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1.
Uncertainties in process data of automation systems

Uncertainty

Epistemic

Aleatoric

Parametric

Structural / Model specific

Randomness



Uncertainty in process variables
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§ Simple demo signal: normalized, Hall 
effect test curve in Helmholtz coils

§ Use case: detection of anomalies

§ Primary question: how to distinguish the
anomalous behaviour and statistics?

§ Important information about the aleatoric
uncertainty can be extracted from process
data
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Are these anomalies?



Probability corridor, classical approach
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§ Now, we do not only have the mean curve, but 
also all moments, including the 2nd moment, 
the variance and higher moments

Generation of moments:



2. 
Physics-informed, variational autoencoder & 
latent space probability distributions
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Object data
§ Per run, per product
§ Prepared time-series
§ All relevant data
§ Ideally labelled
§ Timestamped

Process data
§ Streams
§ Telegrams
§ Tabular
§ Machine oriented
§ Time-series



Unsupervised machine learning via autoencoder
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§ Common pre-stage in many
machine learning solutions

§ Compresses data through
bottleknecking

Transformation

follow-up deep networks



Interpreting latent layer transformation neurons
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● Good cases ● Bad cases

§ How can we visualize the transformation so that
we can study the behaviour of such algorithms?

Neuron
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§ Drawbacks

§ Random assignment to neurons

§ Latent space (the middle neurons) is irregular

§ Not easy to interpret



Variational autoencoder, latent layer regularization
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§ Solution: force middle layer into regular structure

§ Variational autoencoders train probability distributions into the middle layer

§ (1) encode inputs not as single numbers, but as distributions

§ (2) regularize covariance and mean of the distributions (!)
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Physics-infused, stochastic autoencoder (shallow)
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Backpropagation

Forward forced injection

Sampling



Result: comparison of AE anomaly detection
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Analysis of the uncertainties propagated within the AE
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§ In the encoded middle layer, we can also 
determine the probability distribution

§ Nonlinear mapping increases visibility of
anomaly significantly



3. 
Outlook towards robust 
machine learning control

Page 12



Mixed-density networks for uncertainty forecasts
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§ Moments of probability distributions are not allowed to
be negative so activation must ensure an non-negative 
value: Exponential-Linear-Unit (ELU)

§ Bishop, 1994

§ Maximize the probability of sampling the output values
(the labels y): 

𝜇
𝜎



Mixed-density networks for uncertainty forecasts
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§ Hot rolled coils

§ Two storage locations



Dynamic mode decomposition
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Highly nonlinear
system dynamics

Highly nonlinear
system dynamics

Koopman space
Linear dynamics of

observables



Summary
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§ Enrichment of autoencoding to include process stochastics and physical a priori 
information

§ Probability distributions can be determined in encoded space

§ Importance of integrating probabilistic information into network evaluation

§ Outlook towards the dynamic mode decomposition, being a upcoming
tool for controller development

§ Methodological work was supported by following funded research projects

§ iba AG, MeDeLe German Research Project within ZIM programme

§ Use cases and methodology will be reviewed further in the RFCS dissemination project
ControlInSteel, which revisits nearly 46 European research projects funded by RFCS 

§ Results were based upon funded projects RFCS FlexGap, RFCS CyberMan4.0, RFCS CyberPOS



Thanks for your patience

Marcus J. Neuer

Head of Department 
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Marcus.Neuer@bfi.de
+49 175 2064672
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Machine learning control
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§ Autoencoder variants built from scratch

§ Prototype in Tensorflow 1.9, used for training and hyperparameter selection

§ Deployable C++ code which runs on embedded Linux platform

§ Training details

§ 288 epochs, 50x iterations on ca. 9000 data sets with 98 anomalies, 
mainly leaky_relu activation

§ ADAM optimizer



Industry 4.0 and its technological advances
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Industry 1.0
Machines

Industry 4.0
Networks

Communication
Integration

Industry 3.0
Computer

Automation

Industry 2.0
Assembly line

Mass production

Production planning
Scheduling Control theory

Decentral systems
Advanced algorithms
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x Multivariate adaptive regression splines (MARS). It is a non-parametric regression 
technique and is an extension of linear models that automatically models nonline-
arities and interactions between variables. 

Figure 72: Example of decision tree. The algorithm tries to find those variables that have higher 
impact on the final quality and set limits to decide if it is correct or not. 

 
As an indicator of the actual degree of quality of the rail are used the results of metallo-
graphic analyses done in laboratory from which are known the possible presence of unde-
sired metallurgical phases such as martensite or bainite. These analyses are done on spe-
cific positions along the rail and only for a small population but give reliable information 
about the true quality. 

 

 

 

 

 

 

  



Enhancements of the autoencoder
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§ Requires „knowledge“ about the process: physics-informed approach

§ Disadvantage: Loss of the key property of machine learning to work
without prior knowledge


