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Abstract

We empirically identify the e¤ect of in�ation on relative price distortions, using

a novel identi�cation approach derived from sticky price theories with time or state-

dependent adjustment frictions. Our approach can be directly applied to micro price

data, does not rely on estimating the gap between actual and �exible prices, and only

assumes stationarity of unobserved shocks. Using the micro price data underlying

the U.K. CPI, we document that suboptimally high (or low) in�ation is associated

with distortions in relative prices. At the level of individual products, the marginal

e¤ect of in�ation on relative price distortions is highly statistically signi�cant and

aligns well with theoretical predictions. Cross-sectional price dispersion turns out to

be predominantly driven by movements in the dispersion of �exible prices and thus

fails to comove with in�ation over time. In contrast, cross-sectional price distortions

are found to increase with aggregate in�ation.

JEL Class. No.: E31, E58

�We thank our discussants Hassan Afrouzi, Erwan Gautier, Lorenza Rossi, Viacheslav Sheremirov

and Alex Wolman. We are also grateful to Markus Brunnermeier, Jordi Galí, Yuriy Gorodnichenko,

Loretta Mester, Emi Nakamura, Krzysztof Pytka, Benjamin Schoefer, Frank Schorfheide, Jon Steinsson,

Frank Smets and Carsten Trenkler, seminar and conference participants in Berkeley, Konstanz, the 2023

NBER Conference on Methods and Applications for DSGE Models in Philadelphia, the 2023 Bank of

Portugal Conference on Monetary Economics, the 2nd XAmsterdam Macroeconomic Workshop, and the

Warsaw 7th Annual Workshop of the ESCB Research Cluster on Monetary Economics for helpful input

and discussions. Klaus Adam acknowledges support from the Deutsche Forschungsgemeinschaft through

CRC-TR 224 (Project C02). The opinions expressed in this paper are those of the authors and do not

necessarily re�ect the views of the Deutsche Bundesbank or the Eurosystem.

1



1 Introduction

The monetary models employed in academia and central banks assert that too high (or

too low) rates of in�ation give rise to distortions in relative prices. The asserted price

distortions drive many of the trade-o¤s and policy prescriptions of monetary models, e.g.,

the recommendation to implement low and stable in�ation rates.1 Despite its centrality in

monetary theory, there exists no structural empirical evidence validating the notion that

in�ation has a distorting impact on relative prices.

To �ll this gap, we derive a novel theory-consistent empirical approach that allows

estimating the marginal e¤ect of in�ation on relative price distortions. We apply this

approach to the micro price data underlying the U.K. Consumer Price Index and �nd that

in�ation is associated - at the level of individual products - with economically signi�cant

amounts of price distortions. In the cross-section of products, price distortions comove

positively with aggregate in�ation over time, but in�ation-induced price distortions account

for at most 1% of the observed cross-sectional dispersion of prices.

Documenting the empirical relationship between in�ation and relative price distortions

is challenging and the present paper makes progress in two important directions. First, it

is nearly impossible to recover in�ation-induced distortions in relative prices from observed

actual prices. To see why, let pjt denote the relative price actually charged for product j

in period t and decompose it into its �exible relative price p�jt and the price gap gapjt that

is due to nominal rigidities:2

ln pjt = ln p
�
jt + gapjt: (1)

Price distortions due to nominal rigidities for product j can then be summarized by the

variance (over time) of the product�s price gap V ar(gapjt).

Sticky price theories postulate that in�ation a¤ects price distortions, V ar(gapjt), and

that there exists a product-speci�c optimal in�ation rate ln� = ln��j that minimizes

these distortions for product j.3 Higher or lower-than-optimal in�ation is predicted to

increase price distortions, so that @2V ar(gapjt)= (@ ln�)
2 is strictly positive at the point

ln� = ln��j . We refer to this second derivative as the marginal e¤ect of in�ation on

relative price distortions. Many optimal policy recommendations in monetary economics

rest on the postulated positive sign of this marginal e¤ect.

1See, for instance, Woodford (2003), Galí (2015), Adam and Weber (2019) or Archarya, Challe and

Dogra (2023).
2The �exible relative price is the price that would be charged in the absence of price adjustment

frictions. It may itself be distorted, e.g., due to market power. Distortions due to nominal rigidities come

on top of the distortions present in the �exible price.
3We de�ne � = Pt=Pt�1 as the gross in�ation rate, where Pt denotes the price level in period t, so that

ln� is the net in�ation rate.
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A key di¢ culty with empirically testing for the presence of a positive marginal e¤ect

is that the price gap in equation (1) typically cannot be measured because the �exible

relative price ln p�jt is not observed.
4 In fact, we show that there exists an important

identi�cation problem: the level of price distortions V ar(gapjt) cannot be recovered from

actual relative prices ln pjt, whenever the �exible price ln p�jt contains some stationary

stochastic component.5 This may explain why the previous literature stopped short of

identifying how price gaps depend on in�ation (Wulfsberg (2016) and Nakamura, Steinsson,

Sun and Villar (2018)), instead highlighted the di¢ culties associated with empirically

recovering price gaps.6

A main contribution of the present paper is to show that the marginal e¤ect of subopti-

mal in�ation on price distortions can be identi�ed from actual relative prices, even though

the level of price distortions is not identi�ed from actual prices. Intuitively, identi�cation

of the marginal e¤ect is feasible because the variance of the �exible relative price ln p�jt on

the right-hand side of equation (1) is independent of in�ation. This causes the variance of

the actual relative price ln pjt on the left-hand side of equation (1) to be informative about

the variance of the price gap and hence price distortions.

A second challenge this paper addresses is that it is generally di¢ cult to establish a

causal relationship in the data that goes from in�ation to price distortions, when exploiting

variation in aggregate in�ation over time: outside hyperin�ationary episodes or periods

with large energy price shocks, aggregate in�ation tends to move only slowly over time.

As a result, movements in in�ation are often hard to distinguish from a slow-moving time

trend. Observed time trends in price dispersion might then re�ect an observed trend in

in�ation or other trends that operate concurrently but are unrelated to in�ation, e.g., a

time trend in the variety of products or secular shifts in the distribution of mark-ups and

productivity.

Our empirical approach overcomes this identi�cation challenge by exploiting cross-

sectional variation in the product-speci�c optimal in�ation rate ln��j during a period in

which the actual in�ation rate ln� was relatively stable in the U.K. economy.7 The optimal

4In rare cases, additional information about marginal costs and the desired mark-up is available, which

identi�es the �exible relative price and thereby the price gap. Eichenbaum, Jaimovich and Rebelo (2011)

estimate price gaps for supermarket goods using such information, but do not analyze how in�ation a¤ects

price distortions.
5Alvarez, Lippi and Oskolov (2022) and Baley and Blanco (2021) recover the price gap distribution

under the assumption that �exible prices follow a pure random walk (and have no stationary stochastic

component). In our data, this assumption is strongly rejected, see appendix D.
6See section IV.A in Nakamura et al. (2018).
7To avoid the possibility that our results are driven by energy price or other particular shocks, we

exclude the Covid and post-Covid period from our analysis.
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Figure 1: Di¤erent relative price trends in the expenditure category �takeaway co¤ee latte�.

in�ation rate ln��j is determined by product-speci�c fundamentals, such as the rate of

productivity progress, input cost dynamics, or time trends in monopoly power. These

fundamentals induce quasi-exogenous variation in the gap between actual and optimal

in�ation across products, ln�� ln��j , that we can exploit to estimate the causal e¤ect of
suboptimal in�ation on price distortions.

Figure 1 illustrates this approach. It depicts relative price time series for di¤erent

products in the expenditure item �takeaway co¤ee latte�. The left panel shows products

with a positive trend in relative prices and the right panel shows products with a down-

ward trend in relative prices.8 Jumps in the relative price are associated with nominal

price adjustments, while periods with no price adjustment display a constant reduction in

the relative price due to positive and nearly constant co¤ee price in�ation. Importantly,

products in the left panel of �gure 1 desire rising relative prices and thus prefer de�ation in

co¤ee prices (ln��j < 0): an appropriate rate of de�ation would cause their relative prices

to increase at the desired speed without the need for nominal price adjustments, causing

price adjustment frictions to be irrelevant. Conversely, products in the right panel prefer

positive in�ation in co¤ee prices (ln��j > 0).

We show in the paper how one can exploit this kind of heterogeneity in product-speci�c

optimal in�ation rates ln��j to estimate the marginal e¤ect of in�ation on relative price

distortions. Speci�cally, we show that both time and state-dependent pricing models imply

a simple two-step estimation approach: in a �rst step, one takes out a time trend from

the product�s actual relative price, as depicted in �gure 1, and computes the variance

of residuals; in a second step, one regresses products� residual variance on the squared

8For illustration, we consider all products with at least 60 price observations in the expenditure item

and then depict the �ve products with the most positive (left panel) and most negative (right panel) trends

in relative prices in �gure 1. Appendix A depicts all price time series with more than 60 price observations

and the price index.
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deviation of actual from optimal in�ation (ln� � ln��j)2. We show that the regression
coe¢ cient in this second step identi�es the marginal e¤ect of suboptimal in�ation on

price distortions, i.e., @2V ar(gapjt)= (@ ln�)
2 at the point ln� = ln��j . Importantly, this

structural empirical approach works without imposing restrictions on the behavior of the

cross-sectional distribution of �exible relative prices over time.

Using U.K. micro price data, we show that the estimated marginal e¤ect of in�ation on

relative price distortions is positive, in line with the theoretical predictions of time or state-

dependent pricing models. The estimated marginal coe¢ cient has the predicted positive

sign in 98% of the expenditure items underlying the U.K. consumer price index and is

statistically signi�cant in 94% of them. Squared suboptimal in�ation also has surprisingly

high explanatory power for the residual variance of relative prices in the cross-section of

products: for the median expenditure item, it explains 16% of residual variance. And in

line with sticky price theories, we �nd that the marginal e¤ect of suboptimal in�ation on

price distortions is stronger when prices are more rigid.

Having established that suboptimal in�ation gives rise to price distortions over the

lifetime of individual products, we turn consideration to the dispersion of prices in the

cross-section of products. We document that cross-sectional relative price dispersion in-

creased strongly in the U.K. over the considered sample period (1996 - 2016). Interestingly,

this happened despite U.K. in�ation displaying no time trend and only moderately-sized

�uctuations.

We show that sticky price theory allows decomposing the cross-sectional dispersion of

relative prices, at any given point in time, into the dispersion that is due to the deterministic

component of �exible relative prices and a residual component. The residual component

contains the e¤ects of price distortions induced by nominal rigidities in the presence of

suboptimal in�ation and the e¤ect of stochastic components of the �exible relative price.

We show that the deterministic �exible price component accounts for 99% of the observed

cross-sectional dispersion of actual relative prices and for nearly all of the observed increase

in the cross-sectional price dispersion over time. This implies that relative price distortions

due to nominal rigidities and suboptimal in�ation account for at most 1% of the observed

cross-sectional variance in relative prices.9

Sticky price theories also predict that residual price dispersion comoves positively (neg-

atively) with in�ation over time, whenever actual in�ation lies above (below) the optimal

in�ation rate of the average product within an expenditure item. This is so because rela-

tive price distortions are predicted to comove with in�ation in this way. Interestingly, we

�nd considerable support for this prediction of sticky price theories in the data.

9For reasons explained in the paper, there is no covariance term.
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For the average expenditure item, residual price dispersion comoves moderately posi-

tively with aggregate in�ation over time: the correlation is equal to +0:47 and is statisti-

cally signi�cant at the 5% level. This �nding is consistent with the widely held notion in

monetary economics that higher in�ation is associated with larger relative price distortions.

It should thus increase con�dence in the economic relevance of key policy recommendations

derived from monetary models, e.g., regarding the desirability of targeting low and stable

in�ation rates. It also �ts with recent �ndings in Ascari, Bonmolo and Haque (2022),

that high in�ation rates are associated with a loss in the economy�s output potential.

Relative price distortions are one source of potential output losses associated with high in-

�ation rates, as emphasized in the literature that infers price-induced misallocations from

product-speci�c mark-ups (Baqaee, Farhi and Sangani (2022), Meier and Reinelt (2022)).

The paper is also related to Alvarez, Beraja, Gonzalez-Rozada and Neumeyer (2019)

who estimate a nonlinear relationship between the cross-sectional dispersion of prices and

in�ation using data from Argentina. They �nd that cross-sectional price dispersion re-

sponds only weakly to in�ation for in�ation rates below 10%, but rises strongly for higher

rates and eventually levels o¤. Relatedly, Sheremirov (2020) uses supermarket scanner

data for the U.S. and documents how local cross-sectional price dispersion correlates with

local in�ation over time.10 Instead of estimating a reduced-form relationship between the

cross-sectional dispersion of prices and in�ation over time, our structural approach calls for

estimating across-time dispersion of prices at the level of individual products and relating

it to a product-speci�c measure of suboptimal in�ation in the cross-section of products.

Section 2 illustrates the empirical approach developed in this paper using the simplest

possible setup. Section 3 derives the empirical approach for the full theory with time or

state-dependent pricing frictions. Section 4 introduces the micro price data and section

5 presents our main empirical results. Sections 6 and 7 consider alternative estimation

approaches, while section 8 analyzes the decomposition of cross-sectional relative price

dispersion and the comovement of residual dispersion with in�ation over time. A conclusion

brie�y summarizes.

2 The Approach in a Nutshell

This section illustrates with the help of a simple example how heterogeneity in the product-

speci�c optimal in�ation rate ln��j allows identifying the marginal e¤ect of suboptimal

in�ation on relative price distortions. Suppose prices get adjusted in regular intervals

10Sara-Zaror (2022) extends the empirical approach of Sheremirov (2020) and documents that cross-

sectional price dispersion strongly rises with the absolute deviation of in�ation from zero, with the rela-

tionship becoming �atter for larger absolute in�ation rates.
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every N > 1 periods (Taylor (1979)) and the �exible relative price p�jt = P �jt=Pt of product

j evolves deterministically according to

ln p�jt = ln p
�
j � t � ln��j ; (2)

where ln p�j is a product-speci�c intercept and ln�
�
j is a product-speci�c time trend, cap-

turing di¤erences in dynamics of marginal costs (or other factors) across products. Gross

in�ation is constant and equal to �.

In this setting, the optimal in�ation rate for product j is given by ln� = ln��j because

its relative price then gets eroded at the desired rate ln��j : the nominal price for product j

can remain constant, so that price setting frictions do not matter for tracking the �exible

relative price. When ln� > ln��j (ln� < ln��j), the relative price gets eroded too quickly

(slowly). As a result, adjustments of the nominal price have to be made to correct for the

�wrong�trend induced by in�ation during non-adjustment periods. Due to price stickiness,

these adjustments occur only occasionally, so that suboptimal in�ation leads to deviations

of the relative price from the �exible relative price.

Figure 2 illustrates this fact. It depicts the �exible relative price ln p�jt for three products

(j = 1; 2; 3), for which the �exible relative price falls at rate 0 < ln��1 < ln�
�
2 < ln�

�
3.
11

Assuming that in�ation ln� is equal to ln��1, the �exible relative price of product 1

coincides with the sticky relative price ln pjt, so that there are no relative price distortions.

For product j = 2, in�ation is such that the relative price falls insu¢ ciently during non-

adjustment periods. It then becomes optimal to choose a relative price that is lower than

the �exible price in adjustment periods, to reduce the average gap between the sticky

and the �exible relative price over the time period for which the price is sticky. Note that

through this mechanism, suboptimally low in�ation leads to deviations of the sticky relative

price from the �exible relative price. These deviations are even stronger for product j = 3,

for which the trend in the �exible relative price is even further away from the trend in

relative prices induced by in�ation. A larger gap between in�ation and optimal in�ation

thus gives rise to larger deviations of the sticky relative price from the �exible relative

price.

Since symmetric arguments apply when in�ation is higher than optimal in�ation, it is

easy to verify that the variance of the gapjt between the log of the sticky relative price

and its time trend, i.e., the price distortion for product j, is a function of the square of

suboptimal in�ation:12

V ar(gapjt) = c � (ln�� ln��j)2 (3)

11The case where �exible relative prices rise over time is symmetric and thus omitted here.
12See appendix B for a proof.
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Figure 2: Relative price trends and price gaps

where c = (N � 1) � (N + 1)=12 > 0 depends positively on the degree of price stickiness

N > 1:

An important insight developed in this paper is that the relationship between subop-

timal in�ation and price distortions in equation (3) can actually be estimated using micro

price data because (i) the product-speci�c optimal in�ation rate ��j is identi�ed by the

time trend in the sticky relative price, see �gure 2, and (ii) price distortions, i.e., the gaps

between the actual and the �exible price, are identi�ed by the residuals of a regression of

the sticky relative price on a time trend, see also �gure 2.

Property (ii) fails to be true more generally when the �exible price also depends on un-

observed idiosyncratic shocks. Yet, the next section shows that the presence of such shocks

only requires adding a constant to equation (3). This holds true even when considering

empirically more plausible price setting frictions, such as Calvo or menu-cost frictions.

Interestingly, considering the absolute size of price changes as a measure of relative

price distortions, as in Nakamura et al. (2018), can result in misleading conclusions about

the relationship between relative price distortions and suboptimal in�ation. Appendix B.1

shows that the absolute size of price changes may respond to in�ation in a setting where

price distortions fail to do so, and that the absolute size of price changes may fail to respond

to in�ation in a setting where relative price distortions do indeed respond.

3 In�ation and Price Distortions: Theory

This section uses sticky price theory to derive a regression approach that allows identifying

the marginal e¤ect of suboptimal in�ation on price distortions using micro price data.

The regression approach turns out to be independent (to a second-order approximation)
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of whether price adjustment frictions are of a time-dependent or state-dependent nature

and can be directly applied to micro price data. An attractive feature of our approach is

that it does not require imposing any assumptions on the behavior of the cross-sectional

distribution of �exible prices over time.

We consider the price setting problem of a �rm facing a demand structure that closely

matches the implicit demand structure underlying the price aggregation procedure per-

formed by the U.K. O¢ ce of National Statistics (ONS). In particular, aggregate consump-

tion is made up of Z di¤erent expenditure items, where an expenditure item z 2 f1; :::; Zg is
a narrow product category, e.g., "Flatscreen TV, 30-inch display" or "CD-player, portable".

Each expenditure item contains a large range of individual products j 2 [0; 1] with item-
level consumption Czt being given by a Dixit-Stiglitz aggregate of individual products j,

Czt =

�Z 1

0

C
��1
�

jzt dj
� �

��1

; (4)

where Cjzt denotes the units of product j in item z consumed in period t and � > 1

the elasticity of substitution between products within the item. Product j should be

interpreted as representing a physical object or service sold in a speci�c location over time,

so that j indexes both products and selling locations. Aggregate consumption is given by

Ct =
ZY
z=1

(Czt)
 z ; (5)

where  z � 0 denotes the (ONS) expenditure weight for item z, with
PZ

z=1  z = 1. With

this setup, demand for product j in item z is given by

Cjzt =  z

�
Pjzt
Pzt

��� �
Pzt
Pt

��1
Ct; (6)

where the item price level is de�ned as Pzt =
�R 1

0
P 1��jzt dj

� 1
1��

and the aggregate price level

is de�ned as Pt =
YZ

z=1

�
Pzt
 z

� z
.

Individual products are produced using a constant returns-to-scale production function

Yjzt =
Azt

GjztXjzt

Ljzt; (7)

where Ljzt denotes labor input and Azt the level of productivity common to all producers

of products in item z at time t.13 1=Gjzt is a deterministically evolving idiosyncratic

productivity component, while 1=Xjzt is a stochastic idiosyncratic productivity component.

Products in expenditure item z face each period an idiosyncratic exogenous exit risk �z > 0.

13The setup can be generalized to include also capital in production, but this will not provide any

additional insights as long as one has constant returns to scale jointly in all inputs.
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Exiting products get replaced by new products that carry - for simplicity - the same

product index, but that feature potentially di¤erent productivity levels 1=Gjzt and 1=Xjzt.

In equilibrium, the quantity of products consumed Cjzt is equal to the quantity produced

Yjzt in each period.

Firms can freely adjust inputs but face frictions for adjusting prices. Section 3.1 con-

siders time-dependent price-setting frictions, while section 3.2 presents the case with state-

dependent pricing frictions.14

3.1 Time-Dependent Price Setting Frictions

The price setting problem. Let pjzt � Pjzt=Pzt denote the relative price charged

for product j, where Pjzt denotes the products� nominal price and let p�jzt denote the

�exible relative price, i.e., the price the �rm would charge for product j in period t in

the absence of price setting frictions.15 Given the demand structure introduced above,

appendix E.1 derives the following second-order approximation to the �rm�s nonlinear

price setting problem with Calvo price adjustment frictions:

max
ln pjzt

�Et
1X
i=0

(�z�)
i
�
ln pjzt � i ln�z � ln p�jzt+i

�2
; (8)

where the parameter � 2 (0; 1) denotes the �rm�s discount factor, �z 2 (0; 1) the Calvo
probability that the price cannot be adjusted in the period, and �z the gross in�ation rate

in item z. The �rm�s relative price in period t+ i is given by ln pjzt � i ln�z, which shows
that the reset price ln pjzt chosen by the �rm gets eroded by in�ation as long as prices do

not adjust. Deviations of the �rm�s relative price from its �exible relative price ln p�jzt+i
give rise to pro�t losses that are quadratic in the size of the deviation.

The dynamics of the �exible price. A key object of interest in problem (8) is the

�exible relative price p�jzt. This price is observed by the �rm but not by the econometrician.

We consider the following general stochastic process:

ln p�jzt = ln p
�
jz � t � ln��jz + lnxjzt: (9)

The term ln p�jz is an unobserved product �xed-e¤ect that is drawn at the time of product

entry from some arbitrary and potentially time-varying distribution. It is a stand-in for
14While our approach also applies to a uni�ed setup with time- and state-dependent adjustment frictions

(Calvo plus), we treat the two frameworks separately. Analytic tractability in the two frameworks relies on

slightly di¤erent assumptions for the shock process Xjzt, and pooling the two frameworks together would

require imposing these assumptions simultaneously, reducing the generality of our results.
15Due to the presence of product-speci�c monopoly mark-ups, the �exible relative price can di¤er from

the socially e¢ cient relative price. In the special case, where desired monopoly mark-ups are identical

across products or simply absent, the frictionless relative price is equal to the e¢ cient relative price.
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unobserved location-speci�c e¤ects such as di¤erences in the level of marginal costs, wages,

rents, service or quality components of the product. It also captures the presence of product

and location-speci�c �exible-price mark-ups.

The term ln��jz in equation (9) captures a product-speci�c time trend in the relative

price and also denotes the product-speci�c optimal in�ation rate, as discussed in section

2. It is drawn at the time of product entry from an arbitrary distribution that may

also depend on time. The trend in the relative price may re�ect a product-speci�c rate of

productivity progress, induced for instance by learning-by-doing e¤ects, or product-speci�c

marginal cost trends induced by trends in wages or rents that are speci�c to the particular

location where the product is sold. Our empirical approach will exploit variation in ln��jz
across products j to identify the distortionary e¤ects of in�ation in expenditure item z.16

While we consider a linear time trend in relative prices here, our empirical analysis will

also consider nonlinear time trends.17

Finally, there is an idiosyncratic stochastic component lnxjzt in equation (9), which

captures idiosyncratic �uctuations induced by changes in productivity or service compo-

nents at the product level. There is no common component in these shocks because the

left-hand side of equation (9) features the log relative price, which already absorbs common

components in the nominal price (at the level of a narrowly-de�ned expenditure category).

The stochastic process governing the idiosyncratic components lnxjzt is assumed to

be stationary and Markov and to be the same for all products within a narrowly-de�ned

expenditure item z.18 We can thus normalize idiosyncratic shocks so that E[lnxjzt] = 0.

We e¤ectively rule out that idiosyncratic shocks lnxjzt follow a random walk. This seems

innocuous because our data strongly reject a random walk in lnxjzt, as shown in appendix

D.19

Equation (9) allows the cross-sectional distribution of �exible prices in expenditure item

z is to vary over time in important ways, even when abstracting from idiosyncratic shocks:

(i) for a given set of products, heterogeneity in the relative price trends ln��jz changes the

cross-sectional distribution of �exible relative prices over time; (ii) as products exit and

enter the market, newly entering products may have di¤erent product-speci�c intercepts

ln p�jz and time trends ln�
�
jz than exiting products. Since the parameters (ln p

�
jz; ln�

�
jz) of

16Our introductory �gure 13 illustrates that relative price trends can di¤er considerably across products,

even within relatively narrowly de�ned expenditure categories, and appendix I formally rejects the absence

of trend heterogeneity using a bootstrapping approach.
17The relative price dynamics of products appear well-approximated by a linear trend, see �gure A.XI

in the November 2018 working paper version of Argente and Yeh (2022).
18We relax the assumption of identical idiosyncratic shock processes across products in section 6.
19This �nding does not depend on assuming Calvo frictions.
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newly incoming products are drawn from an arbitrarily time-varying distribution, the setup

leaves the evolution of the cross-sectional distribution of �exible relative prices unrestricted

over time.

The optimal reset price. Considering the limit � ! 1, the optimal reset price ln poptjzt

solving problem (8) is given by20

ln poptjzt = (ln p
�
jzt � lnxjzt) +

�
�z

1� �z

�
(ln�z � ln��jz) + f(xjzt); (10)

where

f(xjzt) � (1� �z)Et

1X
i=0

�iz lnxjzt+i: (11)

The �rst term on the r.h.s. of equation (10), ln p�jzt � lnxjzt, captures the deterministic
component of the �exible price (9). The second term captures the e¤ects induced by devi-

ations of actual in�ation ln�z from the product-speci�c optimal in�ation rate ln��jz. The

last term in equation (10) captures e¤ects due to the presence of time-varying idiosyn-

cratic components. Equation (11) shows that it is the expected discounted value of the

idiosyncratic shock over the lifetime of the price that matters for this component.

Only the second term on the r.h.s. of equation (10) depends on in�ation. If in�ation

exceeds optimal in�ation (ln�z > ln��jz), then the reset price gets pushed up to compen-

sate for the suboptimally high rate of future erosion of the relative price during periods

in which the price does not adjust. The opposite is true if in�ation falls short of optimal

in�ation (ln�z < ln��jz).

Importantly, the optimal reset price ln poptjzt is equal to the expected value of the �exible

price over the expected lifetime of the reset price. Therefore, an initial period in which

relative prices lie above (below) the �exible price is followed - in expectation - by a period

in which the relative price falls short of (exceeds) the �exible price. This explains how -

according to the theory - deviations of in�ation from its optimal level induce additional

dispersion of prices around the �exible level. This e¤ect is stronger if prices are more

sticky: for a given deviation of in�ation from its optimal level, reset prices react by more,

the higher is the degree of price stickiness (�z).

The dynamics of the actual relative price. While equation (10) determines the

optimal reset price in periods where prices adjust, the dynamics of the actual relative price

for product j in expenditure item z are given by

ln pjzt = �jzt(ln pjzt�1 � ln�z) + (1� �jzt) ln p
opt
jzt; (12)

20See appendix E.1 for a derivation.
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where �jzt 2 f0; 1g is an iid random variable capturing periods with price adjustment

(�jzt = 0 with probability 1 � �z) and no-adjustment (�jzt = 1 with probability �z). In

periods in which the price does not adjust, the relative price falls with in�ation.

It also follows from equation (12) that the actual relative price inherits the product-

speci�c time trend present in the optimal price poptjzt, which in turn inherits the trend

from the �exible price p�jzt; see equation (10). We show next that the variability of the

actual price ln pjzt around this trend is a function of (i) the deviation of in�ation from its

optimal level, and (ii) the idiosyncratic shocks lnxjzt. This insight turns out to be key for

identifying the marginal e¤ect of suboptimal in�ation on price distortions.

The �rst-stage regression. Equation (12) implies that the dynamics of the actual

relative price can be expressed as21

ln pjzt = ln p
�
jz � t � ln��jz + ujzt; (13)

with regression residuals given by

ujzt = �jzt(ujzt�1 � (ln�z � ln��jz)) + (1� �jzt)(f(xjzt) +
�z

1� �z
(ln�z � ln��jz)); (14)

where f(xjzt) is de�ned in equation (11). Since E[ujztjp�jz;��jz] = E[ujzt] = 0, the coe¢ -

cients and residuals in equation (13) can be recovered via OLS estimation.22

Equation (13) shows that the actual relative price inherits - in terms of its level and

time trend - the deterministic components of the �exible relative price (9). This implies

that the e¤ects of price distortions can only be contained in the residuals of regression

(13). In fact, the residuals ujzt are the main reason why regression (13) is of interest. We

now discuss the properties of these residuals.

The level of price distortions is not identi�ed. Due to price stickiness (�z > 0),

the regression residuals ujzt in equation (14) fail to be informative about the idiosyncratic

shocks, as previously emphasized by Nakamura, Steinsson, Sun and Villar (2018). The

underlying intuition is quite straightforward: in periods where prices are not adjusted,

residuals reveal no new information about idiosyncratic shocks; and in periods where prices

are adjusted, their adjustment depends considerably on the expected future values of the

idiosyncratic shock, particularly when prices are sticky, see equation (11).

Due to this dependence on expected future shock values, the information that becomes

available upon a price adjustment - the term f(xjzt) in equation (14) - fails to identify the

underlying process of idiosyncratic shocks lnxjzt. Appendix C proves the following result:

21See appendix E.3 for a derivation.
22To simplify the exposition, we abstract here from small sample issues, which are discussed in section

4 and in appendix G.
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Proposition 1 In the presence of price stickiness, observed prices ln pjzt fail to identify

the process for idiosyncratic shocks lnxjzt. Consider, for example, a stationary discrete

N-state Markov process for f(xjzt). It can be generated either by a stationary Markov

process for lnxjzt with N states or an in�nite number of di¤erent Markov processes with

M > N states, where M is arbitrary and where M �N states in the M-state process are

not states in the N-state process.

Intuitively, di¤erent fundamental processes for lnxjzt give rise to identical processes for

f(xjzt), because they imply the same conditional expectation in equation (11). Since the

process for lnxjzt cannot be identi�ed from observed prices, it is impossible to estimate

the level of price distortions, i.e., the gap between the actual and �exible price. This

may explain why the literature has to date not come up with an estimate of how price

distortions respond to (suboptimal) in�ation.

One way to deal with the identi�cation problem in proposition 1 is to bring in additional

information. This is the strategy pursued in Eichenbaum, Jaimovich and Rebelo (2011)

who exploit information on marginal costs in supermarkets to identify price distortions

(but do not analyze how they depend on in�ation). Yet, information on marginal costs is

only rarely observed.

An alternative approach to handle the identi�cation problem is to impose additional

identifying assumptions. This is the approach pursued in Baley and Blanco (2021) and

Alvarez, Lippi and Oskolkov (2022), who show that the distribution of price distortions

can be recovered from observed price changes, whenever lnxjzt is a pure random walk, i.e.,

does not contain stationary shock components.23 In our data, the hypothesis of a pure

random walk in lnxjzt is strongly rejected, see Appendix D.

We now show that it is simply not necessary to identify the level of price distortions

to estimate the marginal e¤ect of suboptimal in�ation on price distortions.

Second-stage regression: the marginal e¤ect of suboptimal in�ation. While the

level of price distortions cannot be identi�ed from observed prices, the theory predicts

that the marginal e¤ect of suboptimal in�ation on price dispersion can be identi�ed. In

fact, equation (10) highlights that any non-zero gap ln�z � ln��jz generates front-loading
23With a random walk, we have f(xjzt) = lnxjzt, so that the size of innovations between price reset

times identi�es the innovation variance of the random walk. Yet, the result in proposition 1 applies also in

the case where lnxjzt is non-stationary but still contains some stationary component, e.g., when lnxjzt is

the sum of a random walk process ln yjzt and an independent stationary Markov process ln zjzt. We then

have f(lnxjzt) = ln yjzt+f(ln zjzt), so that the process ln zjzt and thus lnxjzt can again not be identi�ed,

even if the process for ln yjzt could be perfectly recovered from the data.
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of prices at the time of price adjustment, as captured by the term �z
1��z (ln�z � ln�

�
jz).

Likewise, during non-adjustment periods, a gap between actual and optimal in�ation leads

to a drift in the gap between actual and �exible relative prices. Both of these features

contribute to the variance of residuals ujzt in the �rst-stage regression (14).

Therefore, the variance of �rst-stage residuals satis�es the following relationship:24

Proposition 2 The variance of the �rst-stage residual in equation (13) is given by

V ar(ujzt) = vz + cz � (ln�z � ln��jz)2; (15)

where the intercept

vz � V ar

 
(1� �z)Et

1X
i=0

�iz lnxjzt+i

!
(16)

is a function of the idiosyncratic shock lnxjzt and the price stickiness parameter �z, and

cz �
�z

(1� �z)2
: (17)

The intercept term vz in equation (16) contains both idiosyncratic �exible price com-

ponents and price distortions due to price stickiness. In particular, price stickiness causes

the loading on the current idiosyncratic shock to be too low relative to the �exible price

case. Yet, without additional information, it is impossible to further decompose to what

extent vz re�ects e¢ cient or ine¢ cient forces, which is precisely the feature preventing

identi�cation of the level of price distortions from observed actual prices. The second

term on the r.h.s. of equation (15) captures the marginal e¤ect of suboptimal in�ation on

price distortions. According to the theory, the coe¢ cient cz is positive and an increasing

function of the degree of the Calvo price stickiness parameter �z.

Equation (15) is a second-stage regression equation and a key equation we shall em-

pirically exploit in the present paper. It uses the residual variance from the �rst-stage

equation (13) as left-hand side variable, and the gap between the (item-level) in�ation rate

�z and the product-speci�c optimal in�ation ��jz as right-hand side variable, where �
�
jz is

also identi�ed by the �rst-stage regression, see equation (13). Equation (15) implies that

the marginal e¤ect of suboptimal in�ation on price distortions can be estimated using a

cross-section of products for which price stickiness and the process driving idiosyncratic

shocks are the same. (A more general estimation approach allowing for heterogeneous price

stickiness and heterogeneous idiosyncratic shock processes is derived in sections 6 and 7).

The next section brie�y shows that the results derived thus far are not speci�c to

the case with Calvo frictions, but apply in slightly di¤erent form also in a setting with

menu-cost frictions.
24See appendix E.4 for a derivation.
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3.2 State-Dependent Price Setting Frictions

To obtain closed-form solutions in a model with state-dependent pricing, we consider a

continuous-time setup and derive the continuous-time analogue to proposition 2 using

only slightly di¤erent assumptions on the idiosyncratic shock process. The �rm�s objective

(8) becomes:

max
f�jzk;�ln pjzkg1k=1

�E
"Z 1

t

e��(s�t)
�
ln pjzt+s � ln p�jzt+s

�2
ds+ �z

1X
k=1

e��(�jzk�t)

#
(18)

The parameter � > 0 is the discount rate, �jzk are the random adjustment times and �z

is the cost paid at the times of adjustment. As with time-dependent frictions, the �rm�s

relative price in period �jzk + s is given by ln pjz�jzk � s ln�z until it is adjusted again,

re�ecting relative price erosion due to in�ation.

The �exible relative price ln p�jzt follows a continuous-time analogue of (9) with an

additional restriction on the idiosyncratic process lnxjzt, namely that it assumes values

from a �nite grid flnx1z; : : : ; lnxNzg and switches from grid point i to grid point j with

Poisson intensity �Xizj.
25

Appendix F shows that under � ! 0 and for su¢ ciently small adjustment cost �z;26

relative price dynamics in the menu-cost model also follow equation (13), with residuals

satisfying E[ujztjp�jz;��jz] = E[ujzt] = 0 and residual variance that depends on product-

speci�c suboptimal in�ation:

V ar(ujzt) = V ar(lnxz) + cMC
z � (ln�z � ln��jz)2 +O((ln�z=�

�
jz)

4); (19)

where the intercept is again a function of the idiosyncratic shock process, the quadratic

term depends on suboptimal in�ation, and O((ln�z=��jz)
4) denotes a fourth-order approx-

imation error. The coe¢ cient cMC
z is now a function of the shock process parameters

�Xiz =
P

j 6=i �
X
izj:

cMC
z � E

"
1

(�Xiz)
2

#
:

If �Xiz is constant across states, then

cMC
z =

1

�2z
(20)

where �z is equal to the adjustment frequency (again up to a fourth-order approximation

error O(( ln�z=��jz)
4)) and thus can be directly estimated from the data. The coe¢ cient

25The restriction is very mild because we do not impose any assumption on the switching intensities.

Even though we are ruling out all processes with continuous paths, we can still approximate them well

with a su¢ ciently �ne grid.
26Note that we do not consider a limiting case �z ! 0, instead our result holds for all �z � �� for some

�� > 0.
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cMC
z di¤ers slightly from the one in the discrete time setup with Calvo friction, see equation

(17), for which �z = 1��z. This is so because multiple price adjustments can happen per
unit of time under continuous time modeling. Also, the coe¢ cient cMC

z does not depend

on the menu cost �z, under the maintained assumption that menu costs are small enough.

Di¤erences in �z have only fourth-order e¤ects in equation (19). This is the reason why

equation (19) now holds only up to a fourth-order approximation error, while it was exact

in the Calvo setup (given the quadratic approximation to the �rm�s objective), see equation

(15).

Perhaps surprisingly, the results obtained from the state-dependent model are (to the

considered order of approximation) virtually the same as obtained in proposition 2 for the

time-dependent model.

4 Micro Price Data and Empirical Product De�nition

In our empirical analysis, we use the micro price data underlying the o¢ cial U.K. consumer

price index (CPI). The advantage of using CPI micro price data is that it covers a wide

range of consumer expenditures. Moreover, the UK CPI data display quite strong relative

price trends and signi�cant variation of these trends across products.27 This is essential for

our identi�cation approach, which relies on cross-product variation in relative price trends.

We consider about 20 years of micro price data (February 1996 to December 2016),

which is obtained from the O¢ ce of National Statistics (ONS). The data are monthly and

classi�ed into narrowly de�ned expenditure items (e.g., �at panel TV 33inch, men�s shoes

trainers, vegetarian main course). Given the sample selection described further below,

we consider 1048 di¤erent expenditure items and 15.2 million price observations over the

sample period.

A product within an item is a sequence of price observations for a particular physical

object or service sold in a particular location. Otherwise identical objects or services sold

in di¤erent locations will thus be treated as di¤erent products in our empirical approach.

The same holds true when a product in a speci�c location and expenditure item gets

substituted by a new product: so-called �comparable�and �non-comparable�substitutions

will be treated as separate products. This allows us to account for location and product-

speci�c components in the most �exible way.

Using this data, we estimate the �rst-stage equation (13) for every product in the sam-

ple. Thereafter, we estimate the second-stage equation (15) at the level of the expenditure

27See Adam and Weber (2023) who estimate the optimal aggregate in�ation rate for the U.K. from

relative price trends.
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item z = 1; ::::1048, considering all products j in the item:

dV ar(ujzt) = vz + cz � ( \ln�z=��jz)
2 + "jz; (21)

where dV ar(ujzt) is the estimated variance of �rst-stage residuals of product j in item z and
\ln�z=��jz the corresponding �rst-stage estimate of the gap between item-level in�ation and

product-speci�c optimal in�ation. As shown in appendix G, the suboptimal in�ation rate

ln�z=�
�
jz can be estimated as the time trend coe¢ cient of the product�s nominal price:

lnPjzt = lneajz + t � ln�z=��jz + eujzt (22)

Intuitively, a trend in a product�s nominal price indicates that the trend in the relative

price induced by in�ation is suboptimal and hence requires systematic adjustments in the

nominal price. Appendix G shows that equations (13) and (22) jointly form a seemingly

unrelated �rst-stage regression system and that the second-stage estimate of the coe¢ cient

cz in equation (21) is biased towards zero as a result of �rst-stage estimation error. Simu-

lations of a calibrated price setting model in appendix H verify that our procedure indeed

generates at most a downward bias in the estimated coe¢ cient. The simulations also shows

that this downward bias is less pronounced when using products with a larger number of

price observations. The second-stage estimate of cz thus provides a lower bound of the

true marginal e¤ect of suboptimal in�ation on price distortions. Since we are interested in

rejecting the null hypothesis of in�ation creating no price distortions (H0 : cz = 0), small

sample bias works against our main �nding.

Since our empirical approach exploits heterogeneity in suboptimal in�ation rates ln�z=��jz
across products j within an item z, we use a bootstrapping procedure to show that we can

indeed reject the null hypothesis of no heterogeneity in suboptimal in�ation, see appendix

I.

The estimation of the second-stage equation (21) delivers 1048 estimates of cz, i.e., one

for each expenditure item z. These estimates identify the marginal e¤ect of suboptimal

in�ation on price distortions in each item, provided our two key identifying assumptions

(identical degrees of price rigidity and identical stochastic processes driving idiosyncratic

shocks within expenditure items) are satis�ed. These assumptions will be relaxed in sec-

tions 6 and 7, where we consider alternative estimation approaches.

The data methodology follows the one used in Adam and Weber (2023), who provide

further details. Starting from the raw micro price data, we delete products with duplicate

price observations in a given month28 and also delete all price observations �agged by ONS

28Duplicate price quotes can arise because ONS does not disclose all available locational information

underlying the data, so that in rare cases we cannot uniquely identify the product price.
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Total number of price quotes used: 15.2 million

mean median min max

Number of products per item 734 573 50 3,201

Number of price quotes per item 14,485 10,772 407 73,313

Table 1: Basic product and price statistics

as �invalid.�Furthermore, we split observed price trajectories for ONS product identi�ers,

whenever ONS indicates a change in the underlying product, i.e., a comparable or non-

comparable product substitution, and whenever price quotes are missing for two months or

more. This conservative splitting approach insures that we do not lump together products

that might in fact be di¤erent. It leads to a re�ned product de�nition that we use to

compute relative prices by de�ating nominal product prices with a quality-adjusted item

price index.

We consider only expenditure items for which the item price index, computed from

our micro price data, replicates the o¢ cial item price index provided by ONS su¢ ciently

well. We exclude cigarette items because their price dynamics are largely the result of

tax changes. In addition, we only consider products with a minimum length of six price

observations after eliminating sales prices from the sample.29 We account for outliers by

eliminating the 5% of products with the highest values for dV ar(ujzt) and for ( \ln�z=��jz)2

within each expenditure item and consider only expenditure items containing at least 50

products.30 This leads us to the 1048 expenditure items that we use in our empirical

analysis. Table 1 reports basic statistics on the number of products and price observations

per item. The average number of price observations per product is equal to 21 monthly

observations and the average number of price changes per products is equal to 2.

4.1 Descriptive Statistics of the Regression Inputs

This section presents key descriptive statistics about the variables entering the �rst and

second-stage regression equations. Since we run these regressions for more than one thou-

sand expenditure items, we report the distribution of key moments of the variables of

interest in the cross-section of items.

The left column in �gure 3 depicts the distribution of the mean and standard deviation

of the length of product life. For most items, the mean product length ranges between 10

29We identify sales prices using the sales �ag recorded by the ONS price collectors.
30We also eliminate expenditure items for which the estimated residual variances are zero for all products.

The latter occurs when prices never adjust within an item, which is the case for less than a handful of

items capturing administered prices.
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Figure 3: Descriptive statistics: �rst-stage regression

and 30 months, which is long enough to estimate an intercept and slope parameter in our

�rst stage. The bottom left panel in �gure 3 highlights that there is a considerable amount

of variation in the length of product lives within each item. We exploit this feature below

to also present estimates that are based on products whose price can be observed for at

least 12 or 24 months (instead of 6 months in our baseline).

The top right panel in �gure 3 reports the distribution of the mean R2 values of the

�rst-stage regression (13) across items. For most items, the time trend captures between

30% and 60% of the observed variation in relative prices. The remainder of the variation

goes into the regression residual, the variance of which enters our second-stage regression.

The bottom right panel in �gure 3 depicts the distribution of the mean autocorrelation of

these residuals, which is considerably smaller than one. Appendix D provides formal tests

showing that residuals do not follow a random walk.31

The top left panel of �gure 4 reports the mean standard deviation of the regression

residuals across items.32 For most items, the mean standard deviation ranges between 2%

and 4%. The standard deviation of the standard deviation of residuals is shown in the

bottom left panel of �gure 4. It highlights that there is a considerable amount of variation

in the left-hand side variable of our second-stage regression, which is desirable.

The top right panel in �gure 4 depicts the distribution of item-level means of the

31The random walk is rejected even if one abstracts from the presence of a deterministic trend in relative

prices.
32We report moments of the non-squared variables entering the second-stage regression to increase

readability of the �gures.
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Figure 4: Descriptive statistics: second-stage regression

suboptimal in�ation rate.33 For the vast majority of items, the average suboptimal in�ation

rate lies between �0:5% per month. The lower right panel in �gure 4 shows the within-

item standard deviation of suboptimal in�ation. The cross-product variation is signi�cant,

with a standard deviation ranging between 1/3 and 2/3 of a percent on a monthly basis

in most items. This shows that our second-stage right-hand side variable also displays a

considerable amount of variation.

5 Price Distortions at the Product Level: Empirical Results

This section reports our estimates of the coe¢ cient cz in equation (21), which captures

the marginal e¤ect of suboptimal in�ation on relative price distortions. The estimation

will be carried out separately for each of the 1048 U.K. expenditure items in our sample,

to maximize the chances that the key identifying assumptions used in deriving equation

(21) are satis�ed (identical degrees of price rigidity and identical stochastic processes for

idiosyncratic disturbances for products within an item). Sections 6 and 7 will present

alternative estimation approaches that relax these assumptions.

5.1 Baseline Results

Figure 5 presents our baseline estimation outcome. The left panel depicts the distribution

of the estimated coe¢ cient cz in equation (21) across expenditure items z. The coe¢ cient

33See appendix K for information on the cross-sectional distribution of the product-speci�c optimal

in�ation rate ��jz.
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Figure 5: Baseline results from estimating equation (21), bootstrapped p-values

Figure 6: Observed versus regression-implied price stickiness (�z)

cz captures the marginal e¤ect of suboptimal in�ation on relative price distortions and we

�nd that 98% of the estimated coe¢ cients are positive (shown in blue), in line with the

predictions of sticky price theories, while only 2% of the estimated coe¢ cients are negative

(shown in red). The right panel in �gure 5 depicts the distribution of bootstrapped p-

values. 94% of the estimates are signi�cantly positive at the 5 % level and 92% at the 1%

level. Only 1% of the coe¢ cients are negative and signi�cant at the 5% level. Figure 5

thus provides overwhelming support for the notion that suboptimal in�ation gives rise to

relative price distortions at the product level.

Row 1 in table 5.2 reports further details of the regression outcome. Interestingly,

the median adjusted R2 value of the second-stage regression (21) is 16%. The square of

suboptimal in�ation is thus not only statistically signi�cant but also explains a sizable
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part of the cross-product variance of �rst-stage residuals within each item. This is the case

despite the fact that �rst-stage estimation error likely contributes to unexplained variance

on the left-hand side of the second-stage regression (21).

The point estimates for cz are not only positive and statistically signi�cant, but also

quantitatively large: the average point estimate is close to 12. It implies that a monthly

in�ation rate that lies 1% above (or below) its optimal level34 increases the standard

deviation of �rst-stage residuals by 3.5 percentage points.35

Since �rst-stage estimation error causes the second-stage estimates of cz to be biased

towards zero, we refrain here from a further quantitative interpretation of the point esti-

mates. Section 8 will assess the quantitative importance of relative price distortions using

the unbiased �rst-stage residuals.

Sticky price theories suggest that the coe¢ cient cz is determined by the adjustment

rate for prices, see equations (17) and (20). We can thus compute the price adjustment rate

implied by any given coe¢ cient estimate and see how it covaries (in the cross-section of

items) with the actual price adjustment rate measured directly from price data. Inverting

equation (17) to solve for the regression-implied share of non-adjusting products �z, we

obtain:36

�z =
1 + 2cz �

p
1 + 4cz

2cz

Figure 6 presents a scatter plot with the regression-implied �z (x-axis) and the share of

non-adjusters �z measured directly from the data (y-axis). The two measures display a

positive correlation equal to +0:45, which is signi�cant at the 1% level. This shows that

relative price distortions due to suboptimal in�ation are larger for items featuring lower

price-adjustment rates, as predicted by sticky price theory. However, the vast majority

of items lie above the 45-degree line depicted in �gure 6, while theory predicts the two

measures to align. The downward bias in the regression-implied value for �z likely arise due

to the downward bias in our estimated coe¢ cients cz associated with �rst-stage estimation

error, see appendix G.

Overall, our baseline results provide strong support for the notion that suboptimal

in�ation distorts relative prices.

34The 1% number corresponds roughly to a 2 standard deviation variation for the typical item, as the

standard deviation of suboptimal in�ation ranges between 1/3% and 2/3% per month for most items, see

the lower right panel in �gure 4.
35The predicted increase in the variance is 0:12% = 12 � (0:01)2 from which we obtain

p
0:12% = 3:5%.

36We perform the inversion only for items with strictly positive estimated cz, which is true for 98% of

items. The other root of the polynomial is larger than one and can be ruled out. In the discrete-time setup,

the adjustment rate is equal to 1��z. For the continuous-time setup, we can recover the adjustment rate
as �z = � ln�z and obtain very similar results.
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Figure 7: Robustness to adding a linear term (equation (23), estimates for cz are reported

in table 5.2)

5.2 Robustness of Baseline Approach

We now explore the robustness of our baseline results. The outcomes of all robustness

exercises are summarized in table 5.2, which reports also the baseline outcome for reference.

Adding Linear Terms. Sticky price theories predict that only the squared deviation of

in�ation from its optimal level explains the variance of �rst-stage regression residuals to

second order. In particular, the linear gap between in�ation and optimal in�ation should

have a zero coe¢ cient when added to the right-hand side of equation (21). One can test

this overidentifying restriction by running an alternative second-stage regression of the

form dV ar(ujzt) = vz + vlz � \ln�z=��jz + cz � ( \ln�z=��jz)
2 + "jz: (23)

We then check whether the coe¢ cients vlz are indeed approximately equal to zero and

whether the estimates for cz remain una¤ected by the presence of the linear term.

Figure 7 reports the distribution of the estimated vlz (left panel) and the associated

distribution of bootstrapped p-values (right panel). In line with sticky price theory, the

estimates for vlz are tightly centered around zero and often statistically insigni�cant. Row 2

in table 5.2 shows that estimates for cz are hardly a¤ected by the presence of a linear term,

in line with sticky price theory. Also, the R2 increases only marginally when including the

linear term.

In�ation versus Suboptimal In�ation as Regressor. It turns out to be important

for our empirical results that the right-hand side of equation (21) features the squared

value of suboptimal in�ation rather than simply the squared value of in�ation itself. To

illustrate this point, let \ln�z(j) denote the average item-level in�ation rate prevailing
over the lifetime of product j and consider the following alternative formulation of the
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second-stage regression

dV ar(ujzt) = vz + cz � ( \ln�z(j))2 + "jz; (24)

which counterfactually assumes that the optimal in�ation rate equals zero for all products.

Row 3 in table 5.2 shows that outcomes di¤er radically from the baseline: (i) one

obtains about as many positive as negative estimates for cz; (ii) 61% of the coe¢ cients are

statistically insigni�cant; and (iii) the R2 value of the regression drops to zero.

Based on regression (24), which - in line with textbook sticky price models - assumes

product-speci�c optimal in�ation to be equal to zero, one would wrongly conclude that

in�ation is not associated with relative price distortions. This highlights that our baseline

�ndings emerge predominantly due to di¤erences in the optimal in�ation rate ��jz across

products j within an item z.

Positive versus Negative Deviations In�ation from Optimal In�ation. We now

explore whether the direction of the deviation from optimal in�ation makes a di¤erence

for the magnitude of relative price distortions. In particular, when ln�z=��jz < 0, then

nominal prices have to fall to keep relative prices at their desired level, while nominal

prices have to increase when ln�z=��jz > 0. If the degree of price rigidity depends on the

direction of the price adjustment, then positive versus negative deviations from optimal

in�ation generate price distortions of di¤erent magnitudes. We can study this by estimating

the baseline equation (21) using coe¢ cients that depend on the sign of the deviation:

dV ar(ujzt) = vz +
�
cz + c�z � If \ln�z=��jz<0g

�
� ( \ln�z=��jz)

2 + "jz;

where Ifxg is an indicator function that is equal to 1 if x is true and zero otherwise. Row

4 in table 5.2 shows that the estimated value for c�z is positive in about three quarters

of the cases and also often signi�cantly so, while it is rarely signi�cantly negative. Price

distortions thus tend to be larger when �rms have to decrease prices to counteract the

e¤ects of suboptimal in�ation, compared to the case where suboptimal in�ation requires

an increase in prices. This suggests that downward rigidity of prices is more pronounced

than upward rigidity.
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Reducing First-Stage Estimation Error. One possible concern with the baseline

estimation approach is that �rst-stage estimation errors are large and might lead to sub-

stantial attenuation in the second stage. We address these concerns by selecting products

for which estimation errors are likely smaller. We do so in two ways.

First, we select products with a higher minimum number of price observations, i.e.,

12 or 24 monthly price observations instead of 6 observations in the baseline approach.

This allows for a more reliable estimation of the optimal in�ation trend ��jz and the rate

of suboptimal in�ation. The regression outcomes are reported in rows 5 and 6 in table

5.2. While results barely change in terms of the share of positive coe¢ cients cz and

their statistical signi�cance, the magnitude of the mean and median estimate increases

considerably relative to the baseline. This suggests that �rst-stage estimation error indeed

causes a considerable downward bias in the second-stage estimates for cz, which is in line

with the simulation evidence presented in appendix H.

Second, we use the number of nominal price changes as a selection criterion for including

products in the regressions. Excluding products with only few price changes avoids that

the variation of residuals in the cross-section of products is purely driven by whether or

not a price change is observed over the product lifetime. To this end, we perform the

second-stage regression using only products with 2 or more (4 or more) price changes.

Rows 7 and 8 in table 5.2 show that one obtains again a very large number of positive

point estimates and high statistical signi�cance levels, albeit somewhat lower values than in

the baseline. Also, the R2 value of regression and the magnitudes of coe¢ cient estimates

decline. Despite this, support for the notion that suboptimal in�ation distorts relative

prices remains overall strong.

Including Sales Prices. Our baseline estimation removes all sales prices from the sam-

ple, mainly because the underlying sticky price theories typically do not model sales. Row

9 in table 5.2 shows that our results are robust to including sales prices into the estimation.

Nonlinear Time Trends/Testing for Breaks in Time Trends. Our baseline ap-

proach allows for a linear time trend in relative prices in the �rst-stage regression equation

(13). Since the presence of nonlinear time trends may be a source of concern, we recompute

the �rst-stage residuals allowing also for a quadratic time trend. We then use the resulting

residuals in our second-stage regression (21). Row 10 in table 5.2 reports the regression

outcomes. Again, we obtain a very high number of positive point estimates and very high

levels of statistical signi�cance.

An alternative approach to deal with potential non-linearities in relative price trends

is to test for trend stability. To this end, we run a Chow test for trend stability in the

�rst-stage regression, using the �rst and second half of product life. We exclude in the
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second stage all products with p-value for the null hypothesis of no trend break below 10%

or 20%.37 The estimation outcomes are reported in rows 11 and 12 of table 5.2 and hardly

change compared to the baseline.

6 Exploiting Within-Product Variation

This section pursues an alternative estimation strategy that allows relaxing key identifying

assumptions of the baseline estimation approach in the previous section. It exploits within-

product variation and thus can deal with settings in which idiosyncratic shock processes

and price rigidities both di¤er across products within the same expenditure item. While

this strategy addresses key concerns one might have with the baseline approach, it comes

at the cost of increased second-stage attenuation bias.

The key idea consists of splitting the sample life of every product into two equally

long subsamples and to exploit variation in the in�ation rate across the two subsamples.

Speci�cally, let ln�jz1 � ln��jz denote the suboptimal in�ation rate of product j in item
z in the �rst half of product life, ln�jz2 � ln��jz the suboptimal rate in the second half.38

We consider the case with Calvo frictions below, but appendix J.1 shows that similar

arguments apply for the case with menu cost frictions.

Equation (15) holds separately in the �rst and the second half of product life. Taking

di¤erences across the product half lives, we obtain

V ar1(ujzt)� V ar2(ujzt)

= cz � ((ln�jz1 � ln��jz)2 � (ln�jz2 � ln��jz)2); (25)

where V ar1(ujzt) and V ar2(ujzt) denote the residual variances in the �rst and second

half of the product lifetime, respectively.39 The key feature of equation (25) is that it

eliminates the constant present in the baseline regression speci�cation (15). This allows

testing whether the coe¢ cient cz = �z= (1� �z)
2 in equation (25) is positive without

requiring that idiosyncratic shock processes are identical across products. If the Calvo

adjustment frequencies �jz 2 [0; 1] also vary across products within the same expenditure
item, then the OLS estimate bcz of the coe¢ cient cz in equation (25) will recover the average
37As is well-known, the Chow test is oversized in small samples (Candelon and Lütkepohl (2001)), i.e.,

it rejects the null hypothesis of no-trend-break too often in small samples when the null hypothesis is true.

In our application, this only increases the strictness of selecting products featuring a constant trend.
38The suboptimal rates can be estimated using equation (61) in appendix G, separately for the �rst and

second half of product lifetime.
39These are estimated using the same regression as in the baseline approach.
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price distortion across products, i.e.,

E [bcz] = E

"
�zj

(1� �zj)
2

#

provided the product-speci�c coe¢ cients �jz= (1� �jz)
2 display conditional mean indepen-

dence from the regressor in (25).40 Under this condition, one can allow for product-speci�c

idiosyncratic shock processes and product-speci�c price stickiness, but still test whether

(on average across products within an item) suboptimal in�ation distorts relative prices.

While this within-product approach generalizes our baseline approach, the second-stage

(25) likely features larger right-hand side measurement error, as now one has to estimate

(in the �rst stage) how suboptimal in�ation changes over the product life, rather than

just the average level of suboptimal in�ation over the product life. This likely results in

increased second-stage attenuation bias for the estimates of the coe¢ cient cz.

Row 13 in table 5.2 reports the outcomes from estimating equation (25). Results are

even stronger than in the baseline case: 99% of the estimated coe¢ cients are now positive

and the share of signi�cantly positive coe¢ cients is also higher. Yet, the point estimates

are now considerably smaller, which is likely due to increased attenuation bias.

To document that these results do not emerge because there is a price change in one

product half-life but not in the other half life, rows 14 and 15 in table 5.2 repeat the

within-estimation approach using only products that have at least 1 or at least 2 nominal

price changes per half life. In these cases, one still obtains very strong support for the

notion that suboptimal in�ation is associated with relative price distortions.

7 Exploiting Across-Item Variation

This section estimates the e¤ects of suboptimal in�ation on price distortions exploiting

only variation in suboptimal in�ation across items (rather than variation across products

within an item considered thus far). This is motivated by the fact that average relative

price trends, and thus the optimal in�ation rates, vary signi�cantly in the cross-section of

items (Adam and Weber (2023), Adam, Gautier, Santoro and Weber (2022)).

To this end, we estimate the �rst-stage equation (13) jointly for all products within

an item, imposing the restriction ��jz = �
�
z, which delivers a vector of �rst-stage residuals

uz for all products in the item. We then estimate suboptimal in�ation at the item level,

using equation (22) and imposing a common time trend (ln�z=��jz = ln�z=�
�
z). Finally,

we estimate the second-stage equation using the cross-section of items:

V ar(uz) = v0 + c0 � (ln�z � ln��z)2 + "z: (26)

40See appendix J for a proof and further details.
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Figure 8: Aggregate cross-sectional price dispersion and in�ation

Proposition 12 in appendix J.2 provides conditions under which the coe¢ cient c0 identi�es

the average relative price distortion generated by suboptimal in�ation in the cross-section

of items. Importantly, these conditions allow for heterogeneity in price rigidities and thus

accommodate the well-known fact that price adjustment frequencies di¤er signi�cantly

across expenditure items. Estimating equation (26), we �nd bc0 = 18:1 with a t-statistic

equal to 9:98. The estimate is thus highly signi�cant and is larger than the average item-

level estimate for cz obtained in the baseline estimation approach in table 5.2. Estimating

the right-hand side variable in equation (26) using many products likely decreases mea-

surement error and the associated attenuation bias.

8 Understanding Cross-Sectional Price Dispersion

The empirical analysis up to now has focused on price distortions over time at the level

of individual products or items. We now shift focus and consider the contribution of price

distortions to cross-sectional dispersion of prices at any given point in time.

The top panel in �gure 8 depicts an aggregate measure of cross-sectional price dis-

persion. It is constructed by computing for every year and every expenditure item the

cross-sectional variance of relative prices, V arj(ln pjzt). We then aggregate these variances

across items using expenditure weights. The �gure shows that cross-sectional price disper-

sion has increased by more then 50% over the sample period. Importantly, price dispersion

increased despite aggregate in�ation not displaying any time trend over the sample period,

see the bottom panel in �gure 8.

This section shows that the aggregate cross-sectional dispersion of prices in the United

30



Kingdom is to 99% the result of �exible-price dispersion. The same holds true for the

large increase in cross-sectional price dispersion over time. The level and time trend of

cross-sectional price dispersion is thus largely unrelated to price distortions. Interestingly,

we also show that price distortions due to in�ation comove over time with in�ation in line

with the predictions of sticky price theory.

Section 8.1 shows how we decompose aggregate cross-sectional price dispersion into

a component capturing identi�able components of the �exible price dispersion and a re-

mainder component that contains the e¤ects of price distortions and idiosyncratic shocks.

Section 8.2 analyzes the comovement of this remainder component with in�ation over time.

8.1 Decomposing Cross-Sectional Price Dispersion

The sticky price theories analyzed in section 3 imply that the relative price of product j

in expenditure item z evolves over time according to41

ln pjzt = ln p
�
jz � ln��jz � t+ ujzt; (27)

where the residuals ujzt satisfy E[ujztjp�jz;��jz] = 0, are independent across j and z, and
have variance over time equal to

V ar(ujzt) = vz + cz � (ln�z � ln��jz)2: (28)

We now decompose the cross-sectional variance of prices for products j in item z at time

t, which we denote by V arj(pjzt). To this end, we consider a setting with a unit mass of

products j in item z, where each month a share �z > 0 of products randomly exits the

sample and gets replaced by newly sampled products. Newly sampled products may have

di¤erent characteristics than the products that leave the sample, so that the distribution of

product characteristics fp�jz;��jzg may change over time. We allow the new characteristics
to be drawn from arbitrarily time-varying distributions.42 Once products are in the sample,

their relative price evolves according to equations (27)-(28). We then have the following

cross-sectional decomposition result:43

Proposition 3 Let V arj(�) denote the variance in the cross-section of products j. The
cross-sectional variance of relative prices in expenditure category z at time t is then given

41See equation (52) in appendix E.3 for the case with Calvo frictions and equation (53) in appendix F

for the case with menu costs.
42We assume that upon the time of product entry, the initial residual ujzt is drawn from the stationary

residual distribution for products with characteristics
�
p�jz;�

�
jz

�
. This is justi�ed by the fact that newly

sampled products in our data typically do not represent truly new products, but rather relatively mature

products that get newly sampled by the ONS.
43See appendix L for the proof.
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Figure 9: Aggregate cross-sectional log price dispersion and its �exible price components

(various identi�ed parts)

by

V arj(ln pjzt) = V arj(ln p�jz � ln��jz � t) + V arj(ujzt); (29)

where

V arj(ujzt) = vz + cz � Ej[(ln�z � ln��jz)2]: (30)

Equation (29) decomposes the cross-sectional price dispersion into two components.

The �rst component, V arj(ln p�jz � ln��jz � t), captures dispersion from the deterministic

parts of products��exible price dynamics. The second component on the right-hand side

of equation (29) captures price distortions from suboptimal in�ation, as captured by the

term cz � Ej[(ln�z � ln��jz)2] in equation (30), and a constant variance term vz � 0 that
is due to price dispersion resulting from idiosyncratic shocks.44

The decomposition in proposition 3 holds at each point in time and its most interesting

feature is the absence of a covariance term on the right-hand side of equation (29). Since

the deterministic parts of the �exible price (ln p�jz; ln�
�
jz) can be estimated using the �rst-

stage regression (13), proposition 3 allows decomposing cross-sectional price dispersion into

a �exible price component and a remainder term (V arj(ujzt)). The remainder provides an

upper bound for the contribution of price distortions to overall price dispersion, as vz � 0
in equation (30).

44The constant vz is de�ned in equation (16) for the case with Calvo frictions and in equation (20) for

the case with menu costs.
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Figure 9 depicts the aggregate cross-sectional price dispersion (black line), as previously

shown in the top panel of �gure 8. It also depicts the dispersion associated with the

identi�able deterministic parts of �exible prices (blue dashed line).45 This identi�able

part of the �exible-price dispersion accounts for the bulk of aggregate price dispersion

and also closely tracks its increase over time. Since time variation in the distribution of

optimal in�ation rates (ln��jz) is quite limited, see appendix K, movements in indenti�able

�exible price dispersion over time is mostly due to the changing dispersion of the intercept

terms ln p�jz . The green line in �gure 9 illustrates this fact and depicts the cross-sectional

dispersion explained by the intercept term only.46

This shows that cross-sectional price dispersion is to a large extent driven by the dis-

persion in �exible prices, which strongly increased over time. This increase may re�ect a

number of economic forces, for instance a widening cross-sectional dispersion of mark-ups,

productivities, and (unmeasured) product qualities. Analyzing the forces underlying the

widening dispersion of �exible prices is interesting but beyond the scope of the paper.

The key takeaway here is that the large increase in �exible-price dispersion explains why

aggregate in�ation fails to covary with observed price dispersion over time in �gure 8.

8.2 In�ation and Cross-Sectional Price Distortions over Time

We now analyze the time series properties of the residual dispersion V arj(ujzt) in propo-

sition 3. According to equation (30), the residual dispersion is determined by a constant

term and by price distortions. Price distortions depend on the item-level in�ation rate �z

and on the cross-sectional distribution of optimal in�ation rates f��jzg. In the data, the
cross-sectional distribution of optimal in�ation rates f��jzg is nearly constant over time,
see appendix K, which allows considering a setting with a constant cross-sectional dis-

tribution of optimal in�ation rates. Variation in residual dispersion V arj(ujzt) over time

then exclusively re�ects variation in price distortions induced by changes in in�ation, as

we show next.

Consider a setting with constant cross-sectional distribution of optimal in�ation rates

f��jzg.47 Furthermore, let in�ation in year t in expenditure item z be denoted by �zt and

assume that in�ation changes from year to year according to a random walk. Price setters

45As before, we aggregate at any given point in time across expenditure items using expenditure weights.
46Due to negative covariance between the intercept and slope terms, the dispersion explained by inter-

cepts alone can exceed the overall observed dispersion. Also, to make comparisons meaningful over time,

�gure 9 reports the dispersion coming from intercepts using the normalized intercepts ln p�jz � ��jz � t0jz,
where t0jz is the time period in which the product �rst enters the sample.
47We impose no restrictions on the distribution of intercept terms fp�jtg, thus allow for the large increase

in intercept dispersion documented in the previous section.
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Figure 10: Correlation between in�ation and price distortions at the item level

who adjust prices during year t will expect future in�ation to be equal to the current

in�ation rate �zt, so that they set relative prices as if the steady-state in�ation rate was

equal to �zt.48 With the vast majority of prices adjusting over the course of a year, the

cross-sectional dispersion of relative prices at the end of each year will depend only on the

in�ation rate �zt that prevailed during year t and will thus be given by equation (30) with

�z = �zt.

Equation (30) thus provides a theory-implied relationship linking (yearly) in�ation rates

�zt to the cross-sectional dispersion of �rst-stage residuals V arj(ujzt) at the end of each

year. It predicts that a marginal increase in the in�ation rate �zt from one year to the next

increases (decreases) residual dispersion, whenever the average optimal in�ation rate in the

item, Ej[��jz], lies below (above) actual in�ation. Residual dispersion is thus predicted to

comove positively (negatively) with in�ation whenever actual in�ation is above (below)

average optimal in�ation.

This prediction can be tested in the data. It is of economic interest because equation

(30) implies that time-variation in residual dispersion exclusively captures time-variation

in price distortions. By analyzing how residual dispersion commoves with in�ation, one

e¤ectively analyzes how price distortions comove with in�ation. Section 8.2.1 analyzes this

comovement pattern at the item level and section 8.2.2 at the aggregate level.

8.2.1 Item Level Results

To test whether price distortions correlate positively/negatively with in�ation as predicted

by sticky price theory, we compute for each expenditure item z the correlation between

�zt and V arj(bujzt) over time.49 Figure 10 depicts the resulting distribution of correlations
across items, using all correlations for which p-value are below 10%. In the data, there

48This is so because certainty equivalence applies for the considered order of approximation.
49We consider the 680 expenditure items with at least three years of data.
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Figure 11: The relationship between average optimal minus actual in�ation (y-axis) and

the correlation between in�ation and cross-sectional price distortions (x-axis)

are items with signi�cantly positive and signi�cantly negative correlations, even if positive

ones dominate.50

According to the arguments in the previous section, positive (negative) correlations

should emerge whenever average optimal in�ation Ej[��jz] lies above (below) actual in�a-

tion in the item. Figure 11 con�rms this prediction: it depicts the outcome of a regression

of the gap between optimal and actual in�ation on the correlation and its square. The

regression line behaves fully in line with the theoretical predictions:51 the correlation be-

tween price distortions and in�ation is positive, if actual item in�ation is above average

optimal in�ation, and it is negative otherwise. This is particularly true for the statistically

signi�cant parts of the regression line. This shows that price distortions at the item level

comove with in�ation over time as predicted by sticky price theory.

8.2.2 Aggregate Results

We now consider an economy-wide measure of price distortions by aggregating the item-

level variances V arj(bujzt) using expenditure weights. Under the assumptions maintained
in this section, time variation in this measure again re�ects time variation in cross-sectional

price distortions.

50This result also emerges if we consider smaller p-values or consider all correlations independent of

p-values.
51This continues to be true when restricting consideration to a linear regression or when including a

third order term into the regression. The coe¢ cient on the third order term is not statistically sign�cant.
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Figure 12: Aggregate in�ation and aggregate cross-sectional price distortions

Figure 12 depicts the resulting aggregate distortion measure together with aggregate

in�ation.52 Aggregate price distortions do not display a time trend, unlike aggregate

dispersion in �gure 8. Aggregate price distortions also covary positively with aggregate

in�ation: the correlation is equal to +0:46 and signi�cant at the 5% level. Higher aggregate

in�ation is thus associated with larger amounts of cross-sectional price distortions in the

data. This re�ects the fact that in expenditure-weighted terms, there are more items for

which actual in�ation exceeds the average optimal in�ation rate of products in the item.

As we have seen in the previous section, these items display a positive comovement between

in�ation and price distortions.

Proposition 3 implies that the variance of �rst-stage residuals represents an upper

bound on the amount of price distortions that is due to in�ation.53 The upper bound of the

variance reached in �gure 12 is approximately 2:5 �10�3. Therefore, in�ation-induced price
distortions alone give rise to a standard deviation of prices of at most

p
2:5 � 10�3 = 5% in

the absence of �exible-price dispersion. A lower bound on the maximum contribution

of in�ation to price distortions over the sample period is given by the min-max range

of the variance of �rst-stage residuals, as the time-varying component is - according to

theory - solely due to in�ation. This range is approximately equal to 1:5 � 10�3 in �gure
12 and implies that in�ation-induced distortions of relative prices gives rise to a standard

deviation of relative prices of at least
p
1:5 � 10�3 = 3:87% over the sample period (again

in the absence of �exible-price dispersion).

52Note that aggregate in�ation is also an expenditure-weighted average of item-level in�ation rates.

Figure 12 displays annual dispersion and annual in�ation to remove within-year seasonalities in price

dispersion and in�ation. Both measures are computed as a 12 month average of monthly dispersion and

monthly year-over-year in�ation rate.
53This is so because the constant vz in equation (30) is positive.
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9 Conclusions

Using a structural empirical approach, the present paper derives four empirical insights:

(i) at the product-level, relative price distortions robustly increase with the (squared) devi-

ation of in�ation from the (product-speci�c) optimal level and with nominal rigidities; (ii)

in the cross-section of products, price dispersion and its evolution over time predominantly

re�ect the dispersion of �exible prices and its movements: at most 1% of aggregate price dis-

persion is due to price distortions associated with suboptimal in�ation; (iii) cross-sectional

price distortions at the item level comove positively or negatively with in�ation over time,

with sticky price theory correctly predicting the sign of this comovement; (iv) aggregate

price distortions comove positively with aggregate in�ation over the sample period.

Collectively, these �ndings o¤er substantial empirical support for the theoretical foun-

dations of sticky price models and the monetary policy implications they engender, but

they also raise new important questions: what is behind the large increase in aggregate

cross-sectional price dispersion? Are the price distortions we identify associated with cor-

responding demand distortions and how big are these? Exploring these questions appears

to be an important task for future research.
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Figure 13: Nominal prices and price index (normalized to one at the start) for "takeaway

co¤ee latte", all products with �60 price observations.

A Nominal Prices and Average Price in the Expenditure Item

"Takeaway co¤ee latte"

Figure 13 depicts nominal price time series observations in the expenditure item "takeaway

co¤ee latte" for all products with at least 60 price observations. It also depicts the price

index, which is computed using all products in the item, including those with less than 60

price observations. To increase readability of the chart, the price index is normalized to

one at the start of the sample. Figure 13 shows that the price index steadily increases over

time, while co¤ee prices display stepwise price increases at di¤erent trend rates.

B Details of the Introductory Model with Taylor Frictions

Consider the Taylor (1979) model as outlined in Section 2. The �rm�s objective is as

follows:

max
ln pjt

�
N�1X
i=0

�
ln pjt+i � ln p�jt+i

�2
= max

ln pjt
�

N�1X
i=0

�
ln pjt � ln p�jt � i ln(�=��j)

�2
The �rst order condition yields:

ln poptjt = ln p
�
jt +

N � 1
2

ln(�=��j)

If an adjustment happens in period t, then for all 0 � i < N :

ln pjt+i = ln p
opt
jt � i ln� = ln p�jt +

N � 1
2

ln(�=��j)� i ln�

Since the �exible price is given by ln p�jt � i ln��j , relative price distortions are:

ujt+i =

�
N � 1
2

� i

�
ln(�=��j)
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Summing squared distortions over all 0 � i < N :

V ar(uj) =
1

N

N�1X
i=0

u2jt+i =
1

N
(ln�� ln��j)2

N�1X
i=0

�
N � 1
2

� i

�2
=
(N � 1)(N + 1)

12
(ln�� ln��j)2

Note that adjustment size is given by:

lnP opt
jt � lnPjt�1 = ln p

opt
jt � ln pjt�1 + ln�

= ln poptjt � ln p
opt
jt�N + (N � 1) ln� + ln�

= N(ln�� ln��j)

B.1 Absolute Price Changes May Miss Price Distortions

We �rst consider an example in which the absolute size of price changes may respond to

in�ation despite price distortions failing to do so. Thereafter, we consider a setting where

the absolute size of price changes fails to respond to in�ation even though relative price

distortions do respond.

The �rst point is simple. Consider the example discussed in section 2. The absolute

size of log nominal price changes is simply a function of price stickiness and suboptimal

in�ation and equal to N �
���� ��j ��. In the limit where prices become fully �exible (N ! 1),

the absolute size of nominal price changes is given by
���� ��j �� and varies one-to-one with

the gap between actual and optimal in�ation. The absolute size of price changes thus

suggests a relationship between suboptimal in�ation and relative price distortions, even in

a setting where prices are fully �exible and price distortions are absent.54

This contrasts with the detrended residuals gapjt proposed in �gure 2: in the limit with

�exible prices, relative prices follow the dotted lines in the �gure, so that the residuals gapjt

are all equal to zero. Their variance will thus not covary with suboptimal in�ation in the

cross-section of products. In fact, for the limit N ! 1, the coe¢ cient c in equation (3)

converges to zero: one arrives at the correct conclusion that suboptimal in�ation does not

lead to relative price distortions.

Next consider the case with sticky prices. We show below - using a setting with a

stochastic component in the �exible price - that the absolute size of price changes may fail

to respond to changes in suboptimal in�ation, even in a setting where price distortions do

change with suboptimal in�ation.

54This argument holds not only in the cross-section of goods, but equally applies in the time dimension

when considering the e¤ects of a change in the steady-state in�ation rate � for the price distortions present

at the level of some product with optimal rate ��j .
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Suppose that the frictionless price ln p�jt has an additional idiosyncratic component xjt

that follows a two-state Markov chain (xjt 2 f��x; �xg; �x > 0) and switches states with

probability one at the times of price adjustment and with probability zero otherwise:

ln p�jt = ln p
�
j � t ln��j + xjt

Since the value of xjt does not change during a price spell, it is straightforward to verify

that, as before:

ln poptjt = ln p
�
jt +

N � 1
2

ln(�=��j)

ujt+i =

�
N � 1
2

� i

�
ln(�=��j)

V ar(uj) =
(N � 1)(N + 1)

12
(ln�� ln��j)2

Conditional on xjt, the size of adjustment becomes:

lnP opt
jt � lnPjt�1 = ln p

opt
jt � ln pjt�1 + ln�

= ln poptjt � ln p
opt
jt�N + (N � 1) ln� + ln�

= N(ln�� ln��j) + 2xjt

The average absolute adjustment size is then:

E
�
j lnP opt

jt � lnPjt�1j
�
=
1

2

�
jN ln

�
�=��j

�
+ 2�xj+ jN ln

�
�=��j

�
� 2�xj

�
Suppose that N ln

�
�=��j

�
2 (�2�x; 2�x). Then:

E
�
j lnP opt

jt � lnPjt�1j
�
=
1

2

��
N ln

�
�=��j

�
+ 2�x

�
�
�
N ln

�
�=��j

�
� 2�x

��
= 2�x

Therefore, as long as N ln
�
�=��j

�
2 (�2�x; 2�x), suboptimal in�ation has no e¤ect on the

average absolute size of adjustments, while still a¤ecting price distortions.

C Proof of Proposition 1

In this section we prove that it is impossible to recover the price gap distribution if shocks

are stationary. To lighten notation in this appendix, we drop the z subscript referring to

the expenditure category. Suppose an econometrician observes the in�nite path of actual

prices ln pjt and it is known that this path is generated under the time-dependent friction

and stationary shocks lnxjt. The econometrician can recover the N values of the vector

f � [f1; : : : ; fN ]0 of f(xjt) as de�ned in (11):

f(xjt) � (1� �)Et

1X
i=0

(�)i lnxjt+i:
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In addition, the econometrician can recover the N�N transition matrix �f :

�f =

2664
�f11 � � � �

f
1N

...
. . .

...

�fN1 � � � �
f
NN

3775 ;
where �fij is the probability of observing fj in the subsequent period, conditional on ob-

serving fi in the previous period.55 From the de�nition of f(xjt) it follows that:

f = (1� �)lnx+ ��xf

where lnx is the state vector of the process lnxjt and �x is its transition matrix. Setting

�x = �f and solving the above equation for lnx � [lnx1; : : : ; lnxN ] provides a candidate
for the process lnxjt that leads to the observed process f(xjt). However, as we show

below, this candidate solution is not unique and the observed N -state process of f(xjt)

can be equally supported by an (N+1)-state process ln ~xjt, de�ned on the grid ln ~x �
[ln ~x1; : : : ; ln ~xN ; ln ~xN+1] with (N+1)�(N+1) transition matrix ~�x. Such a process would
lead to an (N+1)-state process of ~f(xjt), with ~fi = fi for all i < N and ~fN = ~fN+1 = fN ,

making ~f(xjt) and f(xjt) observationally equivalent, provided the transition probabilities

of ~�x imply �f . To construct such a process, set ln ~xi = ln xi for all i < N , ln ~xN = ln xN�"
and ln ~xN+1 = ln xN + " for a su¢ ciently small " > 0.56 We now construct the transition

matrix ~�x in the following way:

~�x =

2666666664

�x11 �x12 : : : �x1(N�1) �x1N=2 �x1N=2
...

. . .
...

...
...

�x(N�1)1 �
x
(N�1)2 : : : �

x
(N�1)(N�1) �

x
(N�1)N=2�

x
(N�1)N=2

~�xN1 �xN2 : : : �xN(N�1)
~�xN

~�xN
~�x(N+1)1 �xN2 : : : �x(N+1)(N�1)

~�xN+1
~�xN+1

3777777775
All elements in black are borrowed directly from the �x matrix, whereas elements in red

are to be solved for.57 The �rst (N�1) rows of ~�x ensure that for all i < N :

~fi = (1� �) ln ~xi + �
N+1X
j=1

~�xij
~fj

= (1� �) ln xi + �

N�1X
j=1

�xijfj +

�
�xiN
2
+
�xiN
2

�
fN = fi

55This can be achieved by conditioning on price spells of length one.
56One requirement for " is that ln ~xN and ln ~xN+1 do not coincide with existing values of lnxi. A stricter

condition on the size of " is introduced below.
57We order states such that �xN1 > 0 and �

x
NN > 0. This is without loss of generality since lnxjt is a

stochastic process, implying that there exists a state i such that for at least two states j1 and j2, �xij1 > 0

and �xij2 > 0.
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We now have to set the elements in red (~�xN1, ~�
x
N , ~�

x
(N+1)1, ~�

x
N+1) such that ~fN = ~fN+1 = fN .

For i = N it requires:

~fN = (1� �)(lnxN � ") + �~�xN1f1 + �
N�1X
j=2

�xNjfj + 2
~�xNfN

= fN � (1� �)"+ �(~�xN1 � �xN1)f1 + �(2~�xN � �xNN)fN
!
= fN

Denote
PN�1

j=2 �
x
Nj � �, then it must be the case that ~�xN1+�+2~�

x
N = 1 to ensure that ~�

x

is a proper transition matrix. The same applies to the elements of �x: �xN1+�+�
x
NN = 1.

Substituting ~�xN and �
x
NN in the above equation and rearranging terms yields:

~�xN1 = �xN1 +
1� �

�

"

f1 � fN

For i = N + 1, a similar line of arguments leads to:

~�x(N+1)1 = �xN1 �
1� �

�

"

f1 � fN

and the remaining elements ~�xN and ~�
x
N+1 can then be recovered using the fact that all rows

of ~�x sum up to one. " must be small enough to ensure that ~�xN1, ~�
x
N , ~�

x
(N+1)1 and ~�

x
N+1

are all 2 [0; 1]. Such " always exists since we have ordered the states to ensure �xN1 > 0

and �xNN > 0 and there are in�nitely many of them. It remains to show that transition

probabilities in ~�x imply �f . This holds trivially for all transitions between states fi and

fj such that i; j < N . It is also true for transitions from fi to fN when i < N since the

probability of transiting from fi to fN is then equal to �xiN
2
+

�xiN
2
= �xiN . Finally, note

that states lnxN and lnxN+1 have the same unconditional probability,58 and therefore the

probability of moving from fN to fi is equal to 1
2

�
~�xNi +

~�x(N+1)i

�
= �xNi for all i < N .

This implies that the probability of staying in fN is also the same as in the original process

(�xNN).

Therefore, we have constructed an N + 1-state process ln ~xjt that leads to the same

process f(xjt) as the N -state process lnxjt. By induction this step can be repeated arbi-

trary many times.

D Testing for a Random Walk in Idiosyncratic Shocks

This appendix shows that our data strongly rejects the presence of a pure random walk in

lnxjzt. One can test for a random walk in lnxjzt by exploiting the fact that the optimal

reset price upon price adjustment involves a constant gap relative to the �exible price,

58The unconditional probability satis�es p = (~�x)0p, and the last two columns of ~�x are identical,

implying identical values of pN and pN+1.
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whenever lnxjzt is a random walk. This holds true with Calvo frictions, see equation (10),

but also for the case with menu cost frictions.

Consider the times tn (n = 1; 2; :::Njz) during which the price of some product j in

expenditure item z adjusts. Given the constant gap property, we have

ln poptjztn+1
� ln poptjztn

= � ln��jz � (tn+1 � tn) + ln ejzn+1 (31)

where

ln ejzn+1 � lnxjztn+1 � lnxjztn :

With a random walk in lnx, the residuals ln e are uncorrelated over time, which can

be tested. To do so, we re-scale residuals according to (ln ejzn+1) =
p
tn+1 � tn to make

them homoskedastic under the null hypothesis of a random walk. We then compute the

autocorrelations [Corrz = dCovz=dV arz of these re-scaled residuals within each item z, using

the variance and covariance estimates for all products with Njz > 3 :

dV arz =Pj

0B@ Njz � 2P
k (Nkz � 2)

PNjz
n=2

�
ln ejznp
tn�tn�1

�2
Njz � 2

1CA
dCovz =Pj

 
Njz � 3P
k (Nkz � 3)

PNjz�1
n=2

ln ejznp
tn�tn�1

ln ejzn+1p
tn+1�tn

Njz � 3

!

The top left panel in �gure 14 depicts the estimated autocorrelations across items. Almost

all of the estimates are negative, and most of them sizably so, which is inconsistent with

lnxjzt following a random walk. The right panel in the �gure reports the bootstrapped

p-values for the autocorrelation being weakly larger than zero, as implied by the random

walk, and shows that these values are very low.

We then repeat the analysis when exogenously imposing ��jz = 0 for all products in

the �rst-stage regression. This is motivated by the possibility that the estimated time

trends ��jz could be purely spurious in the presence of a random walk in lnxjzt. The

auto-correlations of the resulting residuals are then even more negative, see the lower left

panel in �gure 14. The bootstrapped p-values of the auto-correlations remain again very

low (lower right panel).

Based on these �ndings, which relies exclusively on prices that are not sales prices, we

can conclude that unobserved shocks in our data do not follow a pure random walk.
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Figure 14: Autocorrelation of residuals (left panel) and bootstrapped p-values (right panel):

random walk implies autocorrelation of zero

E Details of the Calvo Model

E.1 Firm Problem

The price-setting problem of �rm j in item z in price-adjustment period t consists of

choosing a nominal price Pjzt that maximizes the expected discounted sum of pro�ts,

max
Pjzt

Et

1X
i=0

�iz

t;t+i
Pt+i

�
(1 + �)Pjzt �

Wt+i

Azt+i
Gjzt+iXjzt+i

�
Yjzt+i (32)

s:t: Yjzt+i =  z

�
Pjzt
Pzt+i

��� �
Pzt+i
Pt+i

��1
Yt+i; (33)

where 
t;t+i denotes the stochastic discount factor of the representative household, Yjzt

output of product j in item z, and Wt+iGjzt+iXjzt+i=Azt+i the �rm�s nominal marginal

costs, with �rm productivity given by Azt+i=(Gjzt+iXjzt+i), as in equation (7), and the

nominal wage given by Wt+i. The parameter � is a sales subsidy (tax if negative). Maxi-

mization is subject to equation (33), which is derived from the cost-minimizing household

demand function (6) using market clearing conditions.

E.1.1 Balanced Growth Path

We approximate the pro�t maximization problem (32) around a deterministic balanced

growth path of the economy, in which aggregate and item-level output and consumption

grow at constant rates, aggregate and item-level in�ation rates are constant, and in which

the amount of labor Lezt allocated to production in item z is also constant over time.
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All idiosyncratic shocks continue to operate, i.e., there is product entry and exit and

idiosyncratic shocks move the product�s optimal relative price over time. Without loss of

generality, we consider the e¢ cient deterministic balanced growth path.

Within each item z, the e¢ cient allocation of labor across products j maximizes the

item-level output in equation (4) subject to the production function (7) and the feasibility

constraint that Lezt =
R
Lejzt dj. This implies that the e¢ cient level of output in item z is

Y e
zt =

Azt
�e
zt

Lezt; (34)

where the productivity parameter 1=�e
zt in the e¢ cient allocation is given by

1=�e
zt �

�Z 1

0

(1=(GjztXjzt))
��1 dj

� 1
��1

: (35)

We consider a balanced growth path in which 1=�e
zt = 1=�

e
z, so that equation (34) implies

that item-level productivity is given by59

�ezt � Azt=�
e
z: (36)

Using equation (5), aggregate productivity �et of the economy is given by
60

�et �
ZY
z=1

(�ezt)
 z : (37)

Equation (36) and the previous equations imply that the steady-state growth rate of ag-

gregate output and consumption along the balanced growth path, e � �et=�et�1, is given
by

e =

ZY
z=1

a zz (38)

where az denotes the steady-state growth rate of item-level productivity Azt. From equa-

tion (36), we also obtain that the steady-state growth rate of item-level output and con-

sumption, ez � �ezt=�ezt�1, is given by

ez = az:

59It is straightforward to accommodate also a trend in 1=�ezt in the balanced growth path, but this does

not yield any additional insights.
60To see why, substitute equilibrium output for equilibrium consumption in equation (5) and detrend

all output variables in the resulting equation by their growth trends. This yields

Y et
�et

=

"QZ
z=1(�

e
zt)

 z

�et

#
ZY
z=1

�
Y ezt
�ezt

� z
;

so that the aggregate growth trend is given by equation (37).
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E.1.2 Detrended Firm Problem

With growth-consistent preferences that exhibit constant relative risk aversion, the one-

period household discount factor is given by 
 = ! (e)�� < 1, where � denotes relative

risk aversion and ! is the rate of time preference. Using this expression, the �rm problem

(32)-(33) along the balance growth path can be written as

�etEt

1X
i=0

�
�z!(

e)1��
�i �
(1 + �)

Pjzt
Pt+i

� Wt+iGjzt+iXjzt+i

Pt+iAzt+i

�
 z

�
Pjzt
Pzt+i

��� �
Pzt+i
Pt+i

��1
y;

where y = Yt+i=�
e
t+i denotes detrended output. Furthermore, using equation (36) to

substitute for Azt+i in the previous equation, augmenting the wage rate by the aggregate

growth trend �et+i and denoting the detrended real wage by w =
Wt

Pt�et
, we obtain

�etEt

1X
i=0

�
�z!(

e)1��
�i �
(1 + �)

Pjzt
Pt+i

� w
Gjzt+iXjzt+i

�e
z

�et+i
�ezt+i

�
 z

�
Pjzt
Pzt+i

��� �
Pzt+i
Pt+i

��1
y:

Augmenting the relative product price Pjzt=Pt+i in the previous equation by the item price

level and rearranging yields

�etEt

1X
i=0

�
�z!(

e)1��
�i "

 z(1 + �)
Pjzt
Pzt+i

� w
Gjzt+iXjzt+i

�e
z

(
 z

�
Pzt+i�

e
zt+i

Pt+i�et+i

��1)#�
Pjzt
Pzt+i

���
y:

To show that the term in curly brackets in the previous equation is constant along the

balanced growth path, we divide each output variable in the demand for item-level output,

Yzt =  z(Pzt=Pt)
�1Yt, by its respective growth trend. This yields

yz
y
=  z

�
Pzt�

e
zt

Pt�et

��1
: (39)

Shifting this equation forward and substituting it into the �rm objective yields

�etEt

1X
i=0

�
�z!(

e)1��
�i �

 z(1 + �)
Pjzt
Pzt

��iz � w

�e
z

yz
y
Gjzt+iXjzt+i

��
Pjzt
Pzt

��iz

���
y; (40)

where we denote the steady-state in�ation rate in item z by

�z = Pzt=Pzt�1:

To rewrite the �rm objective (40) in terms of the relative prices and marginal costs, we

de�ne the relative reset price pjzt � Pjzt=Pzt, which is the nominal price of product j in

period t over the item price level in the same period, and the relative price epjzt+i � pjzt�
�i
z ,

which is the nominal reset price in t over the item price level in t+ i. We also de�ne real

marginal costs in units of the good produced in item z according to

mcjzt �
Wt

Pzt

GjztXjzt

Azt
:
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Augmenting this de�nition by Pt�et and using equation (36) to substitute for Azt yields

mcjzt =
Wt

Pt�et

GjztXjzt

�e
z

�
Pzt�

e
zt

Pt�et

��1
;

and using equation (39) to substitute for the last term on the right hand side in the previous

equation shows that marginal costs can be expressed as

 zmcjzt =
w

�e
z

yz
y
GjztXjzt: (41)

Substituting the previous equation and the de�nition of the relative price epjzt+i into the
�rm objective in equation (40) yields, after dropping the pre-multiplying constant  z�et :

Et

1X
i=0

�
�z!(

e)1��
�i
[(1 + �)epjzt+i �mcjzt+i] (epjzt+i)�� y: (42)

E.2 Quadratic Approximation of the Firm Objective

To simplify notation, we drop the item-level subscript z in the remainder of the appendix.

The �rm objective (42), that we seek to quadratically approximate, can then be written

as

Et

1X
i=0

(�! (e)1��)i [(1 + �)epjt+i �mcjt+i] (epjt+i)�� y (43)

where it is understood that �; epjt+i and mcjt+i are item speci�c objects. From equation

(41) follows that

lnmcjt = lnmcj � (ln��j) � t+ lnxjt: (44)

where mcj = 1
 z

w
�ez

yz
y
Gjzt0, with Gjzt0 denoting the inverse product-speci�c productivity

level at the time of product entry t0; ln��j = � lnGjzt=Gjzt�1 is the deterministic constant

growth rate of product-speci�c productivity and lnxjt = lnXjzt denotes the stationary

stochastic idiosyncratic component of productivity. The values for mcj and ��j are drawn

at the time of product entry from potentially time-varying distributions.

By equation (43), the objective for period t+ i is given by

Djt+i =
�
(1 + �)eln epjt+i � elnmcjt+i

� �
eln epjt+i��� y: (45)

We approximate this objective to second order in the variables ln epjt+i and lnmcjt+i around
the deterministic paths of the �exible price and marginal costs, respectively. The deter-

ministic path of the �exible price is equal to

#mcdetjt+i

where mcdetjt denotes the deterministic path of marginal costs which is equal to the value of

marginal costs mcjt imposing xjt = 1, and # = �
��1

1
1+�

denotes the �exible-price markup.
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The second-order Taylor approximation of equation (45) yields

Djt+i =
�
y#��

�
e(1��) lnmc

det
jt+i
�
� �(ln epjt+i � ln(#mcdetjt+i))

2

+ 2�(ln epjt+i � ln(#mcdetjt+i))(lnmcjt+i � lnmcdett+i)
�
+O(3)

=
�
��y#��

� �
mcdetjt+i

�1�� �
ln epjt+i � ln(#mcdetjt+i)� (lnmcjt+i � lnmcdett+i)

�2
+ t.i.p.+O(3)

=
�
��y#��

� �
mcdetjt+i

�1�� �
ln epjt+i � ln(#mcjt+i)�2 + t.i.p.+O(3); (46)

where t.i.p. collects terms independent of policy and it follows from equation (44) that

mcdetjt+i = mcje
�(ln��j )(t+i). Thus, we rewrite the Taylor approximation coe¢ cient in the

previous equation according to

��y#��
�
mcje

�(ln��j )(t+i)
�1��

= ��y#��mc1��j (��j)
(��1)(t+i):

We can now express the expected discounted sum of period pro�ts in equation (43) accurate

to second order according to

��y#��mc1��j (��j)
(��1)tEt

1X
i=0

(�! (e)1�� (��j)
��1)i

�
ln epjt+i � ln(#mcjt+i)�2 + t.i.p.+O(3)

which is proportional to

�Et
1X
i=0

(��j)
i
�
ln pjt � i ln�� ln(p�jt+i)

�2
+ t.i.p.+O(3) (47)

after substituting epjt+i = pjt�
�i and denoting the �rm discount factor by �j = ! (e)1�� (��j)

��1

and de�ning

p�jt+i = #mcjt+i

which implies using equation (44)

p�jt = p�je
�(ln��j )txjt;

which is equal to (9) for p�j = #mcj. While p�jt denotes the �rm�s �exible price, the ratio

of two �rms��exible prices is equal to the e¢ cient relative price for these �rms, whenever

price mark-ups are constant across �rms and time. In this special case, p�jt denotes also

the e¢ cient relative price.

We can then express the �exible price in period t+ i as

p�jt+i = p�jte
�(ln��j )ixjt+ix

�1
jt :

and substitute into equation (47), which delivers

max
ln pjt

�Et
1X
i=0

(��j)
i
�
ln pjt � i ln(�=��j)� ln p�jt � lnxjt+i + lnxjt

�2
: (48)
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The �rst-order condition is given by

0 = �2Et
1X
i=0

(��j)
i
�
ln poptjt � i ln(�=��j)� ln p�jt � lnxjt+i + lnxjt

�
;

which implies that the optimal price is given by

ln poptjt = ln p
�
jt � lnxjt +

�
��j

1� ��j

�
ln(�=��j) + Et(1� ��j)

1X
i=0

(��j)
i lnxjt+i (49)

since
P1

i=0(��j)
ii =

P1
i=1(��j)

ii =
��j

(1���j)2 with ��j < 1. For the limit �j ! 1, this

reduces to equation (10).

E.3 The First-Stage Regression

To simplify notation, we drop the item-level subscript z in the remainder of this appendix.

Starting with equation (12), we substitute ln poptjt using equation (10) and also use (9) to

obtain

ln pjt = �jt(ln pjt�1 � ln�) + (1� �jt)

�
ln p�j � t ln��j +

�

1� �
ln(�=��j) + f(xjt)

�
; (50)

where f(xjt) is de�ned in equation (11).

To derive the OLS estimates of the parameters in equation (13), we rearrange equation

(50) to

ln pjt + t ln��j = �jt(ln pjt�1 + (t� 1) ln��j � ln(�=��j)) (51)

+ (1� �jt)

�
ln p�j +

�

1� �
ln(�=��j) + f(xjt)

�
:

Computing the unconditional expectation yields

E[ln pjt + t ln��j ] = �E[ln pjt�1 + (t� 1) ln��j ]� � ln(�=��j)

+ (1� �)

�
ln p�j +

�

1� �
ln(�=��j)

�
;

using independence of �jt and E[f(xjt)] = 0. Given stationarity of the detrended relative

price ln pjt + t ln��j , the previous equation yields

E[ln pjt + t ln��j ] = ln p
�
j ;

or

ln pjt = ln p
�
j � t ln��j + ujt; (52)

where ujt denotes an expectation error. Substituting equation (52) into equation (51),

shows that residuals ujt are given by equation (14). They satisfy E[ujtjp�j ;��j ] = E[ujt] = 0,

which implies that the OLS estimates of regression (13) converge to the true value as the

product length increases without bound. For small product lengths, OLS estimates are

unbiased but contaminated with sampling error. The e¤ects of sampling error are discussed

in appendix G.
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E.4 Proof of Proposition 2 (Second-Stage Regression)

To simplify notation, we drop the item-level subscript z in the remainder of this appendix.

Squaring equation (14), taking unconditional expectations, and using independence of �jt

yields

E[u2jt] = E[�2jt]E[(ujt�1 � ln(�=��j))2] + E[(1� �jt)
2]E
��
f(xjt) +

�

1� �
ln(�=��j)

�2�
;

where we also usedE[(1��jt)�jt] = 0. We can rewrite the previous equation usingE[�2t ] = �

and E[(1� �t)
2] = 1� �, completing the squares to obtain

E[u2jt] = �E[u2jt�1 + ln(�=�
�
j)
2 � 2ujt�1 ln(�=��j)]

+ (1� �)E
�
f(xjt)

2 +

�
�

1� �
ln(�=��j)

�2
+ 2f(xjt)

�

1� �
ln(�=��j)

�
:

Recognizing that the expectation of the cross terms in the previous equation are zero

because E[ujt] = 0 and E[f(xjt)] = 0 yields

E[u2jt] = �E[u2jt�1] + � ln(�=��j)
2 + (1� �)E[f(xjt)

2] + (1� �)

�
�

1� �
ln(�=��j)

�2
:

Using E[u2jt] = E[u2jt�1] and simplifying terms yields

E[u2jt] = E[f(xjt)
2] +

�

(1� �)2
(ln�� ln��j)2:

Recognizing that V ar[ujt] = E[u2jt], as E[ujt] = 0; and V ar[f(xjt)] = E[f(xjt)
2], as

E[f(xjt)] = 0, delivers equation (15).

F Details of the State-Dependent Model

To simplify notation, we drop the item-level subscript z in the remainder of the appendix.

F.1 Setup and OLS regression

Let zjt = ln pjt � ln p�jt be the deviation of the current relative price of product j from the

�exible price optimum. Then in between adjustments zjt follows:

dzjt = d ln pjt � d ln p�jt = � (ln�� ln��j)| {z }
�j

dt� d lnxjt

d lnxjt =
NX
i=1

(lnxi � lnxjt)dJ it (lnxjt)

where dJ it (lnxjt) is a Poisson jump process with intensity dependent on the current state

lnxjt. Since ln pjt = ln p�jt + zjt, it follows that:

ln pjt = ln p
�
j + lnxjt � t ln��j + zjt (53)

E
�
ln pjt + t ln��j

�
= ln p�j + E[lnxjt]| {z }

=0

+E[zjt]
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And thus the estimates of OLS regression (13) converge to their true values ifE[zjtjp�j ;��j ] =
E[zjt] = 0, which is true in the limiting case as � ! 0, as shown below.61 Furthermore,

residuals and their variance can be written as:

ujt = ln pjt � ln p�j + t ln��j = zjt + lnxjt

V ar(ujt) = E[z2jt] + 2E[zjt lnxjt] + V ar(lnxjt) (54)

F.2 Solution

The �rm�s objective is to maximize its value from equation (18), given by:

V (z; xi) = max
f�k;�z�kg

1
k=1

�E
"Z 1

0

e��tz2t dt+ �

1X
k=1

e���k

����� z0 = z; x0 = xi

#

The �rm�s policy consists of a collection of inaction region boundaries fz(xi); z(xi)g
and reset price gaps ẑ(xi), for all i 2 N . The HJB equation for the inaction region is given
by:

�V (z; xi) = �z2 � �@zV (z; xi)

+
NX
j 6=i

�Xij
�
V (z � (lnxj � lnxi); xj)� V (z; xi)

�
The optimal policy satis�es the usual smooth pasting and optimality conditions: @zV (ẑ(xi); xi) =

@zV (z(xi); xi) = @zV (z(xi); xi) = 0 and V (z(xi); xi) = V (z(xi); xi) = V (ẑ(xi); xi)� �. De-
�ne v(z; xi) = V (z; xi)� V (ẑ(x1); x1). Then:

�v(z; xi) = �z2 � �@zv(z; xi)

+

NX
j 6=i

�Xij
�
v(z � (lnxj � lnxi); xj)� v(z; xi)

�
� �V (ẑ(x1); x1)

with @zv(ẑ(xi); xi) = @zv(z(xi); xi) = @zv(z(xi); xi) = 0 and v(z(xi); xi) = v(z(xi); xi) =

v(ẑ(xi); xi)� �. We now take the limit as �! 0.

Proposition 4 As �! 0, the scaled value function �V (z; x) at any state fz; xg converges
to a constant: lim

�!0
�V (z; x) = A 2 R 8z; x.

61While this result is shown formally under the assumption of su¢ ciently small �, it holds more generally.

As �! 0, the �rms�value until adjustment becomes the negative expected squared deviation of price gaps

from zero, maximizing which requires setting the expected price gap to zero.
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All proofs are provided in section F.3. By Proposition 4, lim
�!0

�v(z; xi) = 0 and

lim
�!0

�V (ẑ(x1); x1) = A, so that:

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij v(z � (lnxj � lnxi); xj)� A

where �Xi =
PN

j 6=i �
X
ij = ��Xii is the intensity with which lnxt is exiting state i. Evaluate

the above expression at z = ẑ(x1); xi = x1 to obtain:

A = � (ẑ(x1))2 +
NX
j 6=1

�X1jv(ẑ(x1)� (lnxj � lnx1); xj)

Lemma 5 There exists � > 0 such that �rms �nd it optimal to adjust after every change

in x for all � < �.

Suppose that � is small enough in the sense of Lemma 5. Then �rms �nd it optimal to

adjust whenever idiosyncratic state x changes its value. The HJB equation becomes:

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij v(ẑ(xj); xj)� �Xi �� A

with

A = � (ẑ(x1))2 +
NX
j 6=i

�X1jv(ẑ(xj); xj)

and value function satis�es:

v(z; xi) = Cv
i e
��iz � z2

�Xi
+

2z

�i�Xi
� 2

�2i�
X
i

+
Ci
�Xi

Ci =

NX
j 6=i

�Xij v(ẑ(xj); xj)� �Xi �� A

@zv(ẑ(xi); xi) = @zv(z(xi); xi) = @zv(z(xi); xi) = 0

v(ẑ(xi); xi)� � = v(z(xi); xi) = v(z(xi); xi)

with �i =
�Xi
�
. As long as state x remains unchanged, price gaps evolve deterministically

with drift ��. It thus su¢ ces to solve for the reset price gap and only one boundary of
the inaction region. From now on, we consider � > 0 and solve for ẑ(xi) and z(xi) since

the upper boundary of the inaction region is irrelevant. Because of symmetry properties

of the model, it is straightforward to then recover the solution and all statistics for � < 0.

To ease notation, let ẑ(xi) = ẑi and z(xi) = zi.
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Lemma 6 Suppose � > 0. Then for each state xi, optimal policy is determined by the

following two conditions:

z2i � ẑ2i = �Xi � (55)

e�iẑi(1� �iẑi) = e�izi(1� �izi) (56)

where �i =
�Xi
�
.

Conditional on state xi, the price gap distribution satis�es:

�Xi fi(z) = �@zfi(z)Z ẑi

zi

fi(z)dz = 1

and is thus given by:

fi(z) =
�ie

�iz

e�iẑi � e�izi

It follows that:

E[zjxi] =
Z ẑi

zi

zfi(z)dz = 0

E[z] = 0

E[z2jxi] =
Z ẑi

zi

z2fi(z)dz =
ẑi + zi
�i

� ẑizi (57)

E[z2] = Ex

�
ẑi + zi
�i

� ẑizi

�
(58)

where Ex[�] is the expectation with respect to stationary distribution of x.

Proposition 7 For � close to zero, E[z2] = E

�
1

(�Xi )
2

�
�2 +O(4).

Finally, note that E[zx] = E
�
xiE[zjxi]

�
= 0 and the main object of interest � the

variance of residuals from the OLS regression (13) �is given by:

V ar(ujt) = V ar(lnxjt) + E

"
1

(�Xi )
2

#
�2j +O(4)

= V ar(lnxjt) + E

"
1

(�Xi )
2

#
(ln�� ln��j)2 +O(4)

F.3 Proofs

Proof of Proposition 4. The proof here extends Lemma 3 in Online Appendix of Alvarez

et al. (2019) to a setting with two state variables. Let V (z; x; �) be the value function in
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state fz; xg under discount rate �. We can write �V (z; x; �) as follows:

�V (z; x; �) = �E
�
�

Z �N

0

e��tz2t dt

�
� �E

"
�

NX
k=1

e���k

#

��E
"Z 1

0

e��(�N+t)z2�N+tdt+ �
1X
k=1

e���N+k

#
| {z }

�E[e���N V (z�N ;x�N ;�)]

where �N is the N -th adjustment and all expectation operators are conditional on

z0 = z; x0 = x. Subtract �E [e���NV (z; x; �)] from both sides and divide by (1�E [e���N ])
to obtain:

�V (z; x; �) = � �

1� E [e���N ]
E

�Z �N

0

e��tz2t dt

�
� ��

1� E [e���N ]
E

"
NX
k=1

e���k

#
�

1� E [e���N ]
E
�
e���N (V (z�N ; x�N ; �)� V (z; x; �))

�
Take the limit as �! 0. Note that �

1�E[e���N ]
! 1

E[�N ]
and thus:

lim
�!0

�V (z; x; �) = � 1

E [�N ]
E

�Z �N

0

z2t dt

�
� �N

E [�N ]
1

E [�N ]
lim
�!0

E [V (z�N ; x�N ; �)� V (z; x; �)]

By Lemma 8, jV (z�N ; x�N ; �) � V (z; x; �)j � C 2 R for all � > 0 and thus this also holds
in the limit as � ! 0. As we take the limit with N ! 1, the �rst term converges to

the unconditional expected squared gap E[z2], the second term converges to adjustment

frequency �a times adjustment cost �, and the third term vanishes as E [�N ] ! 1. Thus
lim
�!0

�V (z; x; �) = �E[z2]� ��a � A for all z; x.

Lemma 8 There exists C 2 R such that for any � > 0 and any z; x; z0; x0, jV (z; x) �
V (z0; x0)j � C.

Proof. First, we show that �V (z; xi) is bounded from below. To see that, recall that

V (z; xi) is achieved under the optimal adjustment policy, meaning that the value of any

feasible policy is weakly lower. Consider the following policy: the �rm adjusts its price

gap whenever it is hit by a Poisson x shock. In addition, it also adjusts at random times

with Poisson intensity �i, which is speci�c to each state xi. These intensities satisfy the

following condition: �Xi + �i = maxi �
X
i � �, such that in every state xi �rms adjust with

equal intensity �. Since adjustments occur exogenously, �rms only choose the reset price

gap ẑi to maximize expected pro�ts until the next adjustment:

max
ẑi

E

�
�
Z �

0

e��tz2t

����z0 = ẑi

�
= max

ẑi
E

�
�
Z 1

0

e�(�+�)tz2t

����z0 = ẑi

�
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Because in between adjustments price gaps drift deterministically (zt = ẑi � �t) and ad-

justment intensities are equalized across states, optimal reset price gap does not depend

on x and satis�es FOC: Z 1

0

e�(�+�)t(ẑ � �t) = 0 =) ẑ =
�

�+ �

Denote by ~V (z; x) the value function under this policy. Since @z ~V (ẑ; xi) = 0, evaluating

the HJB equation at ẑ yields:

� ~V (ẑ; xi) = �ẑ2 + �i

�
~V (ẑ; xi)� �� ~V (ẑ; xi)

�
+

NX
j 6=i

�Xij

�
~V (ẑ; xj)� �� ~V (ẑ; xi)

�
= �ẑ2 +

NX
j 6=i

�Xij

�
~V (ẑ; xj)� ~V (ẑ; xi)

�
� �

 
�i +

NX
j 6=i

�Xij

!
| {z }

=�

It is straightforward to show that ~V (ẑ; xi) = ~V (ẑ; xj) for all i and j. Assume the opposite

and let v = maxi ~V (ẑ; xi) and v = mini ~V (ẑ; xi). Then:

�v = �ẑ2 +
NX

j 6=i(v)

�Xi(v)j

�
~V (ẑ; xj)� v

�
| {z }

�0

���

� �ẑ2 +
NX

j 6=i(v)

�Xi(v)j

�
~V (ẑ; xj)� v

�
| {z }

�0

��� = �v

Meaning v = v. As a result, � ~V (ẑ; xi) = �ẑ2 � �� = � �2

(�+�)2
� �� � ��2

�2
� �� for any

� > 0. Thus for the true value function evaluated at the true optimal reset price gap ẑ(xi)

it holds that �V (ẑ(xi); xi) � � ~V (ẑ; xi) � ��2

�2
� �� for all � > 0.

Consider now the true value function V (z; xi) and pick i such that V (ẑ(xi); xi) =

maxj V (ẑ(xj); xj). The HJB equation for this value function satis�es:

��
2

�2
� �� � �V (ẑ(xi); xi) = � (ẑ(xi))2| {z }

�0

�� @zV (ẑ(xi); xi)| {z }
=0

+

NX
j 6=i

�Xij

0B@V (ẑ(xi)�(lnxj�lnxi); xj)| {z }
�V (ẑ(xj);xj)

�V (ẑ(xi); xi)

1CA
�

NX
j 6=i

�Xij (V (ẑ(xj); xj)� V (ẑ(xi); xi))| {z }
�0

� 0

It follows that whenever �Xij > 0:�
��

2

�2
� ��

�
=�Xij � V (ẑ(xj); xj)� V (ẑ(xi); xi) � 0
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For the states j where �Xij = 0 we can bound the di¤erence V (ẑ(xj); xj) � V (ẑ(xi); xi)

iteratively because the network of xi is connected (every two states are connected by some

path). In addition, for any z; xi:

V (ẑ(xi); xi)� � � V (z; xi) � V (ẑ(xi); xi)

Therefore there exists C 2 R such that for all � > 0, jV (z; x) � V (z0; x0)j � C for all

z; x; z0; x0.

Proof of Lemma 5. Consider a model M in which �rms are forced to adjust after every

change in x, but can also adjust at other times and choose the boundaries of inaction

regions and reset price gaps. Suppose we now allow the �rms to adjust whenever they

�nd it to be optimal. They will adjust their policies fz(xi); ẑ(xi); z(xi)gNi=1 only if changes
in x keep price gaps within the bounds of inaction regions. Otherwise the optimal policy

in model M and in the model of interest coincide, meaning that �rms �nd it optimal to

adjust after every change in x. To see that, compare the HJB equations in the original

model (�rst line) and model M (second line):

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij v(z � (lnxj � lnxi); xj)� A

�Xi v(z; xi) = �z2 � �@zv(z; xi)

+
NX
j 6=i

�Xij (v(ẑ(xj); xj)� �)� A

If upon the change in x, z � (lnxj � lnxi) 62 [z(xj); z(xj)], then v(z � (lnxj � lnxi); xj) =
v(ẑ(xj); xj) � � and the value functions in the two models coincide. Therefore, � is such

that minij j lnxi � lnxjj = maxi z(xi) �mini z(xi) in model M . Such � > 0 always exists
since for all i lim

�!0
z(xi) = lim

�!0
z(xi) = 0.

Proof of Lemma 6. From @zv(ẑi; xi) = 0 and @zv(zi; xi) = 0 it follows:

��iCv
i e
��iẑi � 2ẑi

�Xi
+

2

�i�Xi
= 0 = ��iCv

i e
��izi � 2zi

�Xi
+

2

�i�Xi

��iCv
i �

2ẑie
�iẑi

�Xi
+
2e�iẑi

�i�Xi
= 0 = ��iCv

i �
2zie

�izi

�Xi
+
2e�izi

�i�Xi

e�iẑi(1� �iẑi) = e�izi(1� �izi)
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Similarly:

��iCv
i e
��iẑi � 2ẑi

�Xi
+

2

�i�Xi
= ��iCv

i e
��izi � 2zi

�Xi
+

2

�i�Xi

Cv
i e
��iẑi +

2ẑi
�i�Xi

= Cv
i e
��izi +

2zi
�i�Xi

Cv
i e

�i(zi�ẑi) = Cv
i + e�izi

2(zi � ẑi)

�i�Xi
(59)

From v(ẑi; xi)� � = v(zi; xi) it follows:

Cv
i e
��iẑi � ẑ2i

�Xi
+

2ẑi
�i�Xi

� � = Cv
i e
��izi � z2i

�Xi
+

2zi
�i�Xi

Cv
i e

�i(zi�ẑi) + e�izi
�
2(ẑi � zi)

�i�Xi
+
z2i � ẑ2i
�Xi

� �

�
= Cv

i

z2i � ẑ2i = �Xi �

where the last line follows from (59).

Lemma 9 For every state xi, ẑi @ẑi@� = zi
@zi
@�
= E[z2jxi]

�
.

Proof. The �rst equality follows directly from the �rst order derivative of equilibrium

condition (55) with respect to �. For the second equality, di¤erentiate equilibrium condition

(56) and collect terms:

e�iẑi
�
@ẑi
@�

� ẑi
�

�
ẑi = e�izi

�
@zi
@�

� zi
�

�
zi

(1� �izi)

�
@ẑi
@�

� ẑi
�

�
ẑi = (1� �iẑi)

�
@zi
@�

� zi
�

�
zi

zi
@zi
@�
(�iẑi � �izi) =

ẑ2i (1� �izi)� z2i (1� �iẑi)

�

zi
@zi
@�

=
1

�

ẑ2i � z2i � �iẑizi(ẑi � zi)

�i(ẑi � zi)

=
1

�

�
ẑi + zi
�i

� ẑizi

�
=
E[z2jxi]

�

where the second line uses (56) and the third line uses ẑi @ẑi@� = zi
@zi
@�
.

Lemma 10 As �! 0, ẑi ! 0, zi ! �
p
�Xi � and E[z

2]! 0.

Proof. Combine equilibrium conditions (55) and (56) to obtain:�
�+ �Xi

q
�Xi �+ ẑ2i

�
| {z }

>0

=
�
�� �Xi ẑi

�
e
�Xi
�

�
ẑi+
p
�Xi �+ẑ

2
i

�| {z }
>0
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Since the LHS is always positive, and so is the exponent on the RHS, lim
�!0

ẑi = 0. It then

follows from (55) that lim
�!0

zi = �
p
�Xi � and from (58) that lim

�!0
E[z2] = 0.

Proof of Proposition 7. From Lemmas 9 and 10, and equation (57) it follows that:

z0i �
@zi
@�

=
1

�Xi
+
�ẑi � �Xi ẑizi

��Xi zi

lim
�!0

z0i =
1

�Xi
� lim

�!0

ẑi
�
=

1

�Xi
� lim

�!0
ẑ0i

At the same time, by Lemma 9: ẑi =
ziz

0
i

ẑ0i
, and by Lemma 10: lim

�!0
z0i
ẑ0i
= 0. It then follows

that:

O(1) =
z0i
ẑ0i
=

1
�Xi
� ẑ0i +O(1)

ẑ0i
=
1 +O(1)

�Xi ẑ
0
i

� 1

And therefore lim
�!0

ẑ0i =
1
�Xi
. From (55) it follows that lim

�!0
z0i = 0 and from (58) that

lim
�!0

@E[z2]
@�

= 0. If ẑi is twice di¤erentiable at � = 0, then due to anti-symmetry (ẑi(�) =

�ẑi(��)), ẑ00i (0) = 0. It follows that ẑ0i = 1
�Xi
+O(2) and ẑi =

�
�Xi
+O(3). Using Lemma 9

we obtain that:

E[z2] = E

"
1

(�Xi )
2

#
�2 +O(4)

Lemma 11 Suppose �Xi = � for all i. Then, as � ! 0, adjustment frequency �a =

�+O(4).

Proof. Since �Xi = �, we can omit the i index. The expected stopping time �(z) solves

the following ODE: ��(z) = 1� �@z�(z), together with boundary condition �(z) = 0, and
is given by �(z) = 1

�

�
1� e�(z�ẑ)

�
. It follows from Lemma 6 and equation (58) that:

�a �
1

�(ẑ)
=
1

�

�
z2 � E[z2]

�
Lemma 10 implies that as �! 0, �a ! �. Furthermore:

@�a
@�

=
1

�

�
2z
@z

@�
� @E[z2]

@�

�
=
1

�

�
2
E[z2]

�
� 2 �

�2
+O(3)

�
= O(3)

where the last line follows from Lemma 9 and Proposition 7. Therefore, �a = �+O(4).

G Details of the Regression Approach

This section discusses econometric details associated with estimating our key equation

(15), which relates price distortions to suboptimal in�ation at the product level. In our
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baseline empirical approach, we estimate equation (15) at the level of �nely disaggregated

expenditure items, exploiting variation across products within the item. Our sample con-

tains more than 1000 expenditure items, so that we obtain a large number of estimates of

the coe¢ cient of interest cz in equation (15).

We use a two-step estimation approach, because neither the left-hand side variable

nor the right hand-side variables in equation (15) can be directly observed. This section

presents this approach and discusses how �rst-stage estimation errors a¤ect second-stage

regression outcomes. In particular, it shows that �rst-stage error biases the estimates of the

coe¢ cient cz towards zero, i.e., towards �nding no marginal e¤ect of suboptimal in�ation

on price distortions.

Our �rst-stage estimation consists of a seemingly unrelated regression (SUR) system

that contains two equations. The left-hand side variable in equation (15) can be estimated

using the residuals of relative-price regressions of the form

ln pjzt = ln p
�
jz �

�
ln��jz

�
� t+ ujzt (60)

where j denotes the product, z 2 f1; :::Zg the expenditure item under consideration, and Z
the total number of expenditure items in our sample. Theory implies that E[ujztjp�jz;��jz] =
E[ujzt] = 0 and that the OLS estimates in (60) satisfy E[[ln p�jz] = ln p�jz and E[\ln��jzt] =
ln��jz. An unbiased estimate for the residual variance is given bydV ar(ujzt) = 1

Tjz�2
P

t (bujzt)2,
where Tjz denotes the number of price observations for product j in item z.

Estimation of the right-hand side variables in equation (15) requires estimating the av-

erage in�ation rate, ln�z, and the product speci�c optimal in�ation rate, ln��jz. However,

having two �rst-stage estimates on the right-hand side of equation (15) is unattractive on

econometric grounds.62 A preferred way to proceed is to estimate directly the gap between

the item-level in�ation rate and the product-speci�c optimal in�ation rate (ln�z� ln��jz).
This can be achieved by adding the price level equation

lnPzt = lnPz0 + ln�z � t

to equation (9), which delivers for every product another �rst-stage regression of the form

lnPjzt = lneajz + �ln�z=��jz� � t+ eujzt (61)

where Pjzt denotes the nominal product price and lneajz = ln p�jz + lnPz0. Again, theory
implies that E[eujztjp�jz;��jz] = E[eujzt] = 0. Equation (61) reveals that the time trend in

the nominal price of the product directly identi�es the gap between item-level in�ation

62It requires discussing, amongst other things, the covariance in the estimation errors of these two

right-hand side variables.
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and the product-speci�c optimal in�ation rate. Equations (60) and (61) jointly make up

our �rst-stage SUR system.

Since the SUR system (60)-(61) does not feature exclusion restrictions, OLS estimation

is identical to GLS estimation, despite the presence of correlated residuals. OLS estimation

of (60) delivers an unbiased estimate for the residual variance of interest, V ar(ujzt), and

OLS estimation of equation (61) an unbiased estimate of the gap ln�z=��jz.

The �rst-stage estimates for each product j within expenditure item z can then be used

to estimate the second-stage equation

dV ar(ujzt) = vz + cz � ( \ln�z=��jz)
2 + "jz (62)

using OLS estimation. This delivers an estimate of cz for each expenditure item z =

1; : : : ; Z. The error term "jz in equation (62) absorbs measurement error of the left-hand

side variable, as discussed below, as well as the higher-order approximation errors implied

by menu-cost models, see equation (19).

While the �rst-stage estimates dV ar(ujzt) and \ln�z=��jz are unbiased, they are conta-
minated by sampling error. Sampling error is an important concern because the product

price time series underlying the �rst-stage system can be relatively short. Fortunately, the

e¤ect of the �rst-stage sampling error consists solely of biasing the estimate of cz towards

zero, as we show next.

To illustrate this point, we assume that the �rst-stage residuals (ujzt; eujzt) are normally
distributed. (The more general case with non-normal errors is discussed in appendix G.1

below.) When estimating the SUR system (60)-(61), the estimation error in \ln�z=��jz
is orthogonal to the estimation error in the residuals fbujztg, by construction of the OLS
estimate. With normality, both estimation errors are also independent of each other.

Therefore, the estimation error in dV ar(ujzt) on the l.h.s. of equation (62) is independent
of the estimation error in ( \ln�z=��jz)2 on the r.h.s. of the equation, because both variables
are nonlinear transformations of independent random variables.

First-stage estimation error on the l.h.s. of equation (62) thus takes the form of classical

measurement error: it does not generate any bias in the second-stage estimates of cz,

instead gets absorbed by the regression residual "jz. However, �rst-stage estimation error

in ( \ln�z=��jz)2 biases the second-stage estimate of cz towards zero. This is so because
measurement error in ( \ln�z=��jz)2 generates a classic attenuation e¤ect. In addition,

estimation error in \ln�z=��jz raises the expected value of ( \ln�z=��jz)2, which generates a
further bias towards zero.

Our second-stage estimates for cz thus provides a lower bound of the true marginal

e¤ect of suboptimal in�ation on price distortions. Since we are interested in rejecting the
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Figure 15: Skewness and kurtosis of the �rst-stage regression residuals

null hypothesis of in�ation not creating price distortions, H0 : cz = 0, the bias is working

against our main �nding.

Finally, to insure that our results are not driven by outliers, e.g., associated with errors

in price collection, we eliminate within each expenditure item all products falling into the

top 5% of the distribution of residual variances dV ar(ujzt) and the top 5% of estimated

in�ation gaps ( \ln�z=��jz)2 when running our second-stage regression. Results are robust
to choosing di¤erent thresholds.

G.1 General Case with Non-Normal First-Stage Residuals

Figure 15 reports the skewness and kurtosis of the �rst-stage regression residuals of equa-

tion (60) (left-hand side panels) and equation (61) (right-hand side panels) across the

considered expenditure items.63 The top panels show that skewness is centered around

zero and relatively tightly so, in line with the zero skewness of the normal distribution.

For kurtosis, shown in the lower panels of �gure 15, the situation looks di¤erent. Kurtosis

values often lie above and below the value of 3 implied by a normal distribution.

We now show that quite similar arguments apply to our second-stage estimates of cz

when �rst-stage residuals fail to be normal. In fact, to insure that there is at most a

downward bias in the second-stage estimate of cz; it is su¢ cient that the estimation error

in the l.h.s. variable dV ar(ujzt) in equation (62) is orthogonal to (rather than independent
of) the estimation error in the r.h.s. regressor ( \ln�z=��jz)2.

63The measures use outlier trimmed residuals by considering the 2.5%-97.5% quantile of the residual

distribution.
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Recall that the errors in ( \ln�z=��jz) and fbujztg are orthogonal by construction. A
violation of orthogonality between ( \ln�z=��jz)2 and dV ar(ujzt) can thus only arise because
these variables are nonlinear rather than linear functions of \ln�z=��jz and fbujztg, respec-
tively. This illustrates that violations of orthogonality conditions are somewhat unlikely

to emerge on a priori grounds, even in the absence of normality.

We show below that orthogonality of the estimation errors in ( \ln�z=��jz)2 anddV ar(ujzt)
holds whenever the residuals satisfy

Cov[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2
; (1; 0)0u0Mu(1; 0)jX] = 0; (63)

where

X 0 �
 
1 1 1 : : :

0 1 2 : : :

!
(64)

is the matrix of �rst-stage regressors and M the matrix de�ned in (65) below. Condition

(63) is a condition on the true residuals u, which is satis�ed in the special case with

normal errors. Condition (63) holds by construction when replacing the true residuals u

by the estimated OLS or GLS residuals bu and thus cannot be tested empirically using the
regression residuals.64

To understand why condition (63) insures that the same outcome is obtained as with

normality, consider our �rst-stage regression system, which takes the form of a seemingly

unrelated regression (SUR) system:

Y|{z}
T�2

= X|{z}
T�2

�|{z}
2�2

+ u|{z}
T�2

,

where X denotes the (deterministic) regressors de�ned in (64) and Y the stacked vector

of the left-hand side variables (pjzt; Pjzt) in equations (60) and (61). Letting ut denote the

residuals at date t and u the stacked residual vector, we have E[ut] = 0 and

V ar(ut) =

 
v211 v12

v12 v
2
22

!
:

Since the SUR system does not feature exclusions restrictions, OLS estimation is identical

to GLS estimation. In particular, the OLS/GLS estimate b� of � is given by
b� � (X 0X)

�1
X 0Y

64Using the notation introduced below, this follows from the fact that�
X 0V �1X

��1
X 0V �1bu

=
�
X 0V �1X

��1
X 0V (I �X

�
X 0V �1X

��1
X 0V �1)Y

= 0:
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and the regression residuals by

bu|{z}
T�2

=MY =Mu where M � (I �X (X 0X)
�1
X 0) (65)

We have

E[bu0bujX] = E[ u0|{z}
2�T

M 0M| {z }
T�T

u|{z}
T�2

jX]

= E[ u0|{z}
2�T

M|{z}
T�T

u|{z}
T�2

jX]

= tr(M)E[u0ujX]

=
1

T � 2

 
v211 v12

v12 v
2
22

!
;

An unbiased estimate of the residual variance v211 is thus given by

cv211 � (1; 0)0bu0bu(1; 0)
T � 2 : (66)

The estimation errors in the second-stage regression variables ((0; 1)
�b� � �

�
(0; 1)0)2 and

(cv211 � v211), are orthogonal if and only if

E[

��
(0; 1)

�b� � �
�
(0; 1)0

�2��cv211 � v211

�
jX] !

= 0

, E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2�(1; 0)0bu0bu(1; 0)
T � 2 � v211

�
jX] !

= 0

, E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2�(1; 0)0u0u(1; 0)
T � 2 � v211

�
jX] !

= 0

The last equality holds if and only if

E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2 (1; 0)0u0Mu(1; 0)

T � 2 jX]

= E[
�
(0; 1) (X 0X)

�1
X 0u(0; 1)0

�2
v211jX];

which is the case if and only if condition (63) holds, as E[ (1;0)
0uM 0Mu(1;0)
tr(M 0M)

] = v211:

H Simulation Evidence for the Econometric Approach

This appendix shows that our two-stage estimation approach recovers the second-stage

coe¢ cient of interest in simulated data. In particular, taking into account the observed

price adjustment frequency, the distribution of estimated product-speci�c trends, and the

short sample features of the data, we obtain at most a downward bias in the estimated

second-stage coe¢ cient.
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Figure 16: Simulation results, baseline
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Figure 17: Simulation results, at least 24 observations per product
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We simulate a Calvo model and set the non-adjustment rate for prices � equal to 0.89,

which is the average (across-item) value in the data. Each simulated product draws a

�exible-price trend from the normal distribution. The standard deviation of this distribu-

tion is calibrated so that the standard deviation of the estimated trends in simulated price

time series matches the average (across-item) standard deviation of estimated trends in the

data. Simulated products are sampled at random times for a random number of periods

drawn from the average (across-item) distribution of observed product lengths. In a �rst

step, we set idiosyncratic shocks to zero, then we vary the idiosyncratic shock process and

the Calvo parameter to see how these a¤ect the second-stage coe¢ cient estimates.

The left column in �gure 16 shows the mean of estimated second stage coe¢ cients

across simulations in blue and the true (theory-implied) coe¢ cients in red. The right

column shows the scatter plots of rates of price non-adjustment, imputed from average

estimated coe¢ cients (y-axis) and the true values (x-axis) �the simulation analogues of

Figure 6 in the main text. The top panel considers a setting without idiosyncratic shocks,

the middle panel one with iid normal shocks, and the bottom panel one with AR(1) shocks

with normal iid innovations.65 All graphs show substantial downward bias in estimated

coe¢ cients. The bias increases as we add idiosyncratic shocks and make them persistent.

In addition, the bias is increasing in the degree of price rigidity. Importantly, none of the

simulations suggests a possibility of upward bias in our estimates, and the relation between

imputed and true �-s resembles the one we obtain in the data, see �gure 6.

Figure 17 repeats the simulation analysis in �gure 16 using only products with at least

24 observations. This is a robustness check that we also perform in the data, see table 5.2.

Focusing on these longer products dramatically reduces the downward bias, independent of

the assumed idiosyncratic shock process. This is in line with our empirical �ndings, where

we also obtain larger estimates of the second stage coe¢ cient as we increase the threshold

for the minimal number of observations per product.

Overall, the simulations show that our econometric approach recovers the second-stage

coe¢ cient of interest, albeit possibly with a substantial downward bias when including all

products including those with shorter lengths.

I Testing for Heterogeneity in Relative Price Trends

This appendix uses a bootstrapping procedure to show that there is signi�cant evidence

for heterogeneity in suboptimal in�ation (ln�z=��jz) across products j within expenditure

65The standard deviation of these innovations is 10 times larger than the standard deviation of the

distribution from which products draw �exible-price trends. We set the AR(1) coe¢ cient for idiosyncratic

shock to 0.8.
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items z. The main challenge for bootstrapping is the fact that residuals from the �rst-

stage regression (22) are peculiar: between price adjustment periods residuals drift at a

constant rate and they provide new information only in price adjustment periods. Simply

drawing from the set of residuals would ignore this feature, destroy the sticky nature of

observed prices, and thereby strongly confound results. We propose below a bootstrapping

procedure that takes infrequent price adjustment into account and that reproduces the

main features of the data under the null hypothesis of no trend heterogeneity. We then

show that the data contains strong evidence against this null hypothesis.

I.1 Estimation

We start by estimating the �rst-stage regression under the null of no trend heterogeneity.

We then impute the data generating process for residuals taking into account the stickiness

of prices and potential autocorrelation of idiosyncratic shocks. The estimation is performed

item-by-item and all estimated objects are item-speci�c. We drop the item index z below

to simplify notation. The estimation uses all products that have at least 3 observations,

exit in the sample, have at least one price change, and satisfy our second-stage truncation

criteria. We then perform the following steps for all products j in a given item:

1. First, we estimate the common nominal price trend by pooling all products together

and estimating:

lnPjt = ln aj + ln b � sjt + ujt (67)

where lnPjt is the (log) nominal price, sjt is product�s age in the sample, ln aj is the

product-speci�c intercept and ln b is the item-speci�c suboptimal in�ation. We work with

nominal prices since the slope coe¢ cient in (67) directly identi�es the common (item-level)

suboptimal in�ation, under the null of no trend heterogeneity.

2. We consider residuals ujt at adjustment times t 2 f�1; �2; : : : ; �Njg. These residuals
depend on the realization of idiosyncratic shocks and a constant frontloading component

from suboptimal in�ation. Any heterogeneity in these residuals we attribute to hetero-

geneity in realized shocks because the frontloading component is common across products

under the null. We collect residuals U = fu1; u2; : : : ; uMg, pooling all adjustment-time
residuals across all products. We create ~M bins for this collection ~U = f~u1; ~u2; : : : ; ~u ~Mg,
with ~M �M .

3. For each ~u 2 ~U we estimate the adjustment distribution function g(~u; ~u0; t) : ~U � ( ~U [
E)�N! [0; 1] that assigns probabilities of adjusting to bin ~u0 after t periods conditional
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on starting in bin ~u. The new bin ~u0 is one of the bins in ~U or the product �exit�bin E.

4. For the �rst price adjustment, we use residuals ujt at the time of product entry and

similarly construct bins ~U0 and adjustment distribution function g0(~u; ~u0; t) : ~U0� ~U�N!
[0; 1].66 This additional step is required since products do not necessarily enter the sample

at adjustment times and therefore may have a di¤erent distribution of residuals at the time

of entry.

I.2 Simulation

The next step simulates nominal price time series for products (item-by-item) under the

null hypothesis of a common relative price trend, bootstrapping the residuals and price

adjustment times using the item-speci�c g0(�) and g(�) functions. For each item we perform
5000 bootstrap repetitions. In each bootstrap repetition, we simulate the same number of

products as we use for estimation. The maximum simulated product length is capped at

the maximum product length observed for a given item in the data (denoted here by L).

1. For the initial prices we draw uj0 from the empirical distribution of initial residuals ob-

served for the time of product entry. Without loss of generality, we assign zero intercepts

for all products, as intercepts do not a¤ect the slope estimates.

2. For each simulated product, we draw the lengths of the �rst price spell and the �rst

adjustment bins from g0(�), and subsequently from g(�), until either the product exits by
drawing ~u0 = E, or its lifespan exceeds L. If we draw bin ~u0, the residual assigned in

the simulation is a randomly drawn residual from that bin. Together with the common

slope ln b from (67) this gives us the sequence of reset prices for the product. Between

adjustment periods we then assign the last reset price.

I.3 Comparison of Simulated and Actual Moments

An accurate bootstrap procedure should reproduce the key moments a¤ecting the estima-

tion of slopes. We consider the mean product lengths, the standard deviation of product

length, the mean price adjustment size and the mean price adjustment frequency in each

considered item. Speci�cally, for each bootstrapped sample of an item, we compute the

ratio of simulated mean product length over the actual mean product length in the item.

We compute corresponding ratios for the standard deviation of product length, the stan-

66Exiting before adjusting the price is ruled out since we only consider products with at least one price

adjustment.
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Figure 18: Bootstrapped moments relative to data moments

dard deviation of price changes and the mean frequency of price changes. Figure 18 shows

the distributions of these ratios across all bootstraps and items, using di¤erent thresholds

for the minimal number of price observations per product. The bootstrapping procedure

matches the data moments well, even for products with longer horizons, despite the fact

that neither the estimation nor the simulation procedures conditioned on product age or

the number of observations.

I.4 Bootstrapped Critical Values

Finally, we run our �rst-stage regression on bootstrapped data, estimate product-speci�c

slope coe¢ cients, and compute t-statistics for null hypothesis of a common slope. From

the distributions of bootstrapped t-statistics we obtain item-speci�c critical values for the

t-statistic under the null of no trend heterogeneity. We then compute the share of products

in the actual data with t-statistics falling outside the critical values. Figure 19 shows the

distributions of these shares across items for 5%/95% and 10%/90% critical values, for

di¤erent thresholds of minimal number of price observations per product.67 The dotted

vertical lines indicate the corresponding shares one should expect under the null of no

trend heterogeneity �the level of signi�cance (0.1 and 0.2, respectively).

All distributions are visibly shifted to the right of the level of statistical signi�cance,

providing strong evidence for the presence of trend heterogeneity in the data. Furthermore,

the shift is stronger for products with more observations. For instance, the average share

of products outside the 5%/95% con�dence interval increases from 0.18 to 0.29 as the

minimum number of price observations goes up from 6 to 36. Considering long products

67The bootstrapped critical values are computed separately for each considered minimum number of

price observations.
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Figure 19: Share of t-statistics outside bootstrapped con�dence intervals

thus strengthens the evidence for trend heterogeneity. Naturally, it is easier to detect trend

heterogeneity among products with longer life spans, since their price paths are driven to

a larger extend by trends and to a smaller extent by idiosyncratic shocks.

J Details of the Within-Product Regression Approach

The within product regression (25) takes the form

Y = cz �X (68)

where Y is a N�1 vector of consisting of V ar1(ujz)�V ar2(ujz) for j = 1; :::; N , X a vector

consisting of
�
ln�jz1 � ln��jz

�2� �ln�jz2 � ln��jz�2 for j = 1; ::; N and cz is a scalar. The

true relationship between Y and X is given by

Y = CX + ";

where Y and X are random variables and

C =

0BB@
c1z 0 0

0
. . . 0

0 0 cNz

1CCA
is a diagonal coe¢ cient matrix of random coe¢ cients satisfying the conditional mean inde-

pendence assumption E[CjX] = E[C] = c � IN�N , with the scalar c denoting the expected
value of the true coe¢ cient. The residual vector " a N � 1 vector of (higher-order approx-
imation) residuals satisfying E["jX] = 0. The OLS estimate of cz in equation (68) is given
by bcz = (X 0X)

�1
X 0Y
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and under the stated assumptions its expectation satis�es

E[bcz] = E[(X 0X)
�1
X 0Y ]

= E[E[(X 0X)
�1
X 0 (CX + ") jX]]

= E[(X 0X)
�1
X 0E[CjX]| {z }

=cI

X] + (X 0X)
�1
X 0E["jX]| {z }

=0

]

= E[(X 0X)
�1
X 0X]c

= c;

as claimed in the main text.

J.1 Within-Product Approach with Menu Cost Frictions

We consider here the case with menu cost frictions, for which similar arguments apply as

with Calvo frictions. Taking di¤erences across the �rst and second half of product life using

equation (19), one obtains (up to a second-order approximation) again equation (25), but

with the regression coe¢ cient now given by cz = E[1=
�
�Xiz
�2
], where �Xiz is the switching

intensity in the i-th state of the idiosyncratic shock process. The regression coe¢ cient

is now independent of the menu-cost parameter �, so that the estimation approach (25)

remains valid in a menu-cost setting in the presence of product-speci�c menu-costs.68 If

the expected switching intensities E[1=
�
�Xiz
�2
(j)] also di¤er across products j within the

same item, but display conditional-mean independence from the regressor in equation (25),

then OLS estimation of equation (25) again recovers the average coe¢ cient

E [bcz] = E

"
1

(�Xiz(j))
2

#
:

As with Calvo frictions, one can thus test whether suboptimal in�ation distorts relative

prices without having to assume that products have identical menu costs and identical

processes governing idiosyncratic shocks. And as with Calvo frictions, the test requires

checking whether cz in equation (25) is positive.

J.2 Details of the Across-Item Estimation Approach

Estimation of equation (26) in the main text is based on the following result, which al-

lows for item-speci�c price stickiness (or menu costs) and item-speci�c idiosyncratic shock

processes:

68Heterogeneity in adjustment costs has only fourth order e¤ects on the variance of �rst-stage residuals.

This is also true in the baseline approach with menu cost frictions.

72



Proposition 12 Suppose all products j within an expenditure item z have the same opti-

mal in�ation rate ��jz = �
�
z. Let �z denote the actual in�ation rate in item z and V ar(u)

the variance of the �rst-stage residuals in item z (obtained under the assumption of a

common optimal in�ation rate). Consider the second-stage regression equation

V ar(uz) = v0 + c0(ln�z � ln��z)2 (69)

and let bc0 denote the OLS estimate of c0 and suppose there is no measurement error in
(ln�z � ln��z)2. For the case with Calvo frictions, the OLS estimate recovers the average
second stage coe¢ cient, i.e.,

E[bc0] = E

�
�z

(1� �z)2

�
;

whenever the �z
(1��z)2 and the vz = V ar ((1� �z)Et

P1
i=0 �

i
z lnxjzt+i) are random variables

with identical means for all z, and with conditional means that do not depend on ((ln�1�
ln��1)

2; :::; (ln�Z � ln��Z)2). Similarly, with menu cost frictions, we have

E[bc0] = E
h
1=
�
�Xiz
�2i

;

whenever E
h
1=
�
�Xiz
�2i

and V ar(lnxz) are random variables with identical means for all

z and conditional means that do not depend on ((ln�1 � ln��1)2; :::; (ln�Z � ln��Z)2).

Proof: Equation (69) is of the form

Y = X �
 
v0

c0

!
; (70)

where Y is a Z � 1 vector consisting of the variance of �rst-stage residuals V ar(uz) for
all items z = 1; :::; Z and X a Z � 2 vector of regressors containing the intercept and the
second-stage regressor

X =

0BB@1Z�1;
0BB@
(ln�1 � ln��1)

2

...

(ln�Z � ln��Z)
2

1CCA
1CCA :

The intercept v0 and the second-stage coe¢ cient of interest c0 are scalars.

The true relationship between Y and X, however, is given by

Y = v + C

0BB@
(ln�1 � ln��1)

2

...

(ln�Z � ln��Z)
2

1CCA ; (71)
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where v is Z � 1 vector containing the item-speci�c intercepts

v =

0BB@
v1
...

vZ

1CCA
and

C =

0BB@
c1 0 0

0
. . . 0

0 0 cZ

1CCA
is a diagonal coe¢ cient matrix containing the item-speci�c second-stage coe¢ cients for the

second column of X. (The precise expression for these coe¢ cients depends on the consid-

ered price setting friction.) Given our assumptions about conditional mean independence,

we have

E[vjX] = E[v] = v � 1Z�1
E[CjX] = E[C] = c � IZ�Z ;

where the scalars v and c denote the true expected value of the intercept and the second-

stage coe¢ cients, respectively. (The true expectations of these coe¢ cients depend also on

the considered price setting friction.) The residual vector " is a Z�1 vector of (higher-order
approximation) residuals satisfying E["jX] = 0.
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We now show that under the stated assumptions, OLS estimates of (v0; c0)
0
in equation

(70) recover the expected value (v; c) of the coe¢ cients:

E

" bv0bc0
!#

= E[(X 0X)
�1
X 0Y ]

= E[E[(X 0X)
�1
X 0Y jX]]

= E[E[(X 0X)
�1
X 0

0BB@v + C

0BB@
(ln�1 � ln��1)

2

...

(ln�Z � ln��Z)
2

1CCA
1CCA jX]]

= E[(X 0X)
�1
X 0

0BB@E[vjX]| {z }
=v�1Z�1

+E[CjX]| {z }
=cIZ�Z

0BB@
(ln�1 � ln��1)

2

...

(ln�Z � ln��Z)
2

1CCA
1CCA]

= E[(X 0X)
�1
X 0

0BB@v � 1Z�1 + c

0BB@
(ln�1 � ln��1)

2

...

(ln�Z � ln��Z)
2

1CCA
1CCA]

= E[(X 0X)
�1
X 0X]

 
v

c

!

=

 
v

c

!

as claimed.

K Cross Sectional Distribution of Product-Speci�c Optimal In-

�ation Rates over Time

Figure 20 depicts the cross-sectional distribution of product-speci�c optimal in�ation rates

��jz across all products and all items in the �rst and last �ve years in of our sample (1996-

2000 and 2012- 2016). It shows that this distribution is remarkably stable over time.

L Proof of Proposition 3

From equation (27) we get

V arj (ln pjzt) = V arj
�
ln p�jz � ln��jz � t

�
+ V arj (ujzt)

+ Covj(ln p�jz; ujzt)

� t � Covj(ln��jz; ujzt):
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Figure 20: Distribution of product-speci�c optimal in�ation rates ��jz in 1996-2000 versus

2012-2016 (monthly rates, unweighted)

We next show that Covj(ln p�jz; ujzt) = Covj(ln��jz; ujzt) = 0 :

Covj(ln p�jz; ujzt) = Ej[ln p�jzujzt]� Ej[ln p�jz]E
j[ujzt]| {z }
=0

= Ej[Ej[ln p�jzujztjp�jz]]

= Ej[ln p�jzE
j[ujztjp�jz]| {z }

=0

]

= 0:

Similarly:

Covj(ln��jz; ujzt) = Ej[ln��jzujzt]� Ej[ln��jz]E
j[ujzt]| {z }
=0

= Ej[Ej[ln��jzujztj��jz]]

= Ej[ln��jzE
j[ujztj��jz]| {z }

=0

]

= 0:

It thus only remains to compute the cross-sectional variance of residuals, V arj(ujzt). These

residuals are described by a mixture distribution in which one �rst draws the relative price

trend ��(i)z with probabilitymzi. Subsequently, we draw corresponding residuals ujzt. Since

the residuals are independent across j, the cross-variance of residuals for any given ��(i)z is

equal to their variance over time, as given in equation (28). Therefore, the variance of the

mixture distribution is given by equation (30).
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