaneously introduced 
into the microcosm, the number of predators increases somewhat and they 



devour a certain number of Paramecia, but a considerable amount of the prey 
is in the refuge and the predators cannot attain them. Finally the predators die 
out entirely owing to the lack of food, and then in the microcosm begins an 
intense multiplication of the Paramecia (no encystment of Didinium has been 
observed in our experiments). We must make here a technical note: the 
microcosm under observation ought not to be shaken in any way, as any shock 
might easily destroy the refuge and cause the Paramecia to fall out. On the 
whole it may be noted that when there appears a refuge in a microcosm, a 
certain threshold quantity of the prey cannot be destroyed by the predators. 
The elementary process of predator-prey interaction goes on to the very end, 
but the presence of a certain number of undestroyed prey in the refuge creates 
the possibility of the microcosm becoming later populated by the prey alone. 

(2) Having in the experiment with the refuge made the microcosm a 
heterogeneous one, we have acquired an essential difference of the 
corresponding process of the struggle for existence from all the elementary 
interactions between two species which we have so far examined. In the case 
of an elementary interaction between predator and prey in a homogeneous 
microcosm very similar results were obtained in various analogous 
experiments (see Table 6, Appendix). In any case the more attention we give 
to the technique of experimentation, the greater will be this similarity. In other 
terms, in a homogeneous microcosm the process of the struggle for existence 
in every individual test tube was exactly determined by a certain law, and this 
could be expressed by more or less complex differential equations. For every 
individual microcosm the quantities of the predator and the prey at a certain 
time t could be exactly predicted with a comparatively small probable error. 

 

Fig. 31. The growth of mixed population consisting of Didinium nasutum and 
Parameciqxm caudatum (oat medium with sediment). Numbers of individuals 

pro 0.5 c.c. 



Such a deterministic process disappears entirely when a refuge is introduced 
into the microcosm, because the struggle for existence is here affected by a 
multiplicity of causes. If we take a group of microcosms with similar initial 
conditions the following picture is observed after a certain time: (1) in some 
of the microcosms in spite of the existence of a refuge all the prey are entirely 
devoured (they might have accidentally left the refuge, hidden inadequately, 
etc.). Or else (2) as shown in Figure 31 a certain number of prey might have in 
the refuge been entirely out of reach of the predators, and the latter will perish 
finally from lack of food. (3) Lastly, prey may from time to time leave the 
refuge and be taken by the predators; as a result a mixed population consisting 
of prey and predators will continue to exist for a certain time. All this depends 
on the circumstance that in our experiments the absolute numbers of 
individuals were not large, and the amplitude of fluctuations connected with 
multiplicity of causes proved to be wider than these numbers. 

(3) Let us consider the corresponding data. In one of the experiments 30 
microcosms were taken (tubes with 0.5 cm3 of oaten medium with sediment), 
in each of them five Paramecium and three Didinium were placed, and two 
days after the population was counted. It turned out that in four microcosms 
the predators had entirely destroyed the prey whilst in the other 26 there were 
predators as well as prey. The number of prey fluctuated from two to thirty-
eight. In another experiment 25 microcosms were examined after six days; in 
eight of them the predators had died out entirely and prey alone remained. 
Therefore, in the initial stage for every individual microcosm we can only 
affirm with a probability Of 48s that it will develop in the direction indicated 
in Figure 31. Certain data on the variability of populations in individual 
microcosms are to be found in Table 7 (Appendix). Further experimental 
investigations are here necessary. First of all we had to do with too 
complicated conditions in the microcosms owing to variability of refuges 
themselves. It is not difficult to standardize this factor and to analyze its role 
more closely. 

In concluding let us make the following general remarks. When the 
microcosm approaches the natural conditions (variable refuges) in its 
properties, the struggle for existence begins to be controlled by such a 
multiplicity of causes that we are unable to predict exactly the course of 
development of each individual microcosm.3 From the language of rational 
differential equations we are compelled to pass on to the language of 
probabilities, and there is no doubt that the corresponding mathematical 
theory of the struggle for existence may be developed in these terms. The 
physicists have already had to face a similar situation, and it may be of 
interest to quote their usual remarks on this subject: "Chance does not confine 
itself here to introducing small, practically vanishing corrections into the 
course of the phenomenon; it entirely destroys the picture constructed upon 
the theory and substitutes for it a new one subordinated to laws of its own. In 



fact, if at a given moment an extremely small external factor has caused a 
molecule to deviate very slightly from the way planned for it theoretically, the 
fate of this molecule will be changed in a most radical manner: our molecule 
will come on its way across a great number of other molecules which should 
not encounter it, and at the same time it will elude a series of collisions which 
should have taken place theoretically. All these 'occasional' circumstances in 
their essence are regular and determined, but as they do not enter into our 
theory they have in respect to it the character of chance" (Chinchin, '29, pp. 
164-165). 

______________________________  
3 This means only that the development of each individual microcosm is influenced by a multiplicity of 
causes, and it would be totally fallacious to conclude that it is not definitely "caused." All our data have of 
course no relation to the concept of phenomenal indeterminism. 

______________________________ 

(4) If we take a microcosm without any refuge wherein an elementary process 
of interaction between Paramecium and Didinium is realized, and if we 
introduce an artificial immigration of both predator and prey at equal intervals 
of time, there will appear periodic oscillations in the numbers of both species. 
Such experiments were made in glass dishes with a flat bottom into which 2 
cm3 of nutritive liquid were poured. The latter consisted of Osterhout's 
medium with a two-loop concentration of Bacillus pyocyaneus, which was 
changed from time to time. The observations in every experiment were made 
on the very same culture, without any interference from without (except 
immigration) into the composition of its contents. At the beginning of the 
experiment and every third day thereafter one Parameciurn + one Didiniurn 
were introduced into the microcosm. The predator was always taken when 
already considerably diminished in size; if it did not find any prey within the 
next 12 hours, it usually degenerated and perished. Figure 32 represents the 
results of one of the experiments. Let us note the following peculiarities: (1) 
At the first immigration into the microcosm containing but few Paramecia the 
predator did not find any prey and perished. An intense growth of the prey 
began. (2) At the time of the second immigration the concentration of the prey 
is already rather high, and a growth of the population of the predator begins. 
(3) The third immigration took place at the moment of an intense destruction 
of the prey by the predators, and it did not cause any essential changes. (4) 
Towards the time of the fourth immigration the predator had already devoured 
all the prey, had become reduced in size and degenerated. The prey introduced 
into the microcosm originates a new cycle of growth of the prey population. 
Such periodic changes repeat themselves further on. 

Comparing the results of different similar experiments with immigration made 
in a homogeneous microcosm, we come to the same conclusions as in the 



preceding paragraph. Within the limits of each cycle when there is a great 
number of both Paramecium and Didinium it is possible by means of certain 
differential equations to predict the course of the process of the struggle for 
existence for some time to come. However, at the critical moments, when one 
cycle of growth succeeds another, the number of individuals being very small, 
"multiplicity of causes" acquires great significance (compare first and second 
cycles in Fig. 32). As a result it turns out to be impossible to forecast exactly 
the development in every individual microcosm and we are again compelled 
to deal only with the probabilities of change. 

 

Fig. 32. The interaction between Didinium nasutum and Parameciurn 
caudatum in a microcosm with immigrations (1 Didinium + 1 Paramecium). 
Causes of too low peak of Didinium in the first cycle of growth are known. 

From Gause ('34a). 

(5) Let us briefly sum up the results of the qualitative analysis of the process 
of destruction of one species by another in a case of two infusoria. The data 
obtained are schematically presented in Figure 33. In a homogeneous 
microcosm the process of elementary interaction between the predator and the 
prey led up to the disappearance of both the components. By making the 
microcosm heterogeneous (refuge) and thus approaching the natural 
conditions we began to deal with a "probability" of change in various 
directions. The predator sometimes dies out and only prey populate the 
microcosm. By introducing immigration into a homogeneous microcosm we 
obtain periodic oscillations in the numbers of both species. 



 

Fig. 33. A schematic representation of the results of a qualitative analysis of 
the predator-prey relations in the case of two Infusoria. 

III 

(1) The above given example shows that in Paramecium and Didinium the 
periodic oscillations in the numbers of the predators and of the prey are not a 
property of the predator-prey interaction itself, as the mathematicians 
suspected, but apparently occur as a result of constant interferences from 
without in the development of this interaction. There is evidence for believing 
that this is characteristic for more than our special case. Jensen ('33) in his 
monograph on periodic fluctuations in size of various stocks of fish concluded 
that he has not found any periodicity identic to those treated by Volterra. The 
same conclusion was arrived at by S. Severtzov ('33) dealing with vertebrates. 
There are also plenty of entomological observations showing the possibility of 
a complete local extermination of hosts by parasites. We may according to 



Cockerell ('34) recall some observations on Coccidae (scale insects) made in 
New Mexico. Certain species occur on the mesquite and other shrubs which 
exist in great abundance over many thousands of square miles of country. Yet 
the coccids are only found in isolated patches here and there. They are 
destroyed by their natural enemies, but the young larvae can be blown by the 
wind or carried on the feet of birds, and so start new colonies which flourish 
until discovered by predators and parasites. This game of hicle-and-seek 
results in frequent local exterminations, but the species are sufficiently 
widespread to survive in parts of their range, and so continue indefinitely. 
Such local exterminations in grayfish have been recently observed by Duffield 
('33). 

(2) Experimental epidemiology is the one domain where the problems of a 
direct struggle for existence have already been submitted to an exact analysis 
in laboratory conditions. Therefore let us consider in brief the results there 
obtained. If we took a microcosm of any size populated by homogeneous 
organisms, not allowing any immigration or emigration, and if we caused it to 
be fatally infected, we should obtain a complete dying out of the organisms (if 
among them there were no immune ones, and if they were unable to acquire 
any immunity). In other terms, we should have before us the well-known 
elementary interaction of two species. However, the process of dying out does 
not usually go on to the end owing to the heterogeneity of population and 
presence of immune individuals, which are in a certain degree equivalent to 
the individuals protected in the refuge: they are not carried away by the 
process of destruction which goes on to the end among the non-immune ones. 
The nature of this "refuge" is very complicated, and it is interesting to quote 
here the following words of Topley ('26, pp. 531-532): "Most of us who have 
been concerned at all with the problem of immunity have been accustomed to 
take the individual as our unit. When we take as our unit not the individual but 
the herd, entirely new factors are introduced. Herd resistance must be studied 
as a problem sui generis. One factor peculiar to the development of communal 
as opposed to individual immunity may be referred to here. A herd may 
clearly increase its average resistance by a process of simple selection, by the 
elimination through death of its more susceptible members.... That some 
process of active immunization will be associated with the occurrence of non-
fatal infection may safely be assumed, though its degree and importance may 
be very difficult to assess, so that we must allow for the possibility that the 
spread of infection which is killing some of our hosts is immunizing others. 

"A very imperfect analogy may help to depict the position. Suppose we take a 
number of stakes of different thickness, plant them in the ground and expose 
them to bombardment with stones of varying size from catapults of varying 
strengths. After a certain time we shall find that a number of the stakes have 
been broken. This will not have happened to many of the thicker stakes, but 
other survivors will consist of thinner stakes, around which ineffective 



missiles have formed a protective armour. Survivors of the latter class are in a 
precarious state; subsequent bombardment may displace the protective heap, 
and perhaps add its impetus to that of the new missile. Survivors of the former 
class may eventually be destroyed by a missile of sufficient momentum." 

(3) The experiments of epidemiologists dealing with the influence of 
immigration on the course of an epidemic among mice in a limited microcosm 
are also very interesting. One can distinctly see here that a continuous 
interference from without acting upon a definite population causes periodic 
oscillations in the epidemic which disappear immediately as the interference 
ceases. Let us quote Topley again: "When susceptible mice gain access to the 
cage at a steady rate the deaths are not uniformly distributed in time, nor do 
they occur in a purely random fashion. They are grouped in a series of waves, 
each wave showing minor fluctuation. The equilibrium between parasite and 
host seems to be a shifting one. As the result of some series of changes, the 
parasite appears to obtain a temporary mastery, so that a considerable 
proportion of the mice at risk fall victims to a fatal infection. This is followed 
by a phase in which there is a decreased tendency for the occurrence of fatal 
infection, and the death-rate falls. As fresh susceptibles accumulate this 
succession of events is repeated, and the deaths increase to a fresh maximum, 
only to fall again when this maximum is passed." But if only "no such 
immigration occur the epidemic gradually dies down, leaving a varying 
number of survivors." 

We can conclude that the process of elementary interaction between the 
homogeneous hosts and the homogeneous bacterial population possesses no 
"classical" periodic variations. Without wishing to adopt at once the 
preconceived opinion that such a phenomenon is generally impossible, we 
ought in any case require a clear demonstration of its possibility. This 
demonstration will be really given below. 

IV 

(1) Turning back again from empirical observations to the general principles 
let us note that there can exist two different types of innate periodic 
oscillations in the systems, as Hill ('33) has noted recently in connection with 
physiological problems. One of them which was assumed by Lotka-Volterra 
and which we have searched above must be called a "classical" fluctuation 
and it is entirely analogous to well-known oscillations in physics arising as the 
consequence of the reaction with one another of properties analogous to 
inertia and elasticity. A changing system tends, on one hand, to maintain its 
state of motion because it possesses mass, whilst on the other the force of 
elasticity increases according to the removal from equilibrium and ultimately 
reverses the motion or change. In the classical theory of biological population 
the predator tends to multiply indefinitely, but by a removal in this way from 



an equilibrium with the prey the change in the predator population becomes 
reversed, later again replaced by an increase, and so on (equation 21a). 

There is, however, another type of oscillation with which physiologists are 
concerned and to which apparently belong the spread of epidemics and 
fluctuations in our protozoan population. A certain potential or a certain state 
is here built up by a continuous process and the conditions become less and 
less stable until a state is reached t which a discharge (or epidemics) must take 
place. It is evident that the interaction between the two components instead of 
periodically leads here to an interruption of contact (depending from specific 
biological conditions in the case of epidemics and from a disappearance of 
predators and prey in our Protozoa), and then ceases until the next critical 
threshold. Such oscillations with an interruption of contact bear in physics the 
name of "relaxation oscillations." 

 

Fig. 34. Diagrams illustrating two types of innate periodic fluctuations in 
numbers of animals. 1. "Classical" fluctuation of Lotka-Volterra. 2. 

"Relaxation fluctuations." 

It is easy to visualize the difference between these two types of oscillations 
employing the illuminating graphs so often used by Lotka. On the coordinate 
paper we usually plot time on the abscissae and densities of predators (N2) and 
prey (N1) on the ordinates. But if we abstract from time and plot N2 on the 
abscissae and N1 on the ordinates we obtain a clear idea of the nature of 
interspecific interaction. As Figure 34 shows in the case of classical 
oscillation we must have a closed curve.4  

______________________________ 
4 The transformation of the usual time-curves into such graphs is illustrated by a numerical example 
reproduced in Fig. 35. The upper part of it presents a theoretical case of the classical Volterra's oscillation 
in the usual form. If we note the values of N1 and N2 at different moments of time, and then plot N1 
against the corresponding N2, we shall obtain the closed curve reproduced below.  
______________________________  



Let us now turn our attention to the graph for the relaxation interaction. 
Suppose we introduce a definite amount of the predator, N2, at different 
densities of the prey (N1). Then, before the critical threshold of the latter is 
reached (N1°, Fig. 34), an epidemic of Didinium cannot start and the curves 
return on the ordinate. After the critical threshold is reached there appears a 
relaxation which leads to the destruction of the prey--the curves cross the 
abscissa. 

 

Fig. 35. Diagram illustrating the transformation of the usual time-curves (1) 
into relative graphs of interaction (2) for the "classical" Lotka-Volterra 

fluctuation in numbers. 

(2) This little amount of theory enables us to formulate our problem thus: 
How do the biological adaptations consisting of a very active consumption of 
Paramecium by Didinium disturb the conditions of the classical equation 
(21a) and transform it into that of an elementary relaxation? For all the 
technical details the reader is referred to the original paper (Gause and Mtitt, 
'35), and we will discuss here only its essential ideas. 

In a first approximation to the actual state of affairs we can write an 
elementary equation of relaxation. It can be admitted [on the basis of the 



observations on Paramecium (N1) and Didiniurn (N2)] that if N2 is large the 
mortality of the predators is negligible when N1>O. In addition, the increase 
of predators only slightly depends on N1 (with an insufficiency of prey the 
predators continue to multiply at the expense of a decrease in size of the 
individuals; in this connection the consumption of prey but slightly depends 
on N1). 

Introducing these assumptions into the equation (21) we write , 

where and where .* To reduce the 
dependence upon N1 of the members characterizing the interaction of species, 

we substitute to N1 �† Then 

..................(21b) 

 
______________________________ 
* This condition is already sufficient for an exclusion of the "classical" periodic fluctuations. 
�†Special experiments show that this substitution is satisfactory (Gause and Witt, '35).  
______________________________  

Figure 36 shows that the solution of the equation 21b (the integral curves on 
the graph N1, N2) actually coincides with biological observations on 
Paramecium and Didinium. It is therefore safe to assume that the general 
equation of the destruction of one species by another (21) takes in our special 
case the form (21b) instead of the classical expression of Lotka-Volterra 
(21a). 

(3) The equation of relaxation (21 b) represents but a first approximation to 
the actual state of things, and is true only if N1 or N2 are large. Looking at the 
trend of the experimental curves on the surface N1, N2 with small densities 
(Fig. 37) we notice that they pass from the right to the left and cross the 
ordinate (Fig. 37, a). This means that "an epidemic" of predators cannot break 
out if the concentration of the prey has not attained the threshold value ah. 
Below it predators disappear5 and leave a pure population of prey, but above it 



we find usual relaxations. 
______________________________ 
5 In these experiments were used predators possessing no 'residual growth,' e.g. already diminished in 
size. See experiments with immigrations where predators usually did not find any prey in the microcosms 
containing very few Paramecia, and consequently perished. 
______________________________  

Taking into account all these features we can write for Paramecium and 
Didinium a complicated equation of relaxation representing an adequate 
expression of what actually exists. We admit that the mortality of predators 
appears not only with N1 = O, but that a slight mortality generally exists 
increasing with a diminution of the concentration of N2, and that the intensity 
of hunting also increases with an insufficiency of prey. 

 

Fig. 36. The solution of the equation 21b (to the left) and empirical 
observations on Paramecium and Didinium (to the right). No "residual 

growth" of the population of predators (in the absence of the prey) is taken 
into account in the theoretical equation. From Gause and Witt, '35. 

The solution of this complicated equation6 is represented on Figure 38. It is a 
further concretization for Paramecium and Didinium of the principle of 
relaxation represented on Figure 34. An epidemic of predators cannot start 
below the threshold in the concentration of the prey, but above it we find 
usual relaxations. A characteristic feature of our food-chain is an 
extraordinarily low value of the threshold. 
______________________________ 
6 The equation given by Gause and Witt ('35) (21c) is:  



 

.................................................(21C)
______________________________  

 

Fig. 37. The interaction between Paramecium and Didinium at different 
densities of population. The absence of the "residual growth" (comp. Fig. 36 

right) as well as the differences between both curves are connected with 
slightly unfavorable conditions of the medium. 

A mathematical analysis of the properties of the complicated equation of 
relaxation given in Fig. 38 shows that there is a point on the map of the curves 
of interaction which is usually called "singular point." The powers of 
mortality, natality and interaction of prey and predators are so balanced that 
the "classical" oscillations in numbers are theoretically possible around it. But 



in the case of Paramecium and Didinium the coordinates of this singular point 
are exceedingly small. In other terms the zone of possible classical oscillations 
is displaced here to such small densities that these oscillations are completely 
annihilated by the statistical factors which are much more powerful in this 
zone. 

 

Fig. 38. The solution of the complicated equation of relaxation (21c). ah 
represents the threshold concentration of the prey. 

(4) In conclusion let us consider the appearance of periodic variations in 
numbers under the influence of immigrations (a slight and synchronous inflow 
of N1 and N2 after intervals of time t). In other terms we have to deal here with 
the problem of the influence of small impulses. At the origin (a, Fig. 37) they 
lead to a return of the curve to the ordinate. Relaxations arise when the 
concentration of N1 rises above the threshold. From Figure 38 it is easy to 
calculate how a delay of the inflow after the threshold has been reached 
increases the dimensions of the relaxations (the importance of this problem for 
epidemiology has been pointed out by Rermack and McKendrick ('27)). When 
relaxation is going on, slight impulses do not disturb it seriously until crossing 
of the abscissa by tile integral curves, and later on up to their intersection with 



the line of horizontal tangents (Fig. 38). After this the impulses lead to a 
return on the ordinate and the process begins again. 

V 

(1) The theory of the preceding section shows that the consumption of one 
species by another in the population studied is so active that the classical 
oscillations in numbers are transformed into an elementary relaxation and the 
coordinates of the singular point around which such oscillations could be 
theoretically expected are exceedingly small. This fact except its independent 
interest enables us to predict that were we in a position to reduce the intensity 
of consumption we could increase the coordinates of the singular point, and in 
this way observe the classical oscillations of Lotka-Volterra. The situation is 
entirely analogous to that of classical physiology. The rate of propagation of 
nervous impulses is under usual conditions too high and it is sometimes 
desirable to decrease it, to cool the nerve, in order to be able to observe certain 
phenomena. How can one decrease the intensity of consumption of one 
species by another? 

The simplest way is to investigate a system where this intensity is naturally 
low. This has been recently made by Gause ('35b) who analyzed the properties 
of the food chain consisting of Paramecium bursaria and Paramecium aurelia 
devouring small yeast cells, Schizosaccharomyces pombe and Saccharomyces 
exigaus. Special arrangements allowed of controlling artificially the mortality 
of predators by rarefying them, and of avoiding the settling of yeast cells on 
the bottom by a slow mixing of the medium. Figure 39 shows that under such 
specialized conditions fluctuations of the Lotka-Volterra type actually take 
place, and in this manner the conditions of the equation (21a) are realized in 
general features. 

It must be remarked that the equation (21a) does not hold absolutely true 
because the oscillations do not apparently belong to the "conservative" type. 
In other terms they do not keep the magnitude initially given them but tend to 
an inherent magnitude of their own (compare the first and second cycles on 
Figure 39, 1 and 2). This problem, however, requires further investigations. 



 

Fig. 39."Classical" periodic fluctuations in a mixed population of Paramecium 
bursaria and Schizosaccharomyces pombe in the usual (1) and in the relative 
form (2). (3) Periodic fluctuations in a population of Paramecium aurelia and 

Saccharomyces exiguus in the relative form. According to Gause, '35b. 

(2) It is interesting to compare our data with some observations made at the 
Rothamsted Station (Cutler, '23, Russell, '27) which also attracted the 
attention of Nikolson ('33). There is reason to suspect that the fluctuations in 
the numbers of soil organisms observed by Cutler and referred to by Russell 
are interspecific oscillations. "Bacteria do not fluctuate in numbers when 
grown by themselves in sterilized soil; they rise to high numbers and remain 
at approximately a constant level. Their numbers fall, however, as soon as the 
soil amoebae are introduced, but no constant level is reached; instead there are 
continuous fluctuations as in normal soils. There is a sharp inverse 
relationship between the numbers of bacteria and those of active amoebae; 
when the numbers of amoebae rise, those of bacteria fall." It is hardly possible 
therefore to avoid the conclusion that Cutler had to deal here (in a complicated 
form) with classical periodic variations of the Volterra type. 



In conclusion let us note that this final demonstration of the possibility of 
"classical" oscillations showed that very specialized conditions are required 
for their realization, and it is therefore easy to understand why in real 
biological systems with their typical adaptations leading to very intensive 
attacks of one species on another the so much discussed "relaxation 
interaction" between the species apparently predominates. 

VI 

(1) In Chapter III we have pointed out that the connection between the relative 
increase of the predator and the number of prey is not a linear one, and that 
this is of significance for the processes of one species devouring another. We 
can now be convinced that this connection is actually non-linear. 

Recently Smirnov and Wladimirow ('34) have investigated under laboratory 
conditions the connection between the density of the hosts N1 (pupae of the fly 

Phormia groenlandica) and the relative increase of the parasite [the 
progeny of one pair ( male + female) of a parasitic wasp, Mormoniella 
vitripennis, per generation]. The experimental data they obtained are 
represented in Figure 40. As the density of the hosts increases, the relative 
increase of the parasite increases also until it reaches the maximal possible or 
"potential increase" (b2) from one pair under given conditions. That the curve 

showing the connection between and N1 can actually be expressed 
by the equation [Chapter III (23)]: 

 

can be seen in the following manner: by plotting as ordinates the values  

log (b2  ) corresponding to different values of abscissae N1, we 
should obtain a straight line which, as Figure 40 shows, is actually observed. 
The slope of this straight line is characterized by the coefficient  , which thus 
expresses the rate at which the relative increase of the parasites approaches its 
maximal value with the increase of the density of hosts. 

(2) To summarize: We expected at the beginning of this chapter to find 
"classical" oscillations in numbers arising in consequence of the continuous 
interaction between predators and prey as was assumed by Lotka and by 



Volterra. But it immediately became apparent that such fluctuations are 
impossible in the population studied, and that this holds true for more than our 
special case. The corresponding analysis showed definitely to what biological 
adaptations this impossibility is due. This has enabled us to find a particular 
system possessing no such adaptations and in this way to observe "classical" 
fluctuations under very specialized conditions. 

 

Fig. 40. Connection between the progeny of one pair of the parasite, 
Mormoniella vitripennis, and density of the host, Phormia groenlandica, 

according to Smirnov and Wladimirow. From Gause, '34c. 

It is to be hoped that further experimental researches will enable us to 
penetrate deeper into the nature of the processes of the struggle for existence. 
But in this direction many and varied difficulties will undoubtedly be 
encountered. 

 
 


