

Information and Communication Technologies for Complex Industrial Systems and Processes

Al and ML techniques for generation and assessment of products properties data.

Marco Vannucci, Valentina Colla, Antonio Ritacco, Marco Vannocci, Antonella Vignali

Outline

- The **importance** of steel quality data and their reliability
- The role of AI techniques
- Al for the **generation** of quality data
- Al for the assessment of quality data
- Conclusions

Introduction Quality data & reliability

Quality data

- the guarantee of the fulfillment of products requirements is an essential point in customer-supplier relation
- Providing reliable quality data may determine customer choice

The cost of quality data

- Quality data are not free: either DT or NDT they cost time and money
- Sometimes partial (products are not uniform..), as samples
- Reduces overall reliability of provided quality data
- **Over-quality** is not the solution

Can Artificial Intelligence & Co. be helpful?

Can Artificial Intelligence & Co. be helpful?

The potential

• No cost (more or less)

Fast

 Data driven but also human expertise flavoured

Things to take into account

- Need data and real tests to be tuned
- Reliability of training data is central
- Reliability of models and results is even more central

Al for quality data: the direction

Generating reliable quality data Through AI

Marco Vannucci – Artificial intelligence for steel products quality data Artificial intelligece & Machine learning workshop

Quality data generation – Residual hydrogen

Motivation

- Hydrogen content is **detrimental** (cracks)
- Not always avoidable (vacuum degassing)
- **Cooling** determines final content of H2
- Which are the billets with dangerous H2 content?

The need of quality data

- Target: no defective products to customers
- Destructive, partial, time consuming test

Quality data generation – Residual hydrogen

Flatness defects detection through DNN

- Important quality information
- Not only the presence but also the type and position
- Downgrading type is affected
- Time and resources
 consuming task performed by
 humans

Is automation possible and reliable?

Flatness defects detection through DNN

Outputs

Feature Maps

12@ 9x9

Predicted label

12@18x18

Feature Maps Feature Maps Feature Maps

6@22x22

Input

48x48

6@44x44

Reinforcing bars mechanical properties prediction

- Reinforcing bars produced through the *TempCore* process for achieving high elasticity and resistance
- Complex chemical and physical interaction during cooling
- Different conditions throughout production: how to evaluate all bars features?

Reinforcing bars mechanical properties prediction

%err	LM	LS	MLP
R_m	1.77	1.69	1.69
Re	2.52	2.37	2.88
A %	6.13	6.02	6.69

- Satisfactory on Re and Rm
- Plant set-up can be used for *optimization* purpose

Assessing the reliability of quality data Through Al

Marco Vannucci – Artificial intelligence for steel products quality data Artificial intelligence & Machine learning workshop

The key role of reliability

Quality data are nothing without reliability

- Are unreliable quality data useful?
- Producer-customer intimacy

We need to be able to **assess** quality data reliability

• Both measured and calculated quality data.

Get rid of outliers in quality data

An **outlier** is a measure that strongly *deviates* from the others.

Highly detrimental in steel quality data

- To share with customer
- To use for estimated quality data

Possible causes:

- Biased tests
- Sensors malfunctions

Not always easy! Not always 1D!

In many steel applications a **multidimensional** approach is required.

Outliers detection based on fuzzy merging

Estimating models reliability through ANNs

When using a model for quality data estimation, model reliability can be punctually <u>estimated</u>

- Additional NN
- Point out favorable/critical conditions
- <u>No limitation</u> on the model type

A final case study: the self-conscious Jominy profile predictor

Not just a performing Jominy profile predictor

- No need of real test
- Usable for product design

A final case study: the self-conscious Jominy profile predictor

- .. But also self-estimation of punctual reliability
- Reliability bounds adaptive to model confidence in each point of the profile
- Determined by peculiar sample input
 - Process condition, chem.
 Composition,..

To sum up...

- Quality data fundamental to
 - Monitor production
 - Relation with customer
- Quality data are not free and their reliability must be granted
- The role of Al techniques
 - Generation of quality data
 - Save resources, more data, objectivity
 - Improving reliability
 - Data integrity, unreliable data detection
 - Assess or produce a reliability measure of quality data

Thank you for your attention. Time for questions.

