Electron-phonon coupling in light-driven solids: bridging ab-initio theory and pump-probe experiments

CECAM-HQ, Lausanne

https://cs2t.de

CAU

Computational Solid-State

Christian-Albrechts-Universität zu Kiel

Fabio Caruso University of Kiel, Germany

July 16th, 2024

Frontiers in many-body excited-state dynamics from first principles

> Funded by Deutsche **DFG** Forschungsgemeinschaft German Research Foundation

MARIE CURIE

Photoemission Optical probes de la Torre, et al. Rev Mod. Phys. (2021)

Transport

Research in the Computational Solid-State Theory group @ Uni. Kiel

direct imaging of nuclear degrees of freedom

$\Delta I(t) = I(t) - I(t = 0)$

measurements: Helene Seiler

ultrafast electron diffuse scattering (UEDS) for bulk MoS₂

elastic scattering (Bragg peaks)

diffuse scattering (phononassisted electron scattering

- thermal (temperature increase)
- non-thermal (phonons out of equilibrium)

time- and angle-resolved photoemission spectroscopy (trARPES) for bulk WTe₂

measurements: P. Hein, M. Bauer, et al., Nature Comm. (2020)

In this talk

Ab-initio simulations of ultrafast phonon dynamics: what can we learn?

Non-equilibrium lattice dynamics "a la carte": opportunities for engineering phonons out of equilibrium

Transient screening of the electron-phonon coupling in bulk MoS₂?

Part 1

Ab-initio simulations of the non-equilibrium phonon dynamics: what can we learn?

Non-equilibrium phonon dynamics from the time-dependent Boltzmann equation (TDBE)

Coupled electron-phonon dynamics in monolayer MoS₂

electron and phonon occupations: $n_{\mathbf{q}\nu}$ and $f_{n\mathbf{k}}$ collision integrals: $\Gamma_{n\mathbf{k}}$

Bonitz, Quantum Kinetic Theory, Springer (2016) Bernardi, Louie et al., PNAS (2015) FC, J. Phys. Chem. Lett. (2021) Tong, Bernardi, Phys. Rev. Res. (2021) Review: FC, Novko, Adv. Phys. X (2022)

Momentum selectivity and non-equilibrium phonon dynamics

FC, J. Phys. Chem. Lett. (2021)

pubs.acs.org/NanoLett

Accessing the Anisotropic Nonthermal Phonon Populations in Black Phosphorus

Hélène Seiler,* Daniela Zahn, Marios Zacharias, Patrick-Nigel Hildebrandt, Thomas Vasileiadis, Yoav William Windsor, Yingpeng Qi, Christian Carbogno, Claudia Draxl, Ralph Ernstorfer, and Fabio Caruso*

Part 2

Non-equilibrium lattice dynamics "a la carte": opportunities for engineering phonons out of equilibrium

How to control non-equilibrium dynamical states of the lattice?

Option 1: tailored electronic excitations

Yiming Pan

Option 2: control relaxation pathways

Pan, FC, npj 2D Mater. Appl. (2024)

Valley selective optical excitation in MoS₂

- three-fold rotational invariance
- non-centrosymmetryc crystal structure

Valley selective optical excitation in MoS₂

• three-fold rotational invariance

- non-centrosymmetryc crystal structure
- Ultrafast valley depolarization dynamics
- Different timescales for valence and conduction band

Yao, Niu, et al., Phys. Rev. B (2008) Mak, Heinz, et al., Nature Nanotec. (2012) Molina-Sánchez, et al., Nano Lett. 17, 4549 (2017) Dal Conte, et al., Phys. Rev B 92, 235425 (2015) Beyer et al., Phys. Rev. Lett. 123, 236802 (2019) Xu, Duan, et al., Nano Lett. (2021) Lin, Montserrat, et al., Phys. Rev. Lett. (2022)

Pan, FC, Nano Lett. (2023)

The decay path of valley-polarized carriers in MoS₂

valley-polarized phonons at the K and -K high-symmetry points

Valley-polarized non-equilibrium phonon populations in MoS₂

Pan, FC, Nano Lett. (2023)

 $I^{\circlearrowright}(t) - I^{\circlearrowright}(t)$: dichroic diffraction intensity (changes by switching polarization)

Pan, FC, Nano Lett. (2023)

Valley-polarized non-equilibrium phonon populations in MoS₂

vibrational circular dichroism

Strain-engineering band structures and relaxation channels: monolayer WS₂

Pan, FC, npj 2D Mater. Appl. (2024)

Strain-induced activation of chiral phonon emission

Phonon population (1ps after valley-polarized excitation):

1%

Unstrained

Strained

TO(M)

Suppression of M phonon emission

(Deactivation of the scattering channels involving Q valleys)

Pan, FC, npj 2D Mater. Appl. (2024)

Pan, FC, npj 2D Mater. Appl. (2024)

linear phonon emission

chiral phonon emission

Transient screening of the electron-phonon coupling in bulk MoS₂?

Part 3

Ultrafast electron diffuse scattering: the case of bulk MoS₂

H. Seiler (FU Berlin)

Two distinct non-thermal phonon populations (experiments)

non-thermal phonon populations

$$I_{1}(\mathbf{Q}) \propto \sum_{\nu} \frac{n_{\mathbf{q}\nu} + 1/2}{\omega_{\mathbf{q}\nu}} \left| \mathfrak{F}_{1\nu}(\mathbf{Q}) \right|^{2} \qquad \text{1-phonon contributio}$$
$$\mathfrak{F}_{1\nu}(\mathbf{Q}) = \sum_{\kappa} e^{-W_{\kappa}(\mathbf{Q})} \frac{f_{\kappa}(\mathbf{Q})}{\sqrt{M_{\kappa}}} \left(\mathbf{Q} \cdot \mathbf{e}_{\mathbf{q}\nu\kappa} \right) \qquad \text{1-phonon structure factors}$$

Diffuse scattering at thermalization: theory vs experiment

Experiment: delay 100 ps

Marios Zacharias

Zacharias, Seiler, FC, et al. Phys. Rev. Lett. (2021) Zacharias, Seiler, FC, et al. Phys. Rev. B (2021)

Diffuse scattering from non-equilibrium phonon populations

$$= \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{g_{mn'}^{\nu}(\mathbf{k},\mathbf{q}) = \langle m\mathbf{k} + \mathbf{q} | \Delta |_{\mathbf{q}\nu} \langle u_{\mathbf{k};\mathbf{q}|,\mathbf{m}\mathbf{k}} \rangle |_{\mathbf{q}\nu}^{2} \\ (\text{independent particles}):$$

$$\delta \chi_{0}(\mathbf{q}) = \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{m'\mathbf{k}+\mathbf{q}}} |\langle u_{m'\mathbf{k}+\mathbf{q}} | u_{m\mathbf{k}} \rangle|^{2} \\ \delta \chi_{0}(\mathbf{q}) = \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{m'\mathbf{k}+\mathbf{q}}} |\langle u_{m'\mathbf{k}+\mathbf{q}} | u_{m\mathbf{k}} \rangle|^{2} \\ \delta \chi_{0}(\mathbf{q}) = \sum_{mm'\mathbf{k}} \frac{\delta f_{m\mathbf{k}}(t) - \delta f_{m'\mathbf{k}+\mathbf{q}}(t)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{m'\mathbf{k}+\mathbf{q}}} |\langle u_{m'\mathbf{k}+\mathbf{q}} | u_{m\mathbf{k}} \rangle|^{2}$$

Electron-phonon matrix elements for photo-doping:

$$\tilde{g}_{mn}^{\nu}(\mathbf{k},\mathbf{q}) = \frac{g_{mn}^{\nu}(\mathbf{k},\mathbf{q})}{1 - \frac{4\pi e^2}{|\mathbf{q}|^2 \epsilon_{\text{undoped}}}} \delta \chi_0(\mathbf{q})$$

carriers

Final remarks

Part 1

Ab-initio simulations of ultrafast phonon dynamics: what can we learn?

Part 3

Transient screening of the electron-phonon coupling in bulk MoS₂?

Non-equilibrium lattice dynamics "a la carte": opportunities for engineering phonons out of equilibrium

Acknowledgements

<u>Yiming Pan</u>

- Christoph Emeis • Gowri Sankar Shaju Marlene Abshagen Philipp Lauwen

Sllides available at: cs2t.de/publications

CS2T group @ Uni. Kiel:

EXPERIMENTS:

- Helene Seiler (FU Berlin)
- Ralph Ernstorfer (TU Berlin)

THEORY:

- Marios Zacharias (Uni Rennes)
- Dino Novko (IoP, Zagreb)

mail: caruso@physik.uni-kiel.de **slides**: cs2t.de/publications

