Der Anteil der Tierhaltung am Klimawandel - Detaillierte Übersicht über verschiedene Analysen

	Analysen	FAO 2013		FAO 2006			Oxford 2018		LWJ 2021		WWI 2009		CLH 2019
Kategorien		14,5%		18%		28%		31%		51%		87%	
ategorien		CO2eq / Jr (Gt)	Beschreibung	CO2eq / Jr (Gt)	Beschreibung	CO2eq / Jr (Gt)	Beschreibung	CO2eq / Jr (Gt)	Beschreibung	CO2eq / Jr (Gt)	Beschreibung	CO2eq / Jr (Gt)	Beschreibung
rekte THG- nissionen (TH)	Kohlenstoff- dioxid		Brandrodungen: 0,7 Gt + Emissionen aus fossilen Brennstoffen für die Düngemittelproduktion sowie den Transport und die Verarbeitung von Tieren		Brandrodungen: 2,4 Gt + Emissionen aus fossilen Brennstoffen für die Düngemittelproduktion sowie den Transport und die Verarbeitung von Tieren		Brandrodungen: 1,8 Gt + Emissionen aus fossilen Brennstoffen für die Düngemittelproduktion sowie den Transport und die Verarbeitung von Tieren	2,8	Brandrodungen: 2,8 Gt	11,3	Brandrodungen: > 2,4 Gt + Emissionen aus fossilen Brennstoffen für die Düngemittelproduktion sowie den Transport und die Verarbeitung von Tieren + Kochen/Braten von tierischen Produkten + Herstellung, Vertrieb und Entsorgung von tierischen Nebenprodukten und Verpackungen + Kohlenstoffemissionen durch medizinische Behandlung von Zoonosen, koronaren Herzkrankheiten, Krebs, Diabetes, Bluthochdruck und Schlaganfällen	11,5	Brandrodungen: > 2,5 Gt + Emissionen aus fossilen Brennstoffe für die Düngemittelproduktion sowie den Transport und die Verarbeitung v Tieren + Kochen/Braten von tierischen Produkten + Herstellung, Vertrieb und Entsorgui von tierischen Nebenprodukten und Verpackungen + Kohlenstoffemissionen durch medizinische Behandlung von Zoonos koronaren Herzkrankheiten, Krebs, Diabetes, Bluthochdruck und Schlaganfällen
	Methan	3,1	Verdauung + Mist/Gülle GWP100 ohne ccfb : 25	Verdauung + Mist/Gülle 2,2 GWP100 ohne ccfb : 23 37% aller CH4 Emissionen		Verdauung + Mist/Gülle 1 GWP100 mit ccfb : 34	17,4	Verdauung + Mist/Gülle GWP0 mit Sulfat-fb, ohne ccfb : 146 33% aller CH4 Emissionen	7,3	Verdauung + Mist/Gülle + Tierische Abfälle in Deponien GWP20 ohne ccfb: 72 37% aller CH4 Emissionen	7,7	Verdauung + Mist/Gülle + Tierische Abfälle in Deponien GWP20 ohne ccfb : 72 37% aller CH4 Emissionen	
	Distickstoff- monoxid	2,0	Zersetzung von Mist/Gülle und Kunstdünger GWP100 ohne ccfb : 298	2,2	Zersetzung von Mist/Gülle und Kunstdünger GWP100 ohne ccfb : 296		Zersetzung von Mist/Gülle und Kunstdünger GWP100 mit ccfb : 298	1,4	Zersetzung von Mist/Gülle und Kunstdünger GWP0 ohne ccfb : 196	2,2	Zersetzung von Mist/Gülle und Kunstdünger GWP100 ohne ccfb : 298	1,8	Zersetzung von Mist/Gülle und Kunstdünger GWP100 ohne ccfb : 298
rbon- portunitäts- sten	Kohlenstoff- dioxid		nicht einberechnet		nicht einberechnet	8,1	Ungenutztes Sequestrierungspotential: 8,1	11,4	Ungenutztes Sequestrierungspotential: 11,4	11,5	Atmung der Landtiere: 8.8 + Landnutzungsänderungen: 2.7	34,5	5 Tonnen CO2 pro Person und Jahr b 6,9 Millionen Menschen im Jahr 201
irektemissionen plus Carbon- pportunitätskosten Fierhaltung)		7,1	7,1 Anteil der Tierhaltung: (7,1 Gt CO2eq/Jr)/(49 Gt CO2eq/Jr) = 14,5% 40,0	Anteil derTierhaltung:	14,7	Anteil derTierhaltung:		Anteil derTierhaltung:	32,3	nteil derTierhaltung:	55,5	Anteil derTierhaltung:	
irektemissionen plus Carbon- pportunitätskosten (alle dustrien)		49,0		40,0	(7,1 Gt CO2eq/Jr)/(40 Gt CO2eq/Jr) = 18%	52,3	-(14,7 Gt CO2eq/Jr)/(52,3 Gt CO2eq/Jr) = 28%	106,0	(33 Gt CO2eq/Jr)/(106 Gt CO2eq/Jr) = 31%	63,8	-(32,3 Gt CO2eq/Jr)/(63,8 Gt CO2eq/Jr) = 51%	63,8	(55,5 Gt CO2eq/Jr)/(63,8 Gt CO2eq/Jr) = 87%
Problempunkte (geordnet nach Auswirkung; Richtung angegeben durch '-' und '+', wobei '' hohe Auslassungen/Fehlberechnungen bedeutet und '+ + + +' hohe Überschätzungen/Fehlberechnu		(1) Keine Berücksichtigung der Kohlenstoff-Opportunitätskosten der Tierhaltung () (2) Weglassung großer Teile der Kohlendioxid-Emissionen, die durch Brandrodungen verursacht werden () (3) Verwendung des Global Warming Potentials für Methan über 100 Jahre und ohne Klima-Carbon-Rückkopplungen (ccfb) () (?) Nichtberücksichtigung von THG-Emissionen entlang einiger Teile des Lebenszyklus von tierischen Produkten (-) (?) Keine Integration von THG-Emissionen durch Folgewirkungen von tierischen Produkten (Krankheiten) (-)		(1) Keine Berücksichtigung der Kohlenstoff- Opportunitätskosten der Tierhaltung () (2) Verwendung des Global Warming Potentials für Methan über 100 Jahre und ohne Klima- Carbon-Rückkopplungen (ccfb) () (?) Nichtberücksichtigung von THG-Emissionen entlang einiger Teile des Lebenszyklus von tierischen Produkten (-) (?) Keine Integration von THG-Emissionen durch Folgewirkungen von tierischen Produkten (Krankheiten) (-)		(2) Basis (Gesamtemissionen über alle Sektoren) für die Berechnung des Anteils der Tierhaltung enthält keine Kohlenstoff-Opportunitätskosten. (+ +) (?) Nichtberücksichtigung von THG-Emissionen entlang einiger Teile des Lebenszyklus von tierischen Produkten (-) (?) Keine Integration von THG-Emissionen durch Folgewirkungen von tierischen Produkten (Krankheiten) (-)		fossilen Brennstoffen für die Düngemittelproduktion sowie den Transport und die Verarbeitung von Tieren (-) (?) Verwendung eines instantanen Global Warming Potentials für Methan (+) (?) Nichtberücksichtigung von THG-Emissionen entlang einiger Teile des Lebenszyklus von		andere Industrien als die Tierhaltungsindustrie angewendet, was zu einer niedrigeren Basis für die Berechnung des Anteils der Tierhaltung führt (+ +) (2) Berücksichtigung von THG-Emissionen entlang des Lebenszyklus von tierischen Produkten, jedoch möglicherweise nicht gleichermaßen für alternative Produkte (+)		n enthält keine Kohlenstoff-Opportunitätskosten (+ + + +) (3) Der Rest der Berechnung einschließlich der Problempunkte basiert vollständig auf der WW-Analyse von 2009 (+ +)	
		(?) Keine Berücksichtigung von Aerosol-Kühlungseffekten von Emissionen durch die Verbrennung fossiler Brennstoffe (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Seefichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Aquakultur (Stoffwechsel) (-), (?) Keine Berücksichtigung der Netto-THG-Emissionen der Netto-THG-Emissionen der Netto-THG-Emissionen der Netto-THG-Emissionen der Netto-THG-Emi									er Seefischerei (Stoffwechsel) (-)		
Links	.s	[1]	S.7, S.15	[2]	S.113	 -	S.1	[5]	S.16, S.17, S.22, S.25	[7]	S.11	[8]	S.17
Quellenverz	zeichnis	[1] United Nations Food and Agricultural Organization (20013): Tackling Climate Change Through Livestock, Rome (Italy): Food and Agriculture Organization of the United Nations (FAO) [online]. Retrieved from http://www.fao.org/3/a0701e/a0701e00.htm, accessed on 30 December 2020, [2] United Nations Food and Agricultural Organization Livestock's Long Shadow, Environmental Issues and Options, Rome (Italy): Chief, Electronic Publishing Policy and Support Branch, Communication Division – FAO [Online]. Retrieved from http://www.fao.org/3/a0701e/a0701e00.htm, accessed on 30 August 2020; [3] Poore, J., Nemecek, T. (2018): Reducing food's environmental impacts the producers and consumers. In: Science, June 2018, Number 360, Issue 6392, Erratum [online]. Retrieved from https://science.sciencemag.org/content/363/6429/eaaw9908, accessed on 26 Dezember 2020; [4] Poore, J., Nemecek, T. (2018): Reducing food's environmental impacts through producers and consumers. In: Science, June 2018, Issue 6392, Supplementary Materials, Download Supplement [Online]. Retrieved from https://soepern.landwirtschaft.jetzt/wp-content/uploads/2021/1/x4.pdf, accessed on 03 January 2021; [6] Mueller, M. (2021): The contributions of animal agriculture and major fossil-fuel-based industries to global warming, Supplementary Material [online], Retrieved from https://bayern.landwirtschaft.jetzt/wp-content/uploads/2021/01/x4.pdf, accessed on 03 January 2021; [7] Goodland, R., Anhang, J. M. (2009): Livestock and Climate Change; What if the key actors in climate change are pigs, chickens and cows, Washington DC (USA): Worldwatch Institute [online]. Retrieved from https://www.climatehealers.org/wp-content/uploads/2020/08/Goodland_2009_Livestock_and_Climate_Change.pdf, accessed on 30 August 2020; [8] Rao, S. et al. (2019): Animal Agriculture is the Leading Cause of Climate Change [online]. Retrieved from https://www.climatehealers.org/wp-content/uploads/2020/10/AnimalAgriculturePositionPaper.pdf, accessed on 30 December 2020										od and Agricultural Organization (2006): food's environmental impacts through isumers. In: Science, June 2018, Number 36 [online], Retrieved from zt/wp-content/uploads/2021/01/x5.xlsx,	