Cytochrome P450

- Membrane-bound enzyme that detoxifies compounds in the liver
- Oxidizes steroids, fatty acids, xenobiotics

(NADPH: nicotinamide adenine dinucleotide phosphate; FAD: flavine adenine nucleotide; FMN: flavine mononucleotide)

Cytochrome P450

2

Vitamin B12

Cofactor for biological methyl transfer and radical-based rearrangements

- ✓ Co center coordinated inside a corrin ring
- ✓ One X-type and one L-type axial ligand

X-ray structure cyanocobalamin (R = CN)

R = 5'-deoxyadenosyl, CH_3 , OH, CN

Vitamin B12

Coenzyme B12: corrin with benzimidazole and 5'-deoxyadenosyl as axial ligands for Co

At pH 7: three possible Co oxidation states, all low spin configurations

Co(III)Co(II)d⁶, 18ed⁷, 17e6-coordinate5-coordinateoctahedralsquare-pyramidal'base-on''base-on'Unpaired electron

in d_{z^2}

H₂N-NH2 H2N NH₂ HN P=0 -0 CH2OH

HO

HO.

NH₂

NH₂

Vitamin B12

Mechanism of biosynthesis of methionine by methionine synthase

Processive enzymes

Processive catalysis: catalyst stays connected to a (polymeric) substrate and does multiple rounds of catalysis before it dissociates

DNA Polymerase III

λ -Exonuclease

Cell 1997, 89, 1087; Science. 1997, 277, 1824, Angew. Chem. Int. Ed. 2014, 53, 11420

Biomimetic catalysis

Biomimetic chemistry

Synthetic simplified model systems that mimic the behaviour of systems in nature

Synthetic enzyme model systems: "synzymes"

Why would we want them?

Need for catalysts with equal efficiency and selectivity as natural enzymes

Why synthetic?

Natural enzymes are:

- often only available in small quantities
- not always straightforward to extract
- often unstable outside an organism
- restricted in their use to aqueous environments
- restricted to a limited number of chemical reactions

General approach

Combine a synthetic cavity-containing molecule with a catalytically active site

Ribonuclease A mimic

Ribonuclease A: enzyme that cleaves phosphates in single stranded RNA, using two histidines for general acid-base catalysis

Enzyme mimic by attaching two imidazoles to a cyclodextrin cavity

- Apolar part of substrate bound in cavity via hydrophobic effect
- 100-fold rate acceleration, 99+% selectivity for one of the hydrolysis products

Preorganization of substrates

Acceleration of a Diels-Alder reaction

- Reactants are preorganized in geometry that resembles the transition state
- 200-fold rate acceleration, only the exo-product is formed
- Complete inhibition of the reaction when cavity is blocked by competitive guest

Complication: product also blocks the cavity so turnover = 1 (product inhibition)

Self-assembled nanoreactor

Acceleration of a Diels-Alder reaction in a self-assembled "Molecular Softball"

- Reactants are preorganized in close proximity in a favorable geometry
- In absence softball: reaction complete after a year. In presence softball: 1 minute

Complication (again): product blocks the cavity so turnover = 1 (product inhibition)

Self-assembled nanoreactor

Self-assembled nanoreactor

Conditions	Conversion*	TOF _{ini} (h ^{−1}) [†]
TPPMSAu ⁺	44%	0.45
TPPMSAu ⁺ + sphere	17%	0.14
TPPMSAu ⁺ + sphere + NEt₃	>95%	5.75
TPPMSAu ⁺ + NEt ₃	19%	0.19
Sphere	-	-

- Preorganization of catalysts and substrates (proximity effects)
- Turnover by generation of neutral, non-binding product
- Inhibition by addition of p-toluenesulfonate

Second coordination sphere catalysis

Example: encapsulated hydroformylation catalyst

Second coordination sphere catalysis

Example: electrocatalyzed CO₂ reduction

- Electrochemical reduction Fe^{III} to Fe⁰ in K⁺ electrolyte
- K⁺ binds in spacers of cage and assists binding of CO₂ inside cage
- K⁺ activates CO₂ for reduction to CO
- Compared to Fe tetraphenyl porphyrin:
 - Overpotential 0.2 V lower
 - High selectivity for CO formation (>90%)
 - Yield CO > 1.5 times higher

Porphyrin cage as a cytochrome P450 mimic

Porphyrin cage as a processive catalyst

Polybutadiene M_w 300,000; 98% *cis*; [C=C] = 250 mM; [cat] = 1 mM

Porphyrin cage as a processive catalyst

Stereoselectivity

20% *cis* 80% *trans trans/cis* = 4.0

Trans-epoxide fits better in the cavity of the cage

Study material

Learning goals

- You understand the working mechanisms of natural enzymes
- You understand the role of the hydrophobic effect in enzyme catalysis
- You know the mechanisms by which natural enzymes stabilize transition states of a catalytic reaction
- You know the goals, approaches, and limitations of biomimetic catalysis

Study material

- These lecture slides
- Catalysis: An Integrated Textbook for Students (U. Hanefeld & L. Lefferts, Eds): Sections: 4.1, 4.2, 4.3.1.3, 4.3.1.4