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ABSTRACT: The large number of pollutants in water requires the
application of various water treatment techniques. However, it is time-
consuming, costly, and laborious to experimentally determine e ective
techniques for pollutant removal. As an alternative solution,
quantitative structure property relationship (QSPR) modeling has
been applied to water treatments, including adsorption, membrane

Itration, coagulation, ozonation, the Fenton reaction, photolysis, and
photocatalysis. This work is a critical review of the application of bd
QSPR models to water treatment. This modeling approach has proven <>
to be useful for both signi cantly reducing the experimental load and '.EI
predicting the treatment characteristics and performance, which are
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based on the chemical structures involved, the availability of molecular

properties with minimal computational cost, and the applicability for regulatory purposes. Although current studies can serve as a
basis for further model development, methods of testing the applicability of QSPR models under environmentally relevant
conditions have not been explored. We also examine current priorities in ongoing research and the potential development of QSPR

models for water treatment applications.

1. INTRODUCTION

Quantitative structure property relationship (QSPR) [or
quantitative structure activity relationship (QSAR)] modeling
was established by Corwin Hansch more than 50 years ago and
was initially considered to be a branch of physical organic
chemistry.” QSPR models are generally used to correlate the
physical, chemical, and biological properties of a compound
with its physicochemical characteristics. They were rst applied
in pharmaceutical research to predict the toxicity of chemicals
and/or study certain properties of drugs.” QSPR models have
since been developed and have evolved from simple series of
regression methods to methods of analyzing very large data
sets consisting of numerous molecules with diverse structures
using several machine learning techniques. QSAR/QSPR has
been applied with high accuracy to the prediction of various
characteristics of chemical compounds, for example, the gas
chromatographic retention time,® the toxicity,> and the
behavior of electrochemical systems.® Therefore, QSPR
modeling has been widely used in academic research, industrial
applications, and government research worldwide.’
Numerous environmental contaminants have been reported
in the literature (>85000 are registered by the U.S.
Environmental Protection Agency, and 700 1000 new
chemicals enter the market annually), and it is time-
consuming, costly, and laborious to obtain experimental data
on the treatment of such a large number of pollutants.® Thus,
mathematical modeling, including machine learning, is a key
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approach to understanding, predicting, and managing the
chemical properties and reactivities of legacy and emerging
compounds. Consequently, researchers and practitioners in the
eld of water treatment have used QSPR modeling to
investigate techniques such as adsorption, membrane Itration,
photocatalysis, ozone treatment, reduction, and other
advanced oxidation processes. This approach has proven to
be useful and advantageous for both reducing the experimental
work signi cantly and predicting treatment characteristics and
performance, which are based on the chemical structures
involved, the availability of easily obtained input parameters
with minimal computational cost, and the applicability for
regulatory purposes.®® However, the application of QSPR
modeling to water treatment is still emerging, and further
training of environmental engineers and/or chemists is
necessary to avoid model oversimpli cation. Therefore, better
practices for developing and validating QSPR models and the
extrapolation of model application outside the model domain
are needed.™
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To the best of our knowledge, no review article about the
applications of QSPR modeling to water treatment technolo-
gies has been published. Several reviews have discussed the
fundamentals and interpretation tools of QSPR/QSAR
models.** ** Focused review papers have been published on
the design and toxicity of drugs*** *® and nanomaterial
development and risk analysis.'” *° Overall, these studies
reveal that the use of QSPR models cannot completely replace
laboratory investigations, but QSPR models can play an
important role in supplementing and broadening our under-
standing of a system of interest and optimizing treatment
system conditions. By contrast, a few review papers have
discussed the applications of QSPR modeling in environmental
studies. Most of these papers focused on the toxicity of
chemical com?ounds and their environmental impacts.
Delgado et al.** reviewed the potential application of QSPR
models to rank various emerging contaminants and select
relevant compounds as indicators to monitor drinking water
treatment systems, including the parent compounds, metabo-
lites, and transformation products of several pharmaceuticals,
personal care products, and endocrine-disrupting compounds.
Chen et al.?? described the development and application of
QSPR models to study the toxicity, formation, properties, and
removal of disinfection byproducts in water. Villaverde et al.®
reviewed pesticide risk assessment with a focus on the role of
computational modeling using QSPR models. Here, we present
the rst critical review of recent developments and applications
of QSPR modeling of various water treatment processes. A
comprehensive understanding of the use of QSPR models for
water treatment applications would support the prediction of
treatment e cacy and the elucidation of treatment mecha-
nisms.

2. FUNDAMENTALS OF QSPR MODELS

QSPR Principles. The underlying assumptions in QSPR
modeling are based on the fact that the geometric, steric, and
electronic properties of a molecule a ect its intrinsic progerties
(e.g., biological activity, melting point, and absorption).** The
models can interpolate the unknown properties of compounds
in a certain group using either measured or calculated
molecular parameters of the entire group and suitable
mathematical and statistical methods.”> For example, to
minimize the gap between the pace of nanomaterial innovation
and the development of nanospeci ¢ risk governance,
regulators in the European Union and United States apply
QSPR models to predict the risk or toxicity of newly developed
nanomaterials using molecular descriptors.?® The use of QSPR
models is based on two main principles. (1) Under similar
environmental conditions, compounds with similar structures
show comparable behavior, and (2) variations in structure and
composition among compounds are responsible for their
behavioral di erences.?” The term “descriptors” refers to the
predictor variables, which are also called quantum chemistry
parameters, features, attributes, independent variables, or
structural/compositional components. Descriptors are divided
into two classes: those based on experimental measurements,
such as the octanol water partition coe cient (log Kow), acid
dissociation constant (pK,), molar refractivity, and other
physicochemical properties, and theoretical molecular descrip-
tors that rely on symbolic representations of molecules to
extract information, such as the molecular surface area or
molecular interaction eld. In addition, the terms “activities”,

“end points”, and “dependent variables” may refer to reactivity,
toxicity, bioactivity, or other response variables.”*

Development of QSPR Models. The development of a
QSPR model generally starts with the selection of molecular
descriptors and the associated response variables. Molecular
descriptor data can be computed or collected from experi-
ments, the literature, and databases. Response variables can be
determined experimentally or calculated using models from
other studies. The data are collected and divided into two sets
for running and validating the model. Then, a statistical tool is
used to determine the appropriate model for the data series,
and it is tted to the curve using regression analysis,
generalized linear model Bayesian inference, machine learning,
etc. After validation is complete, the model can be used to
predict the behavior of new molecules that belong to the group
used in the model. Figure 1 shows a simpli ed ow diagram for
a typical QSPR model.
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Figure 1. Simpli ed ow diagram of typical QSPR models of water
treatment applications.

Although QSPR modeling has been in use for decades, some
studies still fail to follow the guidelines of the Organization of
Economic Co-operation and Development (OECD), speci -
cally, the OECD Principles for the Validation of QSPR. Figure
2 shows a summary of good practices for each step of QSPR
modeling based on the application of QSPR in previous
studies. Dearden et al.?’ provided detailed descriptions of
common mistakes in QSPR modeling. According to the
OECD, the following ve requirements must be met if a QSPR
study is to be accepted: (1) a de ned end point, (2) an
unambiguous algorithm, (3) a de ned domain of applicability,
(4) appropriate measures of goodness of t, robustness, and
predictivity, and (5) a mechanistic interpretation, if possible.

Validation of QSPR Models. Model validation is an
integrated step in which the predictivity of the developed
QSPR model is veri ed. A model can be validated using both
data splitting and statistical analysis, as summarized brie y in
this section. Initially, the database is divided into (1) a training
set, which is further split into a calibration subset and an
internal validation subset, and (2) an external validation set,
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Figure 2. Proposed good practices for QSPR modeling.

which accounts for >30% of the data set and never includes
data that were used to develop the model.?> However, this
conventional validation approach might result in a bias in the
resultant optimal model because of the use of the same training
set within the model, especially in multiple linear regression,
partial least-squares, and principal component regression
models.?® As an alternative, Roy et al.® developed the double
cross-validation technique, in which training sets with various

compositions can be obtained by dividing the training set into
n calibration and validation sets. In addition, other validation
methods were recently introduced, such as response random-
ization (i.e., repetitive randomization of the response data of N
compounds in the training set while the descriptor matrix is

xed) and bootstrapping (i.e., randomly selecting samples from
the data set where the subsample of the data is repeatedly
analyzed).”® Thus, emerging validation techniques should be
applied and compared with conventional methods.

There are also several methods of data splitting in the QSPR
model, including (1) simple random sampling, (2) conven-
ience sampling, (3) simple trial and error, (4) CADEX, (5)
DUPLEX, (6) systematic sampling, and (7) strati ed
sampling.*® Very few studies have compared the data splitting
approaches in terms of bias and variance or examined their
e ects on QSPR model performance in water treatment
applications. Thus, the relative bene ts of QSPR model
development for water treatment applications have not yet
been fully assessed. The general advantages and disadvantages
of each data splitting and operation method are summarized in
Table 1. In addition to data splitting, statistical indicators are
also an important part of a QSPR model and are employed to
evaluate the performance (i.e, goodness of t R, and
predictivity, Q%) of developed QSPR models. Table 2 describes
the most common statistical indicators for QSPR models.

3. QSPR MODEL APPLICATION TO WATER
TREATMENT: AN OVERVIEW

In environmental engineering, we assess the impacts of
chemicals on the environment and living organisms, for
example, by exploring how similarly structured drugs have
di erent e ects on or produce di erent symptoms in the
human body. In addition, we focus on pollutant control via
water or wastewater treatment using various technologies.
Overall, QSPR models have been successfully applied to
predict the performance of several water treatment processes
(Figure 3) and have shown high prediction accuracy (R > 0.7,

Table 1. Data Splitting Methods

data splitting

method advantages

simple random easy to perform
sampling
(SRS)
e ciently implemented

convenience e cient when dealing with time series

sampling
splitting data according to discrete time intervals
simple trial overcome the high variance of the SRS method by repeating
and error the random sampling several times and then averaging the
results
CADEX draws samples based on distance, selecting points farthest from
those already included in the sample, and ensures maximum
coverage of the data
DUPLEX improved version of CADEX
systematic deterministic approach designated for naturally ordered data
sampling sets
for the ordered data set, a random starting sample is chosen
and then each Kh sample is taken
strati ed partitions the data into H homogeneous groups of size Nh, and
sampling data are sampled from within each stratum

ensures that adequate representation of input output tuplets
can be achieved

disadvantages ref

splitting of data su ers from variance or bias, especially when the data are 92
non-uniformly distributed

the presence of long-term trends within the data, or di erences in the 93
features and events observed during the di erent time intervals, can lead
to poor model performance

based on trial and error that cannot guarantee that it will nd the best 94
subsets

time-consuming and high computational costs
vague theoretical background
prohibits its use on large data sets due to the computational complexity 95

prohibits its use on large data sets due to the computational complexity 96
high variance and also bias of the model performance 97
sensitivity to periodicities in data

prohibits its use on large data sets due to the computational complexity 30
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Table 2. Statistical Indicators Commonly Used in QSPR Models

abbreviation

de nition

description

it shows the variation or dispersion level of the data from the average value; the lower it is, the closer it

it measures the accuracy of predictions

it measures the accuracy of predictions

it re ects the deviation degree of measured and predicted values

it measures how close forecasts or predictions are to the eventual outcomes
it measures how close forecasts or predictions are to the eventual outcomes
it measures the accuracy of predictions in internal validation

it re ects the relationship between two variables
it re ects the relationship between a dependent variable y and independent variables x; R increases

it overcomes the problem from R, and it is more reliable
they de ne the actual predictive power of the model more precisely

it measures the predictivity of model

it checks the signi cance of independent variables on the dependent variable; if F is higher, the

it checks the signi cance of an individual independent variable to the dependent variable; the higher
the value, the more important the variable

a statistic for checking potential outliers; an observation with SDRi outside the range of £2.5 or +£2.0

a measure of importance of data in developing a model, 0 (not important) to 1 (very in uential)

TSS total sum of squares same as the de nition
SSR sum of squares due to the same as the de nition
regression model
MSR mean square of regression same as the de nition
SSE residual sum of squares same as the de nition
RMS residual mean squares same as the de nition
SD standard deviation
is to the mean
SE standard error
RMSE root-mean-square error
MBD mean bias deviation
AE absolute error
AAE average absolute error
PRESS predictive residual sum of
squares
r Pearson r
R R multicorrelation coe cient
when more variables are included
Roagj adjusted R
Q1 Qo @rs @ coe cient of external validation
Q%LO@ Qe data
CCC concordance correlation
coe cient
F Fisher ratio s the signi
equation is signi cant
t t value
SDR standard residuals
may be considered an outlier
h leverage
D Cook’s distance

a statistic for checking outliers, an observation with D; > 1 may be considered an outlier

Figure 3. Water treatment methods for which QSPR models have

and/or ignored important features.** In addition, most
previous models were developed on the basis of studies that
were run under unrealistic conditions (i.e., ultrapure water
matrices in batch mode) with concentrations of target
contaminants ranging from micrograms per liter to milligrams
per liter. Therefore, QSPR models of various water treatment
technologies based on consensus modeling (i.e., calculating an
average result for representative individual models that provide
an equally reliable response prediction) under environmentally
relevant conditions (e.g., in the presence of background
organic matter and inorganic species) have yet to be developed
to properly assess the applicability of QSPR modeling to real
applications.

4. APPLICATION TO ADSORPTION

Activated carbon (AC) is the most frequently used adsorbent
because of its large speci ¢ surface area and high porosity.*
The organic contaminant adsorption mechanisms of AC
involve hydrophobic interactions, interactions, electro-

been used for performance prediction. The numbers in parentheses
represent the number of studies in the literature for each method.

and @ > 05). Table 3 summarizes the studies that have
employed QSPR modeling to predict the performance of water
treatment processes over the past two decades. These studies
meet the requirements for comparing compounds and
structures and predicting emerging contaminant behavior
(e.g., chemicals with limited access and/or with no available
analytical standards). Note, however, that these QSAR models
might have overemphasized or underestimated some aspects

static attraction, and hydrogen bonding.*> The rst QSPR
adsorption models of AC and AC cloth used multiple linear
regression analysis as well as arti cial neural networks and were
applied to more than 300 chemical compounds.” The models
were very simple and were based only on the relationship
between the molecular connectivity indices (MCIs) and the
adsorption a nity of organic molecules on both adsorbents.
Molecular connectivity modeling relates the MCls to speci ¢
properties of a class of compounds. The MCI is a fundamental
descriptor that can be computed from structural information
and may be related to several physicochemical properties.®*
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Table 3. continued

contaminant
concentration

statistical indicator

data splitting

e
[

value

method

QSPR model descriptors model/algorithm design

(mg/L) water matrices

targeted contaminants

treatment

Adsorption
absolute hardness

quantum mechanically computed enthalpy (H)

Gibbs free energy (G)

>30 descriptors

R > 009 39
Qoo > 0.86

SRS

PLS

ultrapure water

NA

40 organic compounds

single-wall carbon nanotubes

40

best model

SRS

elastic net

3656 descriptors

ultrapure water (pH 6.6)

0.002

200 organic micropollu-

activated carbon

stepwise regression

tants

-cyclodextrin polymer

Ry = 0.84

@ =070

all possible regression

The main descriptors in this study were molecular size and

exibility, molecular volume, topology of unsaturated atoms
and heteroatoms, and a critical dimension. More recently,
Zhao et al.®*® developed QSPR models of the removal of
cationic pharmaceuticals by AC. Six main descriptors were
found to be the most in uential parameters in the QSPR
models: octanol water partition coe cient (log P), molecular
weight (MW), polar surface area (PSA), hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD), and molar
volume. The log P values were estimated only for the
adsorption of neutral molecules, and they were found to
signi cantly a ect the adsorption a nity.*® In addition, the
molecular size, PSA, H bonding (HBA and HBD), and ionic
strength also make important contributions to the adsorption
a nity. The surface functional groups and associated hydrogen
bonding on the surface of AC can interact with pharmaceut-
icals.

Because AC fails to remove many emerging contaminants
and is prone to pore blockage by organic matter, numerous
alternative adsorbents have been developed; in particular,
carbon nanotubes (CNTs) and graphene have attracted
considerable attention for environmental applications.*”>®
Ghosh et al.* developed a QSPR model to predict the
adsorption of 40 organic compounds on single-walled CNTSs.
In this study, more than 30 selected descriptors were used as
input data for the QSPR model, including the Moriguchi
octanol water partition coe cient (MLOGP2), summation of
the X values of the vertices that are joined to three other non-
hydrogen vertices in the connected molecular graph (ETA
Shape Y), number of tertiary amines (nRNR2), number of H
atoms attached to -C (H-051), and presence or absence of
C O at a topological distance of 6 (B06 [C O]). Each of
these descriptors represents adsorption mechanisms such as
hydrophobic interactions (e.g., MLOGP2), molecular shape/
sieving capacity (ETA Shape Y), electrostatic interaction (H-
051), and the formation of hydrogen bonds (B06 [C O]). By
contrast, the nRNR2 value indicates a detrimental e ect on the
adsorption of organic compounds due to the absence of free
hydrogen atoms. In addition, another research group
developed a QSPR model of carbonaceous materials,
speci cally, graphene. Adsorption on graphene oxide was
found to be driven by the mean polarizability, which originates
from quantum mechanical exchange interactions between
electrons of parallel spin. The models of both CNTs and
graphene suggested that it might be possible to use the QSPR
model, in conjunction with an experimental approach, to
clarify the mechanism. A QSPR model was also developed for

-cyclodextrin, a porous polymer adsorbent.*” In this study,
more than 3000 input descriptors were used to predict the -
cyclodextrin adsorption of 200 organic contaminants and its
mechanism using three QSPR methods (elastic net, stepwise
regression, and all possible regression). It was found that group
C1 (electrostatic interaction descriptors), group C2 (hydro-
phobic descriptors), group C3 (molecular size, mass, and shape
descriptors), group C4 (atoms, bonds, and functional group
descriptors), and group C5 (molecular connectivity) a ect the
adsorption behavior. This study is the most comprehensive
QSPR study to compare various QSPR models and algorithms
and to predict the adsorption process with a high goodness of

t and predictivity. Note, however, that the adsorption of
organic compounds is a ected by the properties of the
adsorbent (e.g., speci ¢ surface area, pore volume, pore size
distribution, inner diameter, outer diameter, length, purity, and

https://dx.doi.org/10.1021/acsestwater.0c00206
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surface charge), organic compound (e.g., molecular size,
geometrical properties, hydrophobicity, aromaticity, aliphatic-
ity, and polarity), and background solution (e.g., pH, ionic
strength, and background organic matter). Current QSPR
models of adsorption are limited to the application of a single
adsorbent (i.e., they rely on the properties of that adsorbent)
and do not consider the e ects of the background solution. In
addition to QSPR, other predictive models based on the linear
solvation energy relationship (LSER) have also shown good
applicability as predictive tools and provide mechanistic insight
into intermolecular interactions between organic molecules
(i.e., the adsorbate properties) and some carbon nanomaterials
(i.e., the adsorbent properties).** In addition to these advances
in predictive QSPR and LSER models of adsorption, the
community must focus on the development of predictive
models that include complex environments to address real-
world applications.*?

5. APPLICATION TO MEMBRANE FILTRATION

Among various types of membrane Itration, nano Itration
(NF) has attracted considerable attention for environmental
remediation owing to its properties, which fall between those
of ultra Itration and reverse osmosis membrane Itration. NF
has superior characteristics, including high versatility, a high-
MW cuto (100 5000 Da), membrane surface charge due to
the dissociation of surface functional groups, and the ability to
adsorb charged solutes.”® In addition, NF membranes operate
with no phase change (i.e., no chemical reaction) and typically
have high rejections of multivalent inorganic salts and small
organic molecules.** Yangali-Quintanilla et al.*> developed a
QSPR model to predict the removal of pharmaceuticals and
endocrine disruptors by polyamide NF. The model was based
on the quanti cation of rejection considering the physiochem-
ical properties of the organic compound, membrane character-
istics, and operating conditions. Two QSPR models, partial
least-squares multiple linear regression (PLS-MLR) and
multiple linear regression (MLR), were used to obtain the
best model. It was found that PLS-MLR (R = 0.75; F = 60.2)
outperformed MLR (R = 0.75; F = 52.5), and the main QSPR
descriptors were the equivalent width, molecular depth, and
molecular length (calculated using Molecular Modeling Pro);
log P (calculated using Tox Web Software); and salt rejection
(SR, membrane properties). The equivalent width, molecular
depth, and molecular length have been recognized as the main
chemical properties that cause rejection owing to size exclusion
in the ltration process.”® The e ect of log P is reasonable,
because the hydrophobicity of contaminants a ects the
membrane reJection by adsorption and subsequent partitioning
mechanisms.”’ Finally, SR is related to the charge of the
membrane and also to the cake-enhanced concentration
polarization.”® Shahmansouri and Bellona®® also developed a
QSPR model of NF of 67 organic micropollutants with 45
descriptors. They developed two types of models: QSPR
models that predict rejection using the ux and employing
molecular descriptors as independent variables and QSPR
models that indirectly predict the rejection using molecular
descriptors to predict rst the tting parameters of the
Spiegler Kedem model and then the rejection. Both models
showed a high goodness of t (R% > 0.8) and high predictivity
(Q?>0.7). It was found that the rejection of non-ionic organic
compounds could be explained by the molecular depth,
Wilke Chang di usion coe cient, and ux. By contrast, the
results of the second model indicate that the permeability

coe cient is a function of solute di usivity and that the
re ection coe cient can be predicted from the total solvent
accessible surface area and di usion coe cient. However, both
QSPR model studies of the NF process can be applied to only
the NF270 membrane. Therefore, a better understanding of
how QSPR models change when the surface chemistry and
morphology of the membrane are varied will be important for
predicting the rejection of various organic and/or inorganic
compounds, which have di erent levels of a nity for
membranes.

6. APPLICATION TO COAGULATION

Coagulation is a physicochemical process that reduces the
repulsive potential of the electrical double layer of colloids
using various types of coagulants (e.g., ferric chloride,
aluminum sulfate, polyaluminum chloride, and polyaluminum
iron sulfate).***° Research on coagulation mechanisms and
approaches to improving the treatment performance is always
focused on a target contaminant and the associated water
quality standards. Cheng et al.>* developed a QSPR model to
predict the coagulation process using ferric oxyhydroxide as a
coagulant. The most positive partial charge on a hydrogen
atom (gH*) and the minimum and maximum positive partial
charges on hydrogen atoms bonded to a carbon atom
(CH* i and qCH*,. respectively) were found to be the
main descriptors in the best QSPR model. The gH" value
indicates the active site of a molecule to be dehydrogenated,
and gCH" represents the ability of a hydrogen atom bonded to
a carbon atom to be oxidized. Both of these descriptors are
strongly associated with active coagulation sites. Another
research group also developed a QSPR model of the removal
of phosphorus compounds using a polymer coagulant.>® This
study examined the coagulation mechanism and predicted the
behavior of a novel covalently bound inorganic organic hybrid
coagulant (CBHyC) in the removal of eight phosphorus
compounds. Electrostatic attraction and hydrophobic inter-
actions were found to be the main removal mechanisms of
CBHyC. The atomic charges of the phosphorus atoms (gP)
and hydrogen atoms (gqH*) and the energy gap between the
energy of the highest occupied molecular orbital (E omo) and
the energy of the lowest unoccupied molecular orbital (E jmo)
(E.umo  Exomo) Were the main descriptors in the QSPR
model. Both studies indicated that the charges of the chemical
compounds (e.g, gH*, qCH*, and gP) are the essential
descriptors in QSPR models of coagulation. However, the
current QSPR model of coagulation is based on polymer and
ferric coagulants. Thus, the development of QSPR models of
other types or groups of coagulants is necessary to cover a
wider range of QSPR model applications, which can lead to
signi cant cost savings in optimization and parameter
determination for contaminant removal by coagulation.

7. APPLICATION TO OZONATION

Ozone is a widely used oxidant for water and wastewater
treatment owing to its high oxidation and disinfection
potentials.>® Because of their electrophilic character, ozone
molecules react speci cally with high-electron density sites of
contaminants (e.g., unsaturated bonds and aromatics).>*
Moreover, ozone can cause “OH radicals to form in water,
which are less speci ¢ and react quickly with a wide range of
organic functional groups.”® The rst QSPR model of
ozonation was developed by Sudhakaran et al.”® Their model
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focused on the degradation of pharmaceuticals, personal care
products, and pesticides in bench-scale studies of natural water
matrices (e.g., the Colorado River, the Passaic River, the Ohio
River, and synthetic Suwannee water). The molecular
descriptors that a ected the model were found to be E yuo

Eomo, electron a nity (EA), mean oxidation number,
number of ring atoms (#ring atoms), number of ring atoms in

ve- or six-membered rings (#in56), number of halogens (#X),
and oxygen/carbon ratio (O/C). Contaminants with large
E.umo  Enomo values showed low chemical reactivity toward
ozone.”® The #ring atoms and #in56 descriptors represent the
presence of carbon-based ring systems (i.e., high electron
density), which can easily react with ozone.>” EA indicates the
a nity of a molecule for electrons, where contaminants with
low EA enhance ozonation because ozone and the contami-
nants do not compete for electrons.®® With regard to #X, a
high value of #X will cause electron de ciency in organic
micropollutants and decrease the ozonation capacity.”® O/C
indicates the oxidizability of the compound, and high O/C
values indicate low reactivity with ozone.*® In addition, a more
advanced QSPR model based on an arti cial neural network
algorithm was also developed to compile the data from these
four rivers. It showed that the importance of the descriptors is
ranked as follows: E ymo  Enomo > #ring atoms > EA > #X.
However, these QSPR models can be applied to only ozone at
pH 7.00 8.00.

In a di erent study by Sudhakaran and Amy,°° another
QSPR model of ozone was developed using a wider pH range
(5.00 8.00) and di erent input descriptors [i.e., double bond
equivalence (DBE), weakly polar component of solvent
accessible surface area (WPSA), and ionization potential
(1P)].%° DBE indicates the number of rings, double bonds,
or triple bonds present in a compound, which is positively
correlated with ozonation e ciency. WPSA describes the
surface area of the compound, which consists of halogens.
Ozonation can be inhibited by the presence of halogens
because they are electrophilic and withdraw electrons from the
chemical system, which causes the reactive molecular sites to
become electron-de cient.>® Finally, the IP is the amount of
energy required for an electron to be released from a neutral
chemical system.®* Thus, when the IP is low, more electrons
are available to ozone, and the ozonation e ciency is higher.
These promising results showed that the QSPR model can be
applied to predict the ozonation process in a wide pH range.

In recent years, two studies by the same research group have
investigated QSPR model application to elucidate the
ozonation mechanisms of organic compounds at neutral and
acidic pH using di erent input descriptors.®>%® At neutral pH
(pH 7.0), three descriptors were well-correlated with the ozone
reaction rate constant (K): the Fukui indices for the minimum
nucleophilic attack constant [f(+),], the most positive partial
charge on a carbon atom (qC*), and Eyomo. When f(+), is
larger, it becomes harder for the C H bonds of aliphatic
hydrocarbons and N H bonds of amines to be ruptured by
ozone. By contrast, as Eyomp increases, electron donation
becomes easier, and hence, compounds react more easily with
ozone. Finally, qC* represents non-uniform electric charge on
the main chain, which indicates the ease or complexity of
valence bond breakage in organic molecules. However, at
acidic pH (4.0), the maximum nucleophilic attack [f(+),],
maximum electrophilic attack [f(0),], and most negative partial
charge on the carbon atom (qC ) were the main QSPR
descriptors for the ozonation process. As f(+),, which indicates

the likelihood of a nucleophilic attack, increases, it becomes
easier for the main chain carbon at the site to be attacked by
ozone. By contrast, rupturing the C H bonds of aliphatic
hydrocarbons and N H bonds of amines becomes more
di cult with an increase in f(0),. In addition, qC is usually
associated with electron withdrawal. Despite this advance in
the application of the QSPR model to ozonation, most studies
have focused on the parent contaminants, and limited
information about the formation of degradation products is
available.** Full mineralization of contaminants is rarely
realized during ozonation; therefore, it is also important to
develop a predictive QSPR model for the transformation
products. Furthermore, theoretical thermodynamic computa-
tions of target compounds, oxidants, intermediates, and
derivatives are still limited by the absence of a reliable and
a ordable model chemistry and software.®

8. APPLICATION TO FENTON REACTIONS

Fenton reactions rely on the reaction of hydrogen peroxide
(H,0,) with iron ions (Fe?") to form reactive oxygen species
(ROS, mainly hydroxyl radicals) that can oxidize water
contaminants. The optimal conditions for the Fenton process
are a ected mainly by the operating pH, Fe?* concentration,
H,O, concentration, and operating temperature.®® Several
studies have examined the application of a QSPR model to
predict and elucidate the mechanism of the Fenton process.
The rst QSPR model of the Fenton process was developed
using the Hammett correlation,®” which is used to predict the
e ect of substituents (methyl, amino, nitro, bromo, iodo,
chloro, uoro, etc.) on the rate constant of the reaction
between oxidants and organic compounds. The Hammett
constant () represents the e ects of inductive and resonance
e ects on substituents.’®®® The results indicated that this
method can predict the Fenton reaction of phenolic acid with
modest success (R was approximately 0.8, and the standard
deviation was 0.07). However, there is no validation method
for this model owing to the simplicity of the Hammett
correlation. Temperature is one of the most important
operating parameters in the Fenton process during the
degradation of organic compounds.® Thermal activation
could improve the oxidative ability of hydrogen peroxide by
producing more hydroxyl radicals, which have stronger
oxidative activity in the Fenton process.” A high concentration
of hydroxyl radicals in the reaction solution could increase the
number of e ective collisions between the oxidant and organic
compounds. Thus, a QSPR model of the Fenton oxidation of
18 organic compounds in a temperature range of 15 60 °C
was recently developed.” The main descriptors in this model
were the temperature of the reaction system, reciprocal of the
reaction temperature, number of carbon atoms per molecule
(#C), ratio of the numbers of oxygen and carbon atoms,
maximum positive partial charge on a hydrogen atom bonded
with a carbon atom (gCH"), minimum negative partial charge
on a carbon atom (qC ), square of the gap energy [(E umo

Eromo)?], most positive partial charge on a hydrogen atom
(gH™), bond order (BO), and Fukui indices. A high #C value
indicates that a chemical is a complex compound, and it will be
di cult for hydroxyl radicals to attack it. The descriptors
gCH", oC , and gH" and the Fukui indices indicate the
changes in the charge on each atom during oxidation by the
Fenton process. In addition, E ymo  Enomo indicates the
ability to lose electrons.”” Finally, the BO in compounds and
the chemical bonds in a compound tend to be more stable if
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the BO s larger.”* However, this Fenton process and QSPR
model can be applied only at pH 3.0.

Many e orts have been made to improve the Fenton process
and expand its application to a wider pH range. One promising
method is to combine iron precursors with a supporting
material. Li et al.”® developed a catalyst consisting of a
polyacrylonitrile ber Fe complex and used a QSPR model to
predict and enhance the understanding of this catalyst for the
Fenton reaction at pH 6.0. The main descriptors were MW
divided by the number of sulfonate groups (MW/S), the
number of azo linkages (N ), the number of aromatic rings
(Nar), and the inorganic character divided by the organic
character (1/0). Dyes with more sulfonate groups have a
relatively low MW/S and higher decoloration values, which
could result from enhanced adsorption between the poly-
acrylonitrile ber Fe complex and dye molecules. In this study,
Ny N Was also an important factor in dye mineralization.
Moreover, aromatic intermediates with higher Nz and lower
[/0 values may be easily attracted to the polyacrylonitrile ber
Fe complex, resulting in rapid mineralization. However, using
dyes to assess the performance only at pH 6.0 is not
recommended because the dissociation capacity of dyes varies
with pH, and this variation can a ect the process. Therefore,
further comprehensive studies in a wider pH range are needed
to explore the superiority of newly developed Fenton-based
processes and comprehensively assess the QSPR application.

9. APPLICATION TO PHOTOLYSIS AND
PHOTOCATALYSIS

The objective of QSPR studies of photolysis and photocatalysis
is to determine the reaction rate constant (K) or half-life (t;,,)
of target pollutants under exposure to photons or radicals.
Photolysis is categorized as direct or indirect, where direct
photolysis is a transformation process driven mainly by the
irradiation of chromophores and indirect photolysis causes
degradation by the reaction of the contaminant with a reactive
species generated by photosensitizers, which can absorb
radiation to reach an excited state.”* QSPR modeling has
been applied to predict photolytic degradation of various
organic _contaminants, such as polychlorinated dibenzo-p-
dioxins,” polycyclic aromatic hydrocarbons,”® halogenated
disinfection byproducts,”” and azo dyes’® under ultraviolet
(UV) and solar irradiation. Frontier molecular orbital energies
(i.e., Eqomor ELumor @and Eqomo  ELumo), Which are directly
related to the IP, are reportedly key indicators in photolysis
and radical oxidation reactions; they are highly correlated with
the chemical reactivity and can a ect the degree of electron
transfer reactions.”” These ndings are consistent with QSPR
modeling results for photolysis, which also indicated that the
main descriptors that always contribute to photolysis of
di erent types of contaminants are Eomo, B umo aNd Eqomo

E umo (Table 3). The existing QSPR predictive models of
photolysis showed both a high goodness of t (R% > 0.8) and
high predictivity (Q? > 0.8) (Table 3). The most recent study
of application of the QSPR model to photolysis indicated that
pH a ected the QSPR model development.”® If the pH
become higher or lower than the pK,, the use of the IP as a
descriptor for targeted contaminants can be a ected owing to
chemical protonation or deprotonation in solution.”” More-
over, indirect photolysis in natural water could be enhanced
owing to the presence of triplet natural organic matter and
carbonate radicals.2’ Despite this enhancement, in most cases,
background water matrices (i.e., the organic and inorganic

constituents) can act as scavengers for the radicals and
introduce the inner Iter e ect, which can change the
photolytic performance.®* Therefore, to explore QSPR model
application, the e ect of solution pH on protonated and
deprotonated species of contaminants and background water
matrices needs to be considered in quantum chemical
calculations and in the development of models of photolysis.

The application of photolysis for the removal of organic
contaminants is very limited because the energy supplied by
light is not su cient for the reaction to begin and/or the rates
of photolysis are sometimes too low to be of interest.%? Thus,
semiconductor materials have been used as photocatalysts to
accelerate the kinetics of this process and to enhance its
performance in treating contaminants in water or wastewater.
In photocatalysis, light with an energy that is greater than the
band gap of the semiconductor excites an electron from the
valence band to the conduction band and creates an electron
hole pair, which triggers a series of reactions resulting in the
photocatalytic degradation of pollutants.®® The electrons and
holes on the surface of the semiconductor will participate in
redox reactions that produce ROS such as hydroxyl radicals
("OH) and superoxide anion radicals (O, ). These reactive
species are very strong and can destroy the bonds of stable and
unreactive organic molecules to form organic intermediates
before reaching the total mineralization of contaminants.®*
Among semiconductor materials, TiO, shows the greatest
potential for use in green chemistry technology. Huang et al.*
developed a QSPR model application for the prediction of
sulfonamide degradation using TiO, and its composites with
activated carbon ber (ACF) under UVA irradiation (365
nm). QSPR models of the TiO, system generally use three key
types of descriptors: (1) Biomo and E ymo, Which represent
the oxidation reaction in photocatalysis, in which electrons are
gained or lost, (2) the Fukui indices (functions that describe
the electron density in a frontier orbital), which represent the
interaction of contaminants with "OH, and (3) charge
distribution parameters, which represent the reactivity of the
chemical. However, for ACF-TiO,, the adsorptive descriptors
[apparent sorption rate constant (k,y)] and Fukui indices were
the main descriptors. This di erence can be explained using
the Langmuir Hinshelwood model, in which the apparent rate
constant of photocatalysis (k) is the integrated parameter of
the intrinsic photocatalysis reaction rate constant (k) and
k.2 It is reasonably deduced that k and k.4 are positively
correlated and play important roles in the prediction of the rate
constant in the QSPR model of ACF-TiO,. In addition, it was
found that the physicochemical properties of the photo-
catalysts (e.g., speci ¢ surface area, functionalized groups, and
pore size and distribution), physicochemical properties of the
targeted contaminants, and background water matrices (i.e.,
the presence of organic and inorganic species) can a ect the
entire photocatalytic process.®” Therefore, the actual perform-
ance of QSPR modeling of photocatalysis remains unclear until
relevant environmental conditions and various types of
photocatalysts are considered in model development.

The application of photocatalysis for disinfection has also
attracted much attention. In photocatalytic disinfection,
microorganisms are inactivated or killed when ROS attack
and break the cell wall and denature proteins, producing
various end products.®® Pathakoti et al.** developed a QSPR

model to predict the photocatalytic disinfection of Escherichia

coliusing 17 semiconductors/metal oxides under dark and
light conditions. Under dark conditions, the toxicity toward E.
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coliis a process that is completely controlled by electro-
negativity, in which the ionic potential is the main contributor
to the toxicity. As the ionic potential decreases, the level of
screening of a cation in an oxide by surrounding anions
decreases, resulting in a higher toxicity. Under light irradiation,
electronegativity (Eqomo and B ymo) and molar heat capacity
are the main QSPR descriptors. The band gap (Esomo

E umo) is related to the photoreactive ability of a metal oxide
to produce radicals, whereas the molar heat is associated with
the binding reaction on the surface of the metal oxide. Metal
oxides with a su cient band gap (i.e., one that is equal to or
lower than the energy provided by light irradiation) and strong
binding interaction will exhibit high photocatalytic disinfection
activity.® In this regard, it was found that the physical
separation of microorganisms by adsorption can play a
signi cant role in disinfection by carbonaceous composites
with TiO,°* Thus, the development of QSPR models of
composite materials should be pursued to cover a wider range
of photocatalytic disinfection processes.

10. CONCLUSIONS AND FUTURE OUTLOOK

Many contaminants that signi cantly a ect water environ-
ments have been reported in the literature. The application of
the QSPR model together with laboratory experiments could
play an important role in extending our understanding of water
treatment processes. Because many parameters are involved,
additional studies are required to determine the optimal model
conditions for improving QSPR model prediction of water
treatment processes. This review leads us to suggest several
recommendations.

» Many QSPR models have been developed to predict water
treatment processes and clarify their mechanisms. However,
many of these models do not follow the OECD principles for
the validation of QSPR models. Moreover, there is still no
agreement regarding the use of data splitting to validate QSPR
models. Therefore, we proposed good practices for QSPR
modeling as simple guidelines for developing new QSPR
models (Figure 1).

* Researchers have typically used a single QSPR model/
algorithm; the use of a combination of QSPR models and
algorithms to enhance the performance of QSPR models has
rarely been reported. Moreover, most investigations have used
high contaminant concentrations (micrograms per liter to
milligrams per liter). Because QSPR models can support/
predict and enhance the understanding of water treatment
processes compared to laboratory experiments alone, the
performance of a combined QSPR model/algorithm for other
treatments under more realistic concentrations (up to
micrograms per liter) is a high priority for future work.

* The type and number of input descriptors can a ect the
performance of a QSPR model. Further research is needed to
understand and identify the optimal type and number of input
descriptors and nd the best input data for QSPR models
under di erent environmental conditions and for various water
treatment technologies.

* Practical applications of QSPR models of water treatment
are limited because available studies have been conducted
under simpli ed laboratory-scale conditions (i.e., in ultrapure
water) and were based on batch experimental systems (i.e., at
laboratory scale). These conditions are inadequate for
evaluating and predicting water treatments in real treatment
systems. Therefore, data from pilot- or full-scale experiments
must be collected, and more advanced QSPR models should

be developed to evaluate the reliability of QSPR models for the
prediction of real treatment systems and the elucidation of
their mechanisms.

This review examined the current state of knowledge and the
limitations of the application of QSPR models for prediction of
water treatment processes. We hope that it will promote the
use of this approach and result in further development of
QSPR applications in water treatment.
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