

Forced-flow exposure of sealants to CO₂, and indentation mapping of carbonation extent

CEMENTEGRITY WP 1 Additional Deliverable, v. 1 Published 2024-12-30

Authors: Gunnar Lende Halliburton, Norway.

Reviewed by: Halliburton internally.

Keywords: wellbore integrity, sealant integrity, CCS, CO₂-storage, cement testing

Summary:

This report contains the slide deck presented at the CEMENTEGRITY Concluding *Ceminar*, held online on 2024-11-27, presenting the results of CEMENTEGRITY WP 1 for all 5 sealants tested. For further explanation, recordings of the full *Ceminar* are available on <u>www.cementegrity.eu</u>.

CEMĖNTEGRİTY

ACT3-CCUS Project

Cementegrity - Development and testing of novel cement designs for enhanced CCUS well integrity **Work Package 1**

Gunnar Lende, Halliburton EESSA technology laboratory 10-01-2025

Prepared for publication on Cementegrity web site

WP1 exposure mode – high ΔP axial dynamic – limited by permeability

Axial only exposure conditions:

Cement confined by pipe, by impermeable formation (clay) or both

- → Assuming axial only exposure
- \rightarrow Small contact area
- \rightarrow Damage progression can be very slow
- ightarrow May mitigate with longer barrier

Five sealants studied in this project:

- 1. Standard OPC-silica blend with no attempts to reduce permeability (reference for old wells)
- 2. OPC-silica blend system with reduced permeability and typical field chemicals
- 3. OPC-silica blend system with reduced permeability, modified mechanical properties, and a CO2 sequestering agent
- 4. Non-Portland, Calcium-aluminate cement-based system considered highly acid resistant
- 5. Rock-based geopolymer developed for CCUS (by UiS)

All samples for all work packages molded and cured by Halliburton

Curing done at 150°C and 310 bar for 28 days for full hydration, no further reactions during storage, equal starting materials for all partners

Expectations:

- 1. Guidance on progression rate of CO₂ affected (carbonated) zone vs. detrimentally damaged (bi-carbonated) zone
- 2. Comparison of super critical ($scCO_2$) vs. CO_2 saturated freshwater ($CO_2 satH_2O$) impact
- 3. Establish flow potential through matrix for both $scCO_2$ and $CO_2 satH_2O$
- 4. Test method to identify zones for materials not responding to phenolphthalein, and where zones not visible
- 5. Test method to estimate mechanical properties of affected zone
- 6. System comparison

Physical properties

WP1 forced flow exposure tests

B setup - 2 x 3 channel, 3 and 6 months, CO₂satH₂O, 80°C

C setup – 2 x 1 channel 3 months, $scCO_2$ and CO_2satH_2O , 80°C

Ø38 x L 80 mm cylinders

Axial ΔP adjusted to obtain suitable flow rate, varied with design S1, S2, S3, S5: Pi = 62 bar, Po = 14 bar, ΔP = 48 bar \rightarrow 603 bar/m S4: Pi = 55 bar, Po = 48 bar, ΔP = 7 bar \rightarrow 86 bar/m Over-saturation occurs when heating from 20 to 80 °C \rightarrow multi-phase flow through sample Determine Bi-carbonate leach and transportation potential

Tests:

- 1. Reference, 3 months flow, 6 months flow
- 2. Indentation map to determine carbonation front / map exposure/time effects
- 3. Young's Modulus, compressive strength, Poisson's ratio, 4x Brazilian tensile strength
- 4. Sample exhaust fluid for possible analysis
- Axial ΔP adjusted to obtain suitable flow rate, varied with design $CO_2 \text{satH}_2 \text{O}$: Pi = 62 bar, Po = 14 bar, ΔP = 48 bar \rightarrow 603 bar/m (S4 259 bar/m) scCO₂: Pi = 117 bar, Po = 83 bar, ΔP = 34 bar \rightarrow 431 bar/m (S4 345 bar/m) Over-saturation occurs when heating from 20 to 80 °C \rightarrow multi-phase flow through sample Determine Bi-carbonate leach and transportation potential (CO₂satH₂O)

Tests:

- 1. Flow rate underway, with permeability estimate
- 2. Water permeability before and after
- 3. Indentation map to determine carbonation front / map exposure/time effects
- 4. Sample exhaust fluid for possible analysis

CEMĖNTEGRİTY

WP1 forced flow exposure tests – example chart

- Rapid initial drop of flow 1. rate with CO₂ and H₂O combination exposure, then slowly declining flow
- Fairly constant flow of 2. supercritical CO₂

Notes:

Actual flow rate inside sample differ from injection rate due to CO₂ expansion and phase change

Density (kg/m3)

850

291

222

169

CO2

002 80

202

002 80 H2O 80 100

23 117 117

100

83

Relative density

100 %

34 %

26 %

20 %

Dyn viscosity (Pa s)

8,30E-05

2.55E-05

2,19E-05

2,02E-05

3,56E-04

WP1 forced flow exposure tests – indentation test

Available tests:

1 x scCO₂ 6 months 3 x CO₂satH₂O 6 months In & out end – 13 measurements each A and B side – 3 rows x 14 measurements

WP1 forced flow exposure tests – indentation test S1

e) Chart Observations:

t Observations:

Unaffected matrix found 10 / 15 mm below top at 90 / 180 days Change 90 \rightarrow 180 days 5 mm Softening by inlet area only Notes:

Progression front appears flat First test \rightarrow less data

WP1 forced flow exposure tests – indentation test S2

e) Chart

Observations:

Both hardening and softening at 0 mm level (soft by inlet) Increasing hardening 90 \rightarrow 180 days at level 5 mm Unaffected at level 10/14 mm

Notes:

Twin cell setup exposure more less penetration depth than the six cell setup, suggesting variations can occur.

WP1 forced flow exposure tests – indentation test S3

WP1 forced flow exposure tests – indentation test for S4

e) Chart

Observations:

Consistent hardening throughout sample, no soft spots More hardening with scCO₂ than CO₂satH₂O

Notes:

No response to phenolphthalein

WP1 forced flow exposure tests – indentation test for S5

e) Chart

Observations:

General reference hardening with depth (segregation?)

scCO₂ follows same hardening trend

Top level softening with CO₂satH₂O, then substantial hardening at 90 days, following trend at 180 days

Notes:

WP1 forced flow exposure tests – indentation test

f) Relate to mechanical properties

WP1 forced flow exposure tests – indentation test

f) Relate to mechanical properties

CEMĖNTEGRİTY

WP1 comparison data – flow of super critical CO_2

Observations:

High early phase flow that attains steadier level after some time

Can be attributed to CO_2 displacing pore water in combination with CO_2 response For S5 marked change ±1300 hrs

Notes:

Flow measurements are affected by changes in room temperature CO2 expands while progressing through sample

→unsteady flow observed S2 still flowing

WP1 comparison data – flow of CO₂ saturated fresh water

Observations:

High early phase flow that attains steadier level after some time

- Can be attributed to CO_2 displacing pore water in combination with CO_2 response Less fluctuations than with pure CO_2
- S1 plugs very quickly, low flow
- S2 shows dropping trend
- S3 no dropping trend
- S4 clearly dropping trend
- For S5 marked change ±1300 hrs

Notes:

S1 recording aborted early due to equipment problem

S3 flow temporarily interrupted at 2300 hours due to equipment problem

WP1 comparison data – flow of CO₂ saturated fresh water

Observations:

High early phase flow that attains steadier level after some time

- Can be attributed to CO_2 displacing pore water in combination with CO_2 response Less fluctuations than with pure CO_2
- S1 plugs very quickly, low flow
- S2 shows dropping trend
- S3 no dropping trend
- S4 clearly dropping trend
- For S5 marked change ±1300 hrs

Notes:

S1 recording aborted early due to equipment problem

S3 flow temporarily interrupted at 2300 hours due to equipment problem

WP1 comparison data – flow of CO₂ saturated fresh water

Assumptions:

- Flow rate through sample
 = injection rate
- Last 1500 hour typical for long term flow
- Flow proportional to A_{flow} and $\Delta P/L$

Notes:

- Neglectible flow potential
- Highly uncertain
- Highly dependent on inherent permeability
- Leak rate will be dominated by micro annulus or cracks

WP1 comparison data – estimated flow of super critical CO_2

Assumptions:

- Calculated flow rate through sample
- μ = 0,0222 cP (scCO₂ at 80°C)
- Water permeability post scCO₂ exposure
- Barrier length 50 m
- ΔP = 100 bar

Notes:

- Neglectible flow potential
- Highly uncertain
- Highly dependent on permeability
- Leak rate will be dominated by micro annulus or cracks
- S2 data estimated
- Testing permeability with H₂O may affect result due to bicarbonation

	Permeability	S1	S2	S3	S4	S5
	Permeability reference	0,10	0,02	0,22	2,10	0,23
Permea	ability post exposure CO2satH2O	0,01	0,02	0,16	0,55	0,25
P	ermeability post exposure scCO2	0,04	0,05	0,30	0,37	0,21
	Permebility pre-exposure	0,13	0,06	0,19	0,95	0,52
	Highest permeability:	0,13	0,06	0,30	2,10	0,52

WP1 comparison data

Observations:

S3 and S4 can be considered "elastic" Others have quite high YM Normalized BzTS very similar throughout Normalized UCS favors OPC

Notes:

Normalized strength obtained by taking ratio Strength/YM, where highest number is preferable

WP1 comparison data - indentation

Observations:

All S's show short distance to healthy All S's show short damage progression last 90 days ($90 \rightarrow 180$) S3, S4, S5 all have change of indentation through entire sample for scCO₂ S1 has no change at 20 mm S4 and S5 have change of indentation through entire sample for CO₂sH₂O S1 has no change at 15 mm -S2 has no change at 8 mm S3 has no change at 35 mm S2 shows no sign of hardening at 5mm depth (100%) for CO₂sH₂O --All designs show hardening at 5 mm level for scCO₂ —

Notes:

S2 data not available for scCO₂

WP1 comparison data – indentation – scaling Δs carbonation/bicarbonation progression

Carbonation

Assumptions all:

Time dependency = t^0,5

Assumption 1:

Controlled by diffusion only Neglecting $\Delta P/L$ Using 90 - 180 days Δ

Assumption 2:

NOT controlled by diffusion only Applying $\Delta P/L$ correction Using 90 - 180 days Δ

Bicarbonation

Assumption 1:

Controlled by diffusion only Neglecting $\Delta P/L$ Using 180 days Δ

Assumption 2:

NOT controlled by diffusion only Applying $\Delta P/L$ correction Using 180 days Δ

			Sealant	S1	S2 *	S3	S 4	S5	
	Carbonation ∆ mm per year CO2satH2O			0,03	0,01	0,06	0,00	0,06	
1E+03	Δ m per 10	000 years (CO2satH2O	0,03	0,01	0,06	0,00	0,06	
		P (bar)	L (m)	48	48	48	7	48	ΔP/L
		100	50	2	2	2	2	2	ΔP/L
			Correction	24	24	24	3,5	24	
1E+03	Carbonation Δ m per 10	000 years (CO2satH2O	0,001	0,000	0,002	0,000	0,002	

			Sealant	S1	S2 *	S3	S4	S5	
	Detrimental ∆ n	Detrimental ∆ mm per year CO2satH2O			0,00	0,02	0,00	0,01	
1E+03	Δ m per	1000 years (CO2satH2O	0,01	0,00	0,02	0,00	0,01	
		P (bar)	L (m)	48	48	48	7	48	ΔP/L
		100	50	2	2	2	2	2	ΔP/L
			Correction	24	24	24	3,5	24	
1E+03	Detrimental Δ m per	1000 years (CO2satH2O	0,0003	0,0001	0,0008	0,0000	0,0003	

Notes:

S2* preliminary result. Must consider uncertainty in testing and scaling versus geometry and time

WP1 comparison data – indentation – scaling Δs carbonation/bicarbonation progression

Assumption 1:

Controlled by diffusion only Neglecting $\Delta P/L$ Using 180 days Δ

Assumption 2:

NOT controlled by diffusion only Applying $\Delta P/L$ correction Using 180 days Δ

Notes:

S2* preliminary result. Must consider uncertainty in testing and scaling versus geometry and time

WP1 comparison data - permeability

Observations:

 $S1-S3\;\Delta k$ change is within test uncertainty

Substantial variance for S4

Some variance for S5

S4 and S5 reduction with exposure

S4 increase with time, no exposure

Notes:

S4 and S5 may still have ongoing structural changes after 6 months S4 reference data may be artifact

WP1 S1 mechanical property change factor

Observations:

Dramatic permeability drop with CO_2 exposure More for CO_2 sH₂O than scCO₂ Permeability drop also for reference General hardening at 5 mm level Minor change in mechanical properties

5 mm progression last 90 days

Notes:

WP1 S2 mechanical property change factor

Drop in BzTS

2 mm progression last 90 days

Notes:

WP1 S3 mechanical property change factor

Observations:

Large permeability increase with scCO_2 exposure

Minor change for CO₂satH₂O Substantial drop in UCS and BZTS 10 mm progression last 90 days

Notes:

Dramatic change for reference 90 days (0,5µD), may be artifact measurement

WP1 S3 mechanical property change factor

Observations:

Large permeability increase with scCO_2 exposure

Minor change for CO₂satH₂O Substantial drop in UCS and BZTS 10 mm progression last 90 days

Notes:

Dramatic change for reference 90 days (0,5µD), may be artifact measurement

WP1 S4 mechanical property change factor

Observations:

Substantial permeability decrease with CO_2 exposure, both types Substantial increase in UCS, BzTS, YM This not observed for reference Reduction in indentation

Notes:

Sample appears homogeneous Δ last 90D has 0 value (no change)

WP1 S5 mechanical property change factor

Observations:

Minor change in mechanical properties Substantial permeability decrease with CO_2 exposure, both types This is also observed for reference Small reduction in indentation 10 mm progression last 90 days

Notes:

Sample appears to segregate Possibly still ongoing reactions at 6M

WP1 observations & conclusions – using the data in practice

Observations - flow:

- 1. Can we use permeability data for flow estimates?
 - There is little evidence supporting any increase with exposure
 - The highest value of pre-, post- and post-reference values should be used (water permeability)
- Can we extrapolate flow data using the $\Delta P/L$? 2.
- Quite likely the near CO₂ entry area creates a high $\Delta P/L$ region with extra low permeability that is fairly thin •
- \rightarrow Any extrapolation of flow using $\Delta P/L$ across the entire barrier as input is most likely inaccurate and will underestimate flow potential
- Can we use measured flow rate for flow estimates? 3.
- What is observed (quick reduction in flow) is likely to also happen in the field given similar exposure mode •
- \rightarrow Extrapolation with barrier length should be used with caution as most likely inaccurate
- \rightarrow It is preferred to base flow estimates on permeability input

Observations – damage progression:

- Can we extrapolate progression data using the $\Delta P/L$?
- Can we extrapolate progression data NOT using the $\Delta P/L$ (time only)? 2.
- Tests outside of Cementegrity with no/minimal ΔP/L suggests that damage progression is primarily diffusion driven •
- \rightarrow Extrapolation to field using the $\Delta P/L$ as input cannot be justified
- \rightarrow Extrapolation to field ignoring the $\Delta P/L$ as input may be justified, given uncertainty by scaling is accounted for

Observations – the importance of water:

- Which case is worst pure $scCO_2$ or CO_2 and water combination? 1.
- Flow potential is higher with pure CO₂ due to lower viscosity, but bi-carbonation which is detrimental for OPC will not happen
- Therefore, the CO₂ and H₂O combination is worst case, especially if bi-carbonate leaching can happen

Released for publication S3 zone 7 - 9 CO₂sH₂O

WP1 observations & conclusions – using the data in practice

Observations – sealant permeability:

- 1. Is permeability an important parameter for CO₂ resistance?
- If the design matrix responds negatively to CO₂ permeability / porosity is an important factor. This can be seen by comparing S1, S2 and S3 indentation depth to unaffected matrix and last 90 days change
- Low or no CO2 affected designs do not rely on very low permeability, an example is S4
- 1. Can the permeability for the highest flowing sealants be reduced by design optimization?
- Most likely they can be improved by tuning the design

Observations – mechanical properties:

- 1. Can the measured mechanical properties post exposure be assumed accurate?
- Not if the design shows impact by exposure, which is the case for S1-S3
- If the design can be considered homogenous throughout the data can be considered valid

Observations – use of indentation vs mechanical properties:

- 1. Can the measured mechanical properties post exposure be assumed accurate?
- Not if the design shows impact by exposure and is inhomogeneous, which is the case for S1-S3.
- The sample will then potentially fail at the weakest location
- 2. Can indentation data be used instead?
- Yes, to some extent. Good to reasonable correlation has been found with UCS and YM, not with PR and BzTS
- This allows for UCS and YM indirect estimates at specific locations my performing indentation tests there, if sample is sufficiently large

Acknowledgement:

The CEMENTEGRITY project is funded through the ACT program (Accelerating CCS Technologies, Horizon2020 Project No 691712). Financial contributions from the Research Council of Norway (RCN), the Netherlands Enterprise Agency (RVO), the Department for Energy Security & Net Zero (DESNZ, UK), and Harbour Energy are gratefully acknowledged.

