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September 2, 2021

Abstract

Understanding the driving forces of market inequality is a core task. This paper seeks

to study if and how changing market conditions influence equilibrium market inequality

between ex ante heterogeneous agents that are engaged in some form of competition. By

representing the model as a competition for market shares we derive a set of results that

yield a tractable inequality analysis and help to identify structural connections between

different competition models that allow for a unified treatment. We apply our results to

competition theory, trade, consumption and income inequality, political economics and

marketing, and connect some of the predicted inequality effects to empirical evidence.
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1 Introduction

Empirical studies commonly document that key quantities like market shares, payoffs, rev-

enues, consumption or income feature substantial inequality in their dispersions. On the

one hand, such inequality reflects ex ante differences in endowments, abilities, information,

inclinations or alike of the respective agents. On the other hand, inequality may depend

on market conditions that affect all agents. In case of firms such conditions could amount

to consumer income, the industry level of productive efficiency, sales taxes, the amount of

available production resources, the intensity of preferences, or advertising affinity.

In this article, we study how market inequality depends on conditions that are common

to all agents. When can changes in such market conditions be exploited by some agents to

increase, e.g., their market shares, and what type of changes induce more market equality

via competitive forces? Can common inequality patterns be identified across different com-

petition models? How are changes in the dispersion of market shares related to those of

payoffs, revenues or expenditures?

We study such questions by equivalently representing a competitive situation as a com-

petition for market shares, where market shares refer to the dispersion of quantities such as

sales or consumption. In this representation, the agents solve their respective optimization

problems by directly choosing their market shares, rather than indirectly via their choices

of “actions”. This transformation of the relevant optimization problems allows us to derive

intuitive and application-friendly results from the equilibrium conditions to systematically

study how market inequality evolves if market conditions change. We show that our frame-

work integrates prominent models, such as monopolistic competition, perfect competition,

general equilibrium, or competition for prizes as special cases. It thereby allows us to iden-

tify structural relations between different forms of competition, which permit a unified and

tractable inequality analysis.

We say that a market condition x – essentially an exogenous parameter that enters the

payoff functions of some or all agents – induces inequality effects whenever the equilibrium

market shares are not invariant to x. Our first results establish that a simple property – the

direct-aggregative effect – of a single representative equilibrium equation, which originates

from agent-wise optimality and is recursive in the agents’ types, is necessary and sufficient

for the existence of inequality effects. This real number basically summarizes the differences

of how a change in x affects marginal costs and benefits of two agents directly and via the

market response of all agents. For example, a positive direct-aggregative effect means that

one agent is more positively (or less negatively) affected by a change of x than the other,

ceteris paribus. Condition x induces inequality effects iff the direct-aggregative effect is

non-zero.

The direct-aggregative effect also is informative about qualitative properties of the in-

equality effects that can arise. Of particular interest is the case where the direct-aggregative

effect has the same sign for all agents. This typically occurs with changes in common market

conditions, which are those that enter the payoff functions of each agent. For example, an
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increase in disposable consumer income affects all sellers in a given market, meaning that

each of them strives for a larger market share. We would like to know: does this inclination

play out to reinforce or alleviate market inequality in equilibrium? In our second set of

results, we prove that whenever the direct-aggregative effect is strictly positive (negative)

for all agents, the inequality effects must induce a clockwise (counter-clockwise) rotation

of the equilibrium market shares, meaning that market inequality must increase (decrease)

according to every Lorenz-consistent inequality measure. This result is of practical relevance

because the direct-aggregative effect indeed is sign-uniform in many important cases.

Our inequality analysis further identifies a significant role of power functions. If the type-

recursive equation that characterizes the direct-aggregative effect is such that the “costs”

and “benefits” associated with attaining a certain market share are power functions, and the

direct-aggregative effect is sign-uniform for all agents, then any inequality effect must take

on the form of a rotation that is monotonic in agent types. That is, the changes in market

shares are ordered such that stronger agents must gain (or lose) more, in the relative sense,

compared to weaker agents.

Power functions also allow to say more, e.g., about the relation between market and payoff

shares. For example, we show that with equal revenues per unit of market shares, competi-

tion must play out such that market and payoff shares coincide. By contrast, if those agents

with larger market shares also earn higher revenues per unit of market share, payoff shares

must be less equally dispersed than market shares. The results on power function are of in-

terest for applied work, as power functions arise in many economic models (Newman, 2005).

Our approach equips us with powerful tools for studying equilibrium inequality, because the

direct-aggregative effect is a local property, determined by a single equation, which nev-

ertheless is informative about global properties of a distribution. To obtain more specific

insights about market inequality, and to vindicate the applicability of our approach, we study

several applications from different fields. We thereby distinguish whether payoff functions

feature common or idiosyncratic valuations per unit of market share. The former represents

a situation where heterogeneous agents face a symmetric type of competition. Monopolis-

tic competition, perfect competition or homogeneous-valued contests are examples of this

setting, and allow for a unified inequality analysis.

This analysis reveals that the inequality effects induced by common market conditions

depend on whether there is ex ante agent heterogeneity in the returns to scale associated

with the “production” of market shares. For example, we establish that common demand

or cost “shifters” cannot induce inequality effects in the knife-edge case where all agents are

subject to perfectly identical scale effects. By contrast, such shifters are likely to trigger a

rotation of market shares if the agents differ in their scale effects. As an application, this

result complements demand-side explanations, such as Mrázová and Neary (2017), for why

an increasing international integration may have fostered firm-side market inequality.

The above insights extend to idiosyncratic valuations if, for all agents, these valuations

respond by equal proportions to changes in x. By contrast, if valuations change by different

proportions, additional inequality effects emerge. For example, if valuations increase by
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larger proportions for agents with larger (smaller) market shares, then a clockwise (counter-

clockwise) rotation occurs under the conditions that were to preserve equilibrium inequality

with common valuations.

These results are helpful to study, e.g., the inequality effects that arise within the firm-

and consumer-side in general equilibrium models. The reformulation of the model as compe-

tition for market shares reveals that consumer-side income or consumption inequality effects

are equivalent to those in contests with idiosyncratic valuation functions. Moreover, these

effects are sensitive to whether the ex ante consumer heterogeneity originates from resource

endowments, such as units of effective labor, or from capital income. We use this central

observation to analyze the connections between consumption and leisure inequality (Attana-

sio and Pistaferri, 2016), or to study consumer-side inequality effects, e.g., of an increasing

productive efficiency, or of an “unconditional basic income”, financed by a market-based tax,

as discussed in several European countries.

From an overarching perspective, our approach differs from, but also complements, a recent

literature on equilibrium inequality that focuses on how the dispersion of certain parameters

constituting the ex ante agent heterogeneity map into the dispersion of certain equilibrium

quantities for a fixed market structure. For example, Mrázová et al. (2016) relate the distri-

bution of firm sales and markups to the underlying distribution of technology in a monop-

olistic competition setting, or Jensen (2017) studies how exogenous changes in the ex ante

distribution, such as increased uncertainty in a prior belief, may affect certain outcomes. By

contrast, our results are about when changes in market conditions make (dis-)advantaged

agents more or less dominant, leading to more or less market concentration, for given ex

ante agent heterogeneity. We apply our insights to various central applications, and connect

some of the more specific results with the relevant literature. While our main focus is on the

inequality effects induced by common market conditions, we emphasize that our approach is

also suitable to study the inequality effects induced by certain changes in the ex ante agent

heterogeneity itself; see Section 5.3. We also point out that our approach does not rely on

monotonic relations between exogenous parameters and equilibrium actions, which is the

central tenet of the literature on monotone comparative statics. Importantly, the mere fact

that, e.g., equilibrium actions or payoff functions could be monotonic in x for all agents does

not generally pin down the inequality effects that can arise.

Finally, our approach has the merit of providing a simple, powerful alternative for study-

ing inequality effects. In procedural terms, our inequality analysis can be summarized as: 1)

restate the optimization problem (e.g., the payoff function) with the agent’s market share,

p(i), as the choice variable; 2) derive the first-order optimality conditions wrt p(i); 3) use

our formal tools to identify from the optimality equation whether a change in x induces

inequality effects, and if these inequality effects take on the form of rotations of the market

shares.

We define the concept of a competition for market shares in Section 2, where we also introduce

our notion of ex ante agent heterogeneity (“agent types”) and other key definitions. In
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Section 3 we derive the main formal tools for our inequality analysis, and use those to obtain

a number of general inequality predictions in Section 4. Finally, Section 5 evaluates our

results in the context of specific applications. Proofs are in Appendix A, while Appendix B

contains additional results complementing our general analysis.

2 Competition for Market Shares

Let I = [0, 1] denote a set of agents For each agent i ∈ I, the payoff function is Π(i) =

p(i)V (i)−Φ(i), where p(i) is the market share of i, V (i) the value earned per unit of market

share, and Φ(i) are expenditures. Each agent can choose an action variable t(i) ≥ 0 to

maximize Π(i). In general, t(i) can enter each component of Π(i), together with the actions

of all agents summarized by a quantity T ∈ R+. The payoff function of at least one agent

depends on an exogenous parameter x ∈ X. The set X is an open interval in R, and captures

a market condition of interest. Thus, the payoff function generally is of the form

Π(i, t(i), T ;x) = p(i, t(i), T ;x)V (i, t(i), T ;x)− Φ(i, t(i);x). (1)

The way how t(i) or T enter Π(i) pins down the details of the competition faced by the agents.

In several of our applications, T is the sum of all chosen actions. That is, T =
∫
I t(i)di, where

the actions t(i) chosen by each agent are summarized by an action profile t : I → R+. More

generally, T is determined by an aggregator function Z(t) = T for a set of viable action

profiles.1 As p(i) are market shares, we impose the identifying assumption that they must

add up to one

T = Z(t)⇐⇒
∫
I
p(i, t(i), T ;x)di = 1. (2)

Condition (2) states that all market shares must sum to one for given T iff the action profile

t generates T . We call ({Π(i)}i∈I , Z) a competition for market shares if each Π(i) is of form

(1), and Z(·) verifies (2). Many conventional models are competitions for market shares; see

Section 5. We further note that our notion of a competition for market shares can easily

be adopted to constrained optimization problems, such as conventional consumer utility

maximization (see Section 5).

2.1 Equilibrium Market Shares

Given a competition for market shares ({Π(i)}, Z), an equilibrium is an action profile t and

a quantity T , where t(i) maximizes (1) given T ∀i ∈ I and T is endogenously determined by

Z(t) = T . This equilibrium definition encompasses, e.g., monopolistic competition equilibria,

Walrasian equilibria, or equilibria in large aggregative games (see Section 5). Further, it is

consistent with equilibria in the “Global Games” literature (see, e.g., Morris and Shin, 2002).

The common aspect of all these equilibrium notions is that the agents take the aggregate T

1Let T be the set of all action profiles t : I → R+. A given aggregator function Z is a mapping Z : TZ → R+

defined on a subset TZ ⊂ T. An action profile is (Z-)viable if t ∈ TZ . For example, if Z(t) ≡
∫
I
t(i)di, then

TZ consists of all (Riemann)-integrable functions t : I → R+.

4



as given when maximizing, while T is endogenous to the model.2 In Appendix B.5 we show

that our approach is not confined to this assumption, as it can also encompass the case of

Nash equilibria in aggregative games.

Competition for Market Shares An equilibrium (t, T ) comes with a certain dispersion

of market shares p(·). To systematically study how a market condition x may affect the

prevailing market inequality, we pursue an equivalent characterization of equilibrium, where

the agents compete directly in market shares, rather than indirectly by choosing them via

t(i). It turns out that this alternative equilibrium characterization delivers a tractable,

powerful way of analyzing how x affects equilibrium inequality.

Let the market share function p(i, t(i), T ;x) in (1) be t(i)-bijective for each T > 0, x ∈ X
and i ∈ I. Thus, for given (i, T, x), any choice of action t(i) ∈ R+ has a unique number

p(i) ∈ R+ associated with it. By change-of-variable, we may then rewrite payoff (1) as

Π(i, p(i), T ;x) = p(i)V (i, p(i), T ;x)− Φ(i, p(i), T ;x) (3)

with some (convenient) abuse of notation.3 To further ease notation, we often abbreviate

payoff function (3) as Π(i). We now define an equilibrium as a situation, where p(i) > 0

maximizes (3) for each agent i, and market shares integrate to one.

Definition 1 (Equilibrium) An equilibrium is a pair (p(·), T ) consisting of a market share

function p : [0, 1]→ R++ and a number T ∈ (0,∞) such that

i) For each i ∈ I, p(i) solves max
p(i)≥0

Π(i), where Π(i) is given by (3).

ii)
∫
I p(i)di = 1

Whenever (p(i), T ) is an equilibrium in Definition 1, the unique actions t(i) corresponding

to the equilibrium market shares p(i) together with T = Z(t) must be an equilibrium in the

original sense, and vice-versa.4 We restrict attention to interior equilibria, where each agent

obtains a positive equilibrium market share.5

What makes the transformed version most convenient for our inequality analysis is that

it leads to a simple, type-recursive equilibrium equation identifying the inequality effects

caused by x, without the need to “solve” the model for t(i) or T . This equation produces a

2Such a property appears particularly reasonable with a large number of agents (Alos-Ferrer and Ania,
2005; Acemoglu and Jensen, 2010; Hefti, 2016; Camacho et al., 2018), and it simplifies the formal analysis of
the inequality effects that this paper cares about.

3If p = p(i, t, T ) then t ≡ p−1(i, p, T ) is the inverse of the function p(i, t, T ) with respect to the variable t.
Hence Π(i, t(i), T ) = Π

(
i, p−1(i, p(i), T ), T

)
≡ Π̂(i, p(i), T ). The abuse of notation is that we continue to use

the notation Π(i, p(i), T ) (instead of Π̂(·)) in the transformed problem (similarly, we use V and Φ instead of
V̂ , Φ̂).

4This is a consequence of the bijective relation between actions and market shares, which we formally
prove in Appendix B.1.

5This is not critical as we consider a fixed set of agents; see Hefti and Lareida (2020) for an application
with agent entry. It is also possible to extend our analysis to the case where the market shares of some
agents become zero – the economics leading to such a situation are similar to those that generally imply an
increasing inequality.

5



set of simple but powerful analytical results that can be directly applied to study inequality,

which substantially increases the tractability of the analysis.

Continuum Agents A final remark concerns the use of “continuum” agents. We show in

Appendix B.3 that continuum agents are without loss of generality in such that, for a given

number of atomistic agents n ∈ N, the corresponding “discrete” market shares pd(i) can be

identified from the respective equilibrium step-density function p(i) by rescaling the latter.6

Intuitively, these steps represent the different agent types as specified by the ex ante agent

heterogeneity (see Section 2.3). For a finite number of different agent types our inequality

results can be adjusted to the atomistic case simply by means of the natural modifications.7

The continuum approach has the formal advantage that the equilibrium p(·) is a (Lebesgue)

density p : [0, 1] → R+ with a fixed support for any number of agent types, rather than a

discrete mapping with variable support depending on the number of agents. This simplifies

exposition, and also includes the case of “true continuum agents”, where p(·) is a continuous.

2.2 Regularity Conditions

By Definition 1, the equilibrium market share p(i) maximizes Π(i) at the equilibrium quantity

T for each agent i. To study this maximization problem with calculus, we set

g(i, p, T ;x) ≡ ∂ (pV (i, p, T ;x))

∂p
, ϕ(i, p, T ;x) ≡ ∂Φ(i, p, T ;x)

∂p
,

where g(·) can be interpreted as marginal benefits, and ϕ(·) as marginal costs, respectively,

pertaining to an aspired market share p. For given i and T , the optimality conditions at an

interior maximizer p(i) > 0 then simply are

g(i, p(i), T ;x) = ϕ(i, p(i), T ;x), (4)

or, in short-hand, g(i) = ϕ(i). To assure existence of a unique equilibrium (p(·), T ), and to

keep complexity of the inequality analysis at a minimum, we impose conventional regularity

conditions.

Assumption 1 (Regularity) For each i ∈ [0, 1] and any p, T > 0, g(·) and ϕ(·) in (4) are

C1-functions of x. Further, the following properties hold ∀x ∈ X and each i ∈ [0, 1]:

(A1) ∀T > 0 and ∀p ≥ 0: Π(i) in (3) is a strongly quasiconcave C2-function in p, and

• g(i, 0, T ;x) > 0 and g(i, ·, T ;x) are bounded from above

• ϕ(i, 0, T ;x) = Φ(i, 0, T ;x) = 0, ϕp(i, p, T ;x) > 0, and lim
p→∞

ϕ(i, p, T ;x) =∞

(A2) ∀p > 0: g(i, p, ·;x) and ϕ(i, p, ·;x) are C1-functions of T , and

6To illustrate, if n = 3 and pd(1) = 1/2, pd(2) = 1/3, pd(3) = 1/6, then p(i) = 3/2, i ∈ [0, 1/3), p(i) = 1,
i ∈ [1/3, 2/3) and p(i) = 1/2, i ∈ [2/3, 1], and

∫
p(i)di = 1/3(3/2 + 1 + 1/2) = 1.

7For example, in the atomistic case we would replace condition
∫
p(i)di = 1 in Definition 1 by

∑n
i=1 p(i),

where p(i) is a density with respect to the counting measure.
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• g(i, 1, 0;x) > 0 and g(i, 1, ·;x) are bounded from above

• ϕ(i, p, 0;x) = 0, ϕT (i, p, T ;x) > 0 and lim
T→∞

ϕ(i, p, T ;x) =∞

• gT (i, p, T ;x) < ϕT (i, p, T ;x) whenever g(i, p, T ;x) = ϕ(i, p, T ;x)

Figure 1 illustrates some key implications of these assumptions. In essence, (A1)-(A2) are

slope and “Inada”-conditions assuring that the functions g(·) and ϕ(·) are well-behaved. (A1)

implies that, for given T > 0, a single crossing of g(·) with ϕ(·) exists (Figure 1: Left), which

pinpoints the optimal solution p(i;T ) to (4). Assumption (A2) further implies the existence

of a unique T > 0 such that
∫
p(i;T )di = 1, which pins down the equilibrium T (Figure 1:

Left).8  

𝜑𝜑(𝑖𝑖, 𝑝𝑝(𝑖𝑖),𝑇𝑇) 

𝑔𝑔(𝑖𝑖(𝑝𝑝(𝑖𝑖),𝑇𝑇) 

𝑝𝑝(𝑖𝑖;𝑇𝑇) 0 

� 𝑝𝑝(𝑖𝑖;𝑇𝑇)𝑑𝑑𝑑𝑑
1

0
 

𝑇𝑇 0 

1 

𝑔𝑔(𝑖𝑖,∙,𝑇𝑇) bounded 
from above 

Quasi-
concavity 

𝑔𝑔(𝑖𝑖, 0,𝑇𝑇)  

Figure 1: Illustration of Assumption 1

2.3 Ex Ante Agent Heterogeneity

We suppose that the agents differ ex ante, e.g., in their cost functions, production possibilities

or alike. Formally, such disparities are manifested through differences in (marginal) cost or

benefit functions, which we make precise next.

Assumption 2 (Ex ante Heterogeneity) ∀p, T > 0 and x ∈ X: pV (i, p, T ;x) and g(i, p, T ;x)

are (weakly) decreasing, and Φ(i, p, T ;x) and ϕ(i, p, T ;x) (weakly) increasing in i.

This assumption implies that agents are sorted left-to-right, where i never features lower

(marginal) benefits and never higher (marginal) costs than j for j > i. An example is that

agents differ only in their ability to compete for an object of common value, such that

Π(i) = p(i)V (p(i), T )− c(i)Φ(p(i), T ), (5)

where c(i) is (weakly) increasing in i. The main implication of Assumption 2 is that ex ante

heterogeneity leads to similarly ordered ex post heterogeneity, where agents with a lower

index i achieve (weakly) larger equilibrium market shares and payoffs.9

8See Appendix B.2 for a proof of equilibrium existence and uniqueness. It is known that equilibria can
exist under weaker conditions than imposed here. Nevertheless, we regard Assumption 1 as a natural starting
point as analyzing equilibrium inequality in itself is sufficiently complex.

9Assumption 2 actually is stronger than what our inequality results require. We shall only need that the
equilibrium order of the market shares is not pivoted by the parameter x, i.e., if p(i;x) ≥ p(j;x) then also
p(i;x′) ≥ p(j;x′) ∀x′ ∈ X and any i, j.
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Proposition 1 (Ex post Heterogeneity) Let (p(·), T ) be an equilibrium, and consider

any two agents with j > i. Then under Assumptions 1 and 2:

i) No “leap-frogging”: p(i) ≥ p(j) and Π(i) ≥ Π(j).

ii) Strict order: p(i) > p(j) if ∀p, T > 0 we have g(i, p, T ) ≥ g(j, p, T ) and ϕ(i, p, T ) ≤
ϕ(j, p, T ) with at least one inequality strict; and Π(i) > Π(j) if ∀p, T > 0 we have

pV (i, p, T ) ≥ pV (j, p, T ) and Φ(i, p, T ) ≤ Φ(j, p, T ) with at least one inequality strict.

iii) Equality: p(i) = p(j) if both g(i, p, T ) = g(j, p, T ) and ϕ(i, p, T ) = ϕ(j, p, T ) ∀p, T > 0.

The “sorting” property i) follows from individual optimality: If, by contradiction, p(i) < p(j),

then the ex ante stronger agent i could always benefit from deviating to p(j), hence there

cannot be such deviations in equilibrium; similar reasons apply to the remaining claims.

In view of iii), we classify all agents i ∈ [0, 1] with identical payoff functions (3) as being

of the same (ex ante) type.

Definition 2 (Agent Type) Two agents i, j are of the same type if Π(i, p, T ;x) = Π(j, p, T ;x)

∀p, T, x.

By Proposition 1, the equilibrium market share function p(·) is sorted according to the

different agent types. Formally, for a given agent i ∈ [0, 1], the subset [i] ≡ {s ∈ [0, 1] :

p(s) = p(i)} is the equivalence class of agents with representative i. Thus, all agents in a

given equivalence class [i] are of the same type, and the collection of all equivalence classes

corresponds to the set of agent types. Based on this insight, it makes sense to define a

transitive relation B by

j B i :⇐⇒ j > i and j /∈ [i].

The relation B allows for an easy distinction between different agent types. We distinguish

the following two central cases:

Definition 3 Let p : [0, 1]→ R++ be a density function. Then

I) p(·) belongs to Class I if p(·) is step-wise decreasing, right-continuous with at least

one and at most finitely many downward steps.

II) p(·) belongs to Class II if p(i) is a C1-function with p′(i) < 0 for i ∈ [0, 1].

To help understand these notions, observe that if there are finitely many different agent types

this implies, by Proposition 1, that the equilibrium market share function p(·) must be a

decreasing step-density, i.e., a member of Class I. The steps of p(·) then exactly correspond

to the different agent types, and jB i means that j is of a “weaker” type than i, i.e., j sits on

a lower step than i. This matters because, as mentioned earlier, it is the continuum analogue

to the case of “atomistic” agents.

As an example, suppose that agent payoffs are given by (5), where the agents differ in

their cost coefficients c(i). If there are n ∈ N different cost types, this means that c(i) is an

increasing step function with n steps, and p(·) must be a Class I density with n steps; see
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Figure 2: Three different agent types (n = 3)

Figure 2. By contrast, with true continuum agents, c(i) is strictly increasing, such that p(·)
must be a Class II density, in which case the relations “B” and “>” coincide.10

We finally remark that if p(·) belongs either to Class I or II, then p(·) must display the

“somewhere strictly decreasing” (SSD) property: ∃i0 ∈ (0, 1): p(i) > p(j) for i < i0 ≤ j.

That is, p(·) cannot be constant – we exclude the trivial case where market shares are

uniformly dispersed because that all agents are one and the same type.

3 Inequality Effects

In this section we derive our main inequality tools. While these tools, once available, are

readily applicable, proving their validity in a general context is not trivial, and this section

wants to pay justice to the latter. Specifically, Section 3.1 summarizes our main definitions

regarding inequality effects, and Sections 3.2 - 3.3 develop the key results about the existence

of inequality effects and rotations. Section 3.4 presents a simple procedure for determining

T ′(x), and Section 3.5 provides concluding remarks.

A reader mostly interested in the applications of our tools may want to get familiar with

the definitions in Section 3, and then move to Section 4 which demonstrates how to apply

our formal results in a general economic context.

3.1 Main Defintions

The market condition x induces inequality effects if the equilibrium market share function

p(·) is not constant in x.

Definition 4 (Inequality Effects) Let ({Π(i)}, Z) be a competition for market shares.

The parameter x induces inequality effects if ∃x, x′ ∈ X: p(·;x) 6= p(·;x′). If p(·;x) =

p(·;x′) ∀x, x′ ∈ X, then x is inequality preserving.

We are particularly interested in those inequality effects that do not permute how the agents

are sorted in equilibrium if x changes. In view of the common market conditions – those

that enter the payoff functions of all agents – we aim to study, this is an intuitive refinement,

and one that naturally holds with the conditions of interest in our later applications. To

make these notions precise, let p(·;x) denote the equilibrium market share function for given

x ∈ X. For a given i, recall that [i]x ≡ {s ∈ [0, 1] : p(s) = p(i)} is the subset of agents

10In the working paper version, we show that the CDF associated with p(·) must be increasing, concave
and strictly above the diagonal for i ∈ (0, 1) if p is of Class I or II.
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that are of type i, given x ∈ X. Thus, Tx ≡ {[i]x : i ∈ [0, 1]} is the equilibrium set of

agent types given x ∈ X, and the map x 7→ Tx is well-defined as, under Assumptions 1-2,

a unique equilibrium market share function p(·;x) exists for each x ∈ X. The notion of an

order-preserving market condition means that this assignment is constant.

Definition 5 (Order-Preserving Market Condition) x is an order-preserving market

condition if Tx = Tx′, ∀x, x′ ∈ X.

In words, whenever an agent i obtains a larger equilibrium market share than j for some x,

then this must hold for any x ∈ X if x is an order-preserving market condition. This does

not exclude, however, that x might affect only a single agent’s payoff, i.e., is an idiosyn-

cratic rather than a common condition. We only require that changes in x cannot induce

equilibrium leap-frogging by some agents.11

Definition 6 (Common Market Condition) An order-preserving market condition x is

a common market condition if for any given p, T > 0

• g(i, p, T ;x) either increases, decreases or remains constant in x ∀i ∈ [0, 1], and

• ϕ(i, p, T ;x) either increases, decreases or remains constant in x ∀i ∈ [0, 1].

The decisive aspect of a common market condition is that it affects marginal costs and

benefits of each agent in a similar way. Common market conditions are interesting because

if they change, all agents strive to adjust their market shares in the same direction, making

the equilibrium implications for market inequality non-trivial. In our later applications, an

increase in the industry-level productive efficiency, or a change in a sales tax are examples

for common market conditions.

3.2 Existence of Inequality Effects

Our first result characterizes when x induces inequality effects. Throughout this section, we

take Assumptions 1-2 as satisfied.

Let x0 ∈ X. As (4) holds ∀i in equilibrium, it follows that equilibrium forces equate the

ratio of marginal benefit over marginal costs for any two agents. Hence

g(i, p(i), T ;x0)

ϕ(i, p(i), T );x0)
=

g(j, p(j), T ;x0)

ϕ(j, p(j), T );x0)
i, j ∈ [0, 1], (6)

or, in short-hand, g(i)/ϕ(i) = g(j)/ϕ(j). We exploit (6) to obtain a single equilibrium

equation characterizing the inequality effects induced by x. Define

dp(i) ≡ ∂p(i;x0)

∂x
, ∆i ≡

dp(i)

p(i)
, εi ≡

gp(i)p(i)

g(i)
, ηi ≡

ϕp(i)p(i)

ϕ(i)
. (7)

Thus, ∆i is the percentage change in i’s market share, while εi, ηi are the p-elasticities of

marginal benefits g(·) and costs ϕ(·), respectively. The following result identifies a simple

affine relation between ∆i,∆j of any two different agent types i, j.

11Note that this can always be assured, e.g., if p(·) is Class I and the changes in x remain sufficiently small.
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Lemma 1 Let j B i, and consider a marginal change dx > 0. Then ηi > 0, ηi > εi, and

∆i = ∆jkij +Rij , kij ≡
ηj − εj
ηi − εi

> 0, (8)

Rij ≡
A(i)−A(j)

ηi − εi
, A(s) ≡

(
gT (s)

g(s)
− ϕT (s)

ϕ(s)

)
T ′(x0) +

(
gx(s)

g(s)
− ϕx(s)

ϕ(s)

)
. (9)

The type-recursive equation (8) decomposes the relation between ∆i and ∆j into a direct-

aggregative effect (Rij), and an indirect effect (kij). To understand these names, note from

(9) that Rij depends on x directly via gx(s) and via the aggregate quantity T (x). By contrast,

kij collects the indirect effects that dx has on g(·) and ϕ(·) via the changes in p(i). We shall

simply write R and k if there is no confusion about types. Decomposition (8) is key for

analyzing if and how x affects p(i). The first theorem shows that inequality effects exist iff

Rij is non-zero for at least two different agent types.

Theorem 1 (Existence of Inequality Effects) If Rij = 0 ∀i, j ∈ [0, 1] and any x ∈ X,

then x is inequality preserving. Conversely, if for a given x ∈ X ∃i, j ∈ [0, 1] such that

Rij 6= 0, then inequality effects arise. Specifically, ∃δ > 0 such that p(·;x′) 6= p(·;x) for any

x′ ∈ (x− δ, x+ δ)\{x}.

We note from Theorem 1 that the indirect effect kij plays no role for whether inequality

effects arise. This effect only captures how sensitive g(·), ϕ(·) respond to changes in p, and

as such can influence certain quantitative aspects should inequality effects occur (see below),

but not whether they occur in the first place.

3.3 Rotations

If x induces inequality effects, what more can be said about their properties? Because

the direct-aggregative effect Rij is decisive for whether inequality effects arise, it is a natural

starting point to study those inequality effects more carefully that arise if Rij is either positive

or negative for all agents – a feature that will be relevant for common market conditions.

Our main result below shows that, in these cases, the inequality effects must be described

by rotations of p(·). We take Assumptions 1-2 as satisfied, and additionally let x be an

order-preserving market condition as in Definition 4. Further, we take the ex ante agent

heterogeneity to be such that p(·) is a Class I or II density in equilibrium.

Definition 7 (Rotations) Let x, x′ ∈ X and p(·, x), p(·, x′) be two decreasing densities

with support [0, 1]. We say that p(·;x′) is an outward-rotation (OR) of p(·;x), or p(·;x)

is an inward-rotation (IR) of p(·;x′), if ∃ 0 < i0 ≤ i1 < 1 such that

p(i;x′) > p(i;x) i ∈ [0, i0)

p(i;x′) < p(i;x) i ∈ (i1, 1)

p(i;x′) = p(i;x) i ∈ (i0, i1]

(10)

where the last condition only applies if i0 < i1. We say that a parameter change dx > 0

induces an OR (IR) of p(·;x) if ∃δ > 0 such that p(·;x′) is OR (IR) of p(·;x) for any

11



x′ ∈ (x, x+ δ).

The defining property of a rotation is that there is a unique “turning point”, where the

market shares of all stronger agents increases (decreases), while it decreases (increases) for

all weaker agents (see Figure 3). If p(·) rotates, this implies an increasing or decreasing

0 1

𝑝𝑝(𝑖𝑖)
Red is monotonic OR of black

0 1

𝑝𝑝(𝑖𝑖)
Red is OR of black

0 1

𝑝𝑝(𝑖𝑖)
Red is not a rotation of black

Figure 3: Rotations: Examples and counterexample

inequality in the corresponding distribution, depending on the type of rotation. Specifically,

if p(·, x′) is an OR (IR) of p(·, x), then the dispersion of market shares at x′ is comparably

less (more) equal, in thus that p(·;x′) Lorenz dominates (is Lorenz dominated by) p(·, x).12

Many standard inequality measures, such as the Gini coefficient or the notion of first-order

stochastic dominance, are consistent with the partial order generated by Lorenz dominance

(Atkinson, 1970). Thus, if p(·, x′) is an OR (IR) of p(·, x), then p(·;x′) is less (more) equally

dispersed than p(·;x) according to any Lorenz-consistent inequality measure.

3.3.1 Existence of Rotations

We begin by establishing that the direct-aggregative effect R alone is decisive for whether a

rotation arises.

Definition 8 R is uniformly positive (negative) at x0 ∈ X, if Rij(x0) > (<)0 ∀jBi. Further,

R is globally uniformly positive (negative) if Rij(x) is uniformly positive (negative) ∀x ∈ X.

Theorem 2 (Rotational Effects) If p(·) belongs to Class I and R is uniformly positive

(negative) at x0 ∈ X, then dx > 0 induces an OR (IR) of p(·, x0). If p(·) belongs to Class I

or II and R is globally uniformly positive (negative), then the market shares of the strongest

types i ∈ [0] increase (decrease) strictly in x, while the ones of the weakest types i ∈ [1]

strictly decrease (increase).

To understand the first claim, let j B i and note that Rij > 0 iff A(i) > A(j). As A(i)

captures how sensitively marginal costs and benefits respond to x and T , the last inequality

intuitively states that the stronger agent type i has a stronger incentive to aspire for a larger

market share (or a weaker incentive to reduce the market share). This means that if type i

12The Lorenz curve is a common tool in inequality analysis, and a distribution Lorenz dominates another
distribution if its Lorenz curve lies below the Lorenz curve of the other. It is straightforward to verify that
the Lorenz curve associated with p(·, x′) is below the one of p(·, x) if the former is OR of the latter.
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manages to increase its market share, this should hold for stronger type as well. Because not

all market shares can increase, the resulting inequality effect takes on the form of a rotation.

The second result shows that the tails of the distribution evolve monotonically in x under

the respective conditions. A corollary to this result is that the inequality effects in the two-

or three-types cases are fully characterized.13

3.3.2 Monotonic Rotations

Rotations are a fairly general type of inequality effect that allows for a rich pattern of

the “middling” agents. For example, an OR can be consistent with some winning agents

“catching up” with even stronger types. This is illustrated in Figure 3 (left) where, among

the winning agents, the second strongest agents gain more market share than the strongest,

such that the gap between them narrows. By contrast, the gap between the agents on the

winning and losing side, respectively, widens in the rotation of the middle panel of Figure 3.

The following makes the notion of a rotation featuring such “increasing gaps” precise.

Definition 9 (Monotonic Rotations) Suppose that ∞ > p(·;x′), p(·;x) > 0 are right-

continuous, decreasing SSD densities with the same equivalence classes [i]. If

p(i;x′)

p(j;x′)
> (<)

p(i;x)

p(j;x)
whenever j B i ∈ (0, 1) (11)

is satisfied, then p(·;x′) is a monotonic OR (IR) of p(·;x).

The fact that condition (11) indeed implies that a rotation must occur is proved in Appendix

B.4.1.14 An equivalent interpretation of (11) is that if p(i;x′) is a monotonic OR (IR) of

p(i;x), then the relative change in market shares is strictly increasing (decreasing) in agent

type, such that the strongest agents (i ∈ i[0]) gain (lose) most while the weakest agents

(i ∈ i[1]) lose (gain) most.15

If p(·;x′) is a monotonic OR of p(·;x) and i, j are two different agents types both featuring

higher market shares in the new equilibrium, then the absolute gap between these market

shares must have widened. Thus, a “catching up” as in Figure 3 (left panel) is impossible.

Formally, this follows from the following simple fact.

Lemma 2 Consider real numbers with u′ > u > 0 and v′ > v > 0. If u′

v′ ≥
u
v > 1, then also

u′ − v′ > u− v.

13This follows because in the two-types case R01 ≥ (>)0 iff R10 ≤ (<)0, meaning that R is either uniformly
positive (negative) or R = 0. Moreover, in the three-types case it follows from (the proof of) Theorem 2 that
if R is globally uniformly positive (or negative), then any x > x0 induces an OR (IR) of p(·, x0), because the
behavior of the “middle group” does not matter by Definition 7.

14In general, Condition (11) is sufficient for a rotation to occur unless in the case of just two agent types,
where (11), the rotation-property and stochastic dominance of the respective distribution functions are equiv-
alent (see our working paper version).

15In the special case where p(·) is a Class II density and (11) holds for any j > i, (11) is known as the mono-
tone likelihood property in mathematical statistics (see, e.g., Casella and Berger (2002)). In economic theory,
monotone likelihood ratios are sometimes imposed by mechanism design or contract theory as exogenous
assumptions on the ex ante type distribution, and therefore unrelated to this article.
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If (11) holds for any x, x′ ∈ X with x′ > x, then the ratio of market shares is a strictly

monotonic function of x for any given pair of agents (i, j) with jB i.16 This implies that the

rotations induced by dx > 0 are transitive: If p(·;x′′) is a monotonic OR of p(·;x′) and p(·;x′)
is a monotonic OR of p(·;x), then p(·;x′′) must be a monotonic OR of p(·;x), too (similarly

for IR). Thus, the relative market share p(i;x)
p(j;x) , j B i, is strictly increasing (decreasing) in

x with a monotonic OR (IR), meaning that market shares must be less and less equally

(more and more equally) dispersed as x increases. That is, the inequality of p(·;x) must

increase (decrease) over the entire parameter space X as measured by any Lorenz-consistent

inequality measure.

Calculus Criteria I Our next result is helpful for identifying monotonic rotations in

practice as it builds on the primitive formulation (8).

Theorem 3 (Monotonic Rotations) Let p(·) be Class I or II, and x0, x ∈ X. If

∆i(x) > (<)∆j(x) ∀x ≥ x0 and any j B i, (12)

then p(i;x) is a monotonic OR (IR) of p(i;x0) for any x > x0.

Note that condition (12) is equivalent to

∂

∂x

(
p(i;x)

p(j;x)

)
> (<)0 ∀x ≥ x0 and any j B i. (12’)

Theorem 3 is useful in applications, because it says that whenever we can infer condition

(12’) from the equilibrium equation (6), p(·;x) must be a monotonic OR (or IR) of p(·;x0)

for any x > x0.17 Finally, we remark that if (12) or (12’) hold with equality ∀x, then x is

inequality preserving which, for completeness, is summarized next.

Corollary 1 x is inequality preserving iff ∂
∂x

(
p(i;x)
p(j;x)

)
= 0 ∀i, j ∈ I and ∀x ∈ X.

Calculus Criteria II Previously, we traced the existence of inequality effects or of rota-

tions back to the direct-aggregative effect R. We now attempt to pursue this also in case of

monotonic rotations, which delivers an alternative condition for their existence.

From (8), we observe that the indirect effect kij plays a moderating role on how ∆j affects

∆i. We now show that the indirect effect matters for certain quantitative aspects should a

rotation occurs. If kij(x0) ≥ (≤)1 ∀jB i, then we say that k(x0) is uniformly larger (smaller)

than one at x0. The following result states that if R is uniformly positive or negative, and

k is uniformly larger or smaller than one, the market shares of either the winners or losers

must evolve monotonically, depending on which out of four possible cases arises.

16If p(·;x) is Class II and condition (11) holds on X, this is equivalent to strict log-super(sub)modularity of
p(i;x), but not if p(·;x) is of Class I in view that p(·) is a step function. Thus, standard results from lattice
theory cannot be applied to our setting. The working paper version provides a careful discussion of these
technical aspects.

17In the working paper version we derive an alternative rotation condition that operates over differences
instead of ratios.
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Proposition 2 (Partially Monotonic Rotations) Let p(·;x) be Class I, and suppose that

R is uniformly positive (negative) at x0 ∈ X. If k(x0) is uniformly larger than one, there is

δ > 0 such that

p(i;x′) > p(i;x) ⇒ p(i;x′)

p(i, x0)
> (<)

p(j;x′)

p(j, x0)
∀j B i (13)

for any x′ ∈ (x0, x0 + δ). If k is uniformly smaller than one, there is δ > 0 such that

p(i;x′) < p(i;x) ⇒ p(i;x′)

p(i, x0)
> (<)

p(j;x′)

p(j, x0)
∀j B i (14)

for any x′ ∈ (x0, x0 + δ).

In view of Definition 7, the conditions in Proposition 2 amount to partially monotonic rota-

tions. If R is uniformly positive, such that an OR results (Theorem 2), and k is uniformly

larger than one, (13) says that, among winning agents, the stronger an agent is (lower index

i), the more the agent gains in relative terms. Equivalently, if agent i gains market share

due to dx > 0 and j B i, then the relative market share p(i;x)
p(j;x) must have strictly increased.

By contrast, if k ≤ 1 uniformly, then (14) says that among the losing agents, the weaker an

agent is the more she loses. The same logic applies “from the other side” if R < 0 uniformly,

such that an IR results, and hence the weaker agents gain market shares while the stronger

agents lose.

If k is uniformly equal to one, both statements of Proposition 2 apply. The key conse-

quence, summarized next, is that then x must induce a monotonic rotation.

Theorem 4 Let p(·) be a Class I or II density. If k(x) = 1 ∀i, j ∈ [0, 1] and any x ∈ X, and

R is globally uniformly positive (negative), then p(i;x) is a monotonic OR (IR) of p(i;x0)

for any x > x0 ∈ X.

Intuitively, k = 1 means that the marginal costs and benefits of all agents respond equally

sensitive, ceteris paribus, to changes in aspired market shares. Theorem 4 shows that in

this case the mere sign-uniformity of the direct-aggregative effect suffices to assure that a

monotonic rotation occurs.

3.4 Comparative-Statics of T (x)

By (9), sign T ′(x) matters for R, and thus for the resulting inequality effects. We now present

a simple procedure to determine sign T ′(x), exploiting our reformulation as a competition

for market shares.

• Step I: Fix an arbitrary agent i, and suppose that x and T are exogenous parame-

ters. Then, for each i, (4) implicitly determines a function p(i;T, x). Use the Implicit

Function Theorem to determine the partial derivatives px(i;T, x) and pT (i;T, x).

• Step II: Define G(T, x) ≡
∫
p(i;T, x)di. Use Step I to determine GT (T, x) and

Gx(T, x). Use the equilibrium equation G(T, x) = 1 to determine T ′(x).
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We illustrate this procedure by proving the following result.

Lemma 3 Let Assumptions 1-2 be satisfied, gx(i) > 0 and ϕx(i) = 0 ∀i. Then T ′(x) > 0.

Proof: Consider an arbitrary agent i. Step I: By (A1), equation (4) must have a unique solution

p(i;T, x) for any given T, x. Quasiconcavity (A1) and gx > 0 further imply that px(i;T, x) > 0. Like-

wise, quasiconcavity and the fact that gT (i) < ϕT (i) by (A2), together assure that pT (i;T, x) < 0.

Step II: For G(T, x) ≡
∫
p(i;T, x)di it follows from Step I that Gx(T, x) > 0 and GT (T, x) < 0.

Based on the equilibrium equation G(T, x) = 1, the Implicit Function Theorem and Step II implies

that T ′(x) > 0.

In the literature on aggregative games, the comparative-statics of aggregate quantities is a

central question, and creative ways have been identified to establish monotone comparative-

statics of these aggregates.18 While our main contribution – systematically studying the

array of inequality effects in models with an aggregative structure – is mostly unrelated to

that literature,19 the above procedure adds a simple way to determine sign T ′(x).

3.5 Further Remarks

Theorems 1, 2 and 4 provide powerful conditions for studying market inequality becauseRij is

a local condition which nevertheless is informative about a global property of an equilibrium

distribution p(·). With respect to applicability, we shall see that the uniformity requirement

on R is met by most of our applications in Section 5 (given that R 6= 0). Moreover, Theorems

1 and 2 are analytically useful in specific applications, because we do not need to explicitly

solve the equilibrium equation to calculate sign (Rij). This allows us to study, e.g., how

sign (Rij) depends on intrinsic properties of a model (see Section 5).

4 Inequality Analysis

We now use the abstract properties from Section 3 to identify more tangible properties of

the equilibrium equation (4) or the payoff function Π(i) that are associated with specific

inequality effects.

4.1 Multiplicative Separability

Our first result presents an equivalent condition to R = 0. Expression (9) shows that Rij = 0

iff A(i)−A(j) = 0. The latter difference can be decomposed in a “benefit” and “cost” side:

A(i)−A(j) =
(
gT (i)
g(i) −

gT (j)
g(j)

)
T ′(x) +

(
gx(i)
g(i) −

gx(j)
g(j)

)
“benefit side”

+
(
ϕT (j)
ϕ(j) −

ϕT (i)
ϕ(i)

)
T ′(x) +

(
ϕx(j)
ϕ(j) −

ϕx(i)
ϕ(i)

)
“cost side”

(15)

18See, e.g., Corchon, 1994; Cornes and Hartley, 2012; Acemoglu and Jensen, 2010, 2013; Camacho et al.,
2018. Further, Jensen (2018); Corchón (2020) provide nice surveys.

19Perhaps most closely related is Acemoglu and Jensen (2013), who utilize the aggregative structure to
obtain comparative-static predictions of the aggregate and extremal efforts under general conditions, and
sometimes of certain individual strategies. In contrast to what we do, their paper does not study inequality
effects of market shares or payoffs.
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Decomposition (15) shows that Rij = 0 if all four brackets are zero. The terms in these

brackets capture whether T and x affect marginal benefits or costs differentially for different

agents. Considering the first bracket, we note that this bracket is zero if gT (i)
g(i) = gT (j)

g(j) , i.e., if

T affects agents i and j by equal proportions. It immediately follows that if x and T affect

marginal benefits and costs of all agents by equal proportions, then x must be inequality

preserving. The following result builds on this observation and the fact that the principle of

equal proportions is equivalent to multiplicative separability.20

Definition 10 (Multiplicative Separability) A function f(i, p, T, x) is multiplicatively

separable in (i, p) and (T, x) if there are functions u(i, p), v(T, x) such that f(i, p, T, x) ≡
u(i, p)v(T, x).

Theorem 5 The parameter x is inequality preserving iff the function g(i,p,T ;x)
ϕ(i,p,T ;x) is multiplica-

tively separable in (i, p) and (T, x).

Theorem 5 is useful because it can be easily checked from the optimality condition (4). To

see the intuition, note that g(i)
ϕ(i) = g(j)

ϕ(j) for any two agents by equilibrium forces. Thus, if the

ratio g(i)
ϕ(i) verifies multiplicative separability, then this ratio must change by equal proportion

for each agent, which means that no agent can secure a systematic advantage due to dx 6= 0

in equilibrium, resulting in a stable dispersion of market shares.

4.2 Level Variables and Neutral Costs

Decomposition (15) shows that the cost and benefit sides may contribute separately to the

possible inequality effects. Specifically, if either the benefit or the cost side verifies multi-

plicative separability, the side has a “neutral” effect on market inequality. This is captured

by the following definition.

Definition 11 (Level Variables and Neutral Costs) The market condition x is a level

variable if x only enters g(i) (ϕx(i) = 0 ∀i), and the function g(i) is multiplicative separable

in (i, p) and (T, x). Further, we say that costs ϕ(i) are neutral if the function ϕ(i) is

multiplicative separable in (i, p) and (T, x).

A simple example for a level variable is g(i) = V (T ;x), which also shows up in our later

applications. Also note that, by definition, costs are neutral if x does not enter ϕ(i) but ϕ(i)

is multiplicatively separable in (i, p) and T . If p(i) = t(i)/T and x does not enter ϕ(i), then

the neutral costs property equivalently means that the costs Φ(i, t) of the untransformed

payoff function (1) must be a power function, as the following result shows.

Lemma 4 If p(i) = t(i)/T and ϕx(i) = 0 ∀x, i, costs are neutral iff Φ(i, t) = c(i)tγ.

We can now derive more specific inequality results, that will also matter for our applications.

The first result states that a level variable induces inequality effects iff costs are not neutral.

20We provide a short proof of this fact in the working paper version.
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Proposition 3 The level variable x is inequality preserving if costs ϕ(i) are neutral. Con-

versely, if x is inequality preserving and T ′(x) 6= 0 ∀x ∈ X, then costs ϕ(i) must be neutral.

We next show that the cost function determines key properties of the inequality effects that

emerge for dx > 0 if x is a level variable. Let

θ(i) ≡ ϕT (i)T

ϕ(i)
(16)

denote the elasticity function of marginal costs. If x is a level variable, it is is easily checked

that costs are neutral iff θ(i) = θ(j) for all i, j and any T . Moreover, because signRij =

sign (θ(j)− θ(i))T ′(x), the elasticity function θ(·) then affects whether a rotation occurs.

Proposition 4 If T ′(x) > 0, p(·) is Class I, and θ(i) < (>)θ(j),∀jBi, then the level variable

x induces an OR (IR) of p(·).

The result follows directly from Theorem 2, and it also applies for T ′(x) < 0 if “OR” and “IR”

are interchanged. The intuition of Proposition 4 is as follows. An increase in x induces the

same incentive for all agents to aspire for a larger market shares, while the costs associated

with such changes may be differentially sensitive. If θ(i) < θ(j) for j B i, then agent i can

adjust better to the new situation, as her marginal costs increase at a slower pace. If such

a ranking applies for any two different agent types, the adjustment is easiest for the agents

with the largest market shares, explaining why an OR results.

If p(i) = t(i)/T , additional insights emerge. First, Proposition 4 can be equivalently

expressed in the elasticity of the primitive marginal cost function Φt(i, t) ≡ h(i, t). Let

ψ(i) ≡ ht(i, t)t/h(i, t) denote the t-elasticity of marginal costs h(i, t). It is easy to check that

θ(i) = ψ(i) + 1, which shows that the elasticity condition in Proposition 4 can be restated as

ψ(i) < (>)ψ(j). Second, if g(i) additionally is a power function of p, the rotations identified

by Proposition 4 must be partially monotonic in the sense of Proposition 2.

Corollary 2 If p(·) is Class I, p(i) = t(i)/T , g(i) = z(i)p(i)αu(T ;x), where α ∈ R is a

constant, T ′(x) > 0, and ψ(i) < (>)ψ(j) ∀j B i, then the level variable x induces a partially

monotonic OR (IR) with property (13) ( (14)).

4.3 Power Functions

Our next set of results is centered around power functions, which often arise in applications.

Lemma 4 or Corollary 2 exemplified that power functions play a role for the inequality effects.

More generally, a key observation is that power functions pin down the indirect effect: kij = 1

uniformly for any x ∈ X iff the ratio ϕ(i)
g(i) has a power function form:

ϕ(i, p, T ;x)

g(i, p, T ;x)
≡ z(i, T ;x)pξ(T ;x), p, T > 0. (17)
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Proposition 5 If (17) holds, then k(x) = 1 uniformly ∀x ∈ X. Thus, if additionally R is

globally uniformly positive (negative), then p(·;x′) is a monotonic OR (IR) of p(·;x) ∀x′ > x.

Conversely, if k(x) = 1 uniformly for any given i, j, T , x, then (17) holds.

As the power function property is invariant to integration, a sufficient condition for (17) is

that the costs and benefits in Π(·) are power functions of p with i-independent exponents.

4.4 Market Inequality in Payoffs, Revenues or Expenditures

Our inequality results so far focused on market shares p(·). We now sound out the relation

between the dispersion of p(·) and other key quantities, such as payoffs. While not much can

be said about these relations in general, definite patterns emerge under more special circum-

stances. Let s(i) ≡ Π(i)/
∫
I Π(s)ds denote the payoff share earned by agent i. Likewise,

b(i) ≡ p(i)V (i, p(i), T ;x)∫
I p(s)V (i, p(s), T ;x)ds

, e(i) ≡ Φ(i, p(i), T )∫
I Φ(s, p(s), T )ds

denote the benefit and expenditure shares, respectively. Our first result relates the possible

inequality effects of these shares to multiplicative separability of the payoff function (3).

Proposition 6 If benefits pV (i, p, T ;x) and costs Φ(i, T ;x) are multiplicatively separable in

(i, p) and (T, x), then market shares p(·), benefit shares b(·) and expenditure shares e(·) all

are invariant to x.

The main reason for Proposition 6 is that payoffs are of the form “Benefits” minus “Costs”,

and multiplicative separability is preserved under differentiation wrt p(i).

Power Functions The relation between the various market shares tightens if benefits and

costs have power function representations. Let Π(i) be of the form

Π(i) = p(i)αĝ(i, T ;x)− p(i)βϕ̂(i, T ;x), (18)

where generally α = α(T ;x) and β = β(T ;x) with β > α > 0 for any given (T ;x).21 Using

short-hand notation for ĝ(·) and ϕ̂(·) in (18), the equilibrium condition (6) can be stated as

p(i)

p(j)
=

(
ĝ(i)

ĝ(j)

ϕ̂(j)

ϕ̂(i)

) 1
β−α

. (19)

Moreover, using (19) in (18) implies

s(i)

s(j)
=

(
p(i)

p(j)

)α ĝ(i)

ĝ(j)
=

(
p(i)

p(j)

)β ϕ̂(i)

ϕ̂(j)
=

((
ĝ(i)

ĝ(j)

)β ( ϕ̂(j)

ϕ̂(i)

)α) 1
β−α

. (20)

The first two equations in (20) imply that s(i)
s(j) = b(i)

b(j) = e(i)
e(j) . Noting that all dispersions p(·),

s(·), b(·) and e(·) are i-densities with the same equivalence classes [i], the following Lemma

21The latter requirement follows from quasiconcavity. Note that the formulation in (18) includes the case,
where, e.g., α > 0 simply is an exogenous constant.
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is helpful for clarifying the relation between them.

Lemma 5 Let q(·) and r(·) be two densities with identical support [0, 1]. Then q(i) = r(i) ∀i
iff q(i)

q(j) = r(i)
r(j) ∀i, j. If, in addition, q(·) and r(·) are two SSD densities with equal equivalence

classes [i], and q(i)
q(j) > (<) r(i)r(j) ∀j B i, then q(·) is a monotonic OR (IR) of r(·).

To avoid misunderstanding, the statement “q(·) is an OR of r(·)” means that the two densities

q(·) and r(·) are ranked by the OR criterion analogously to Definition 7. That is, q(·) crosses

r(·) once from above. This leads to the following result.

Proposition 7 If Π(i) is of type (18), then s(i) = b(i) = e(i) ∀i, i.e., payoff, benefit and

expenditure shares always coincide.

By Proposition 7, the agents with the largest benefits (or payoffs) also incur the highest

expenditures, despite their possible advantages in the ex ante costs. In addition, the propo-

sition predicts that benefit and expenditure shares move in lockstep, which is a common

observation across different markets (Jones, 1990). The relation between market shares and

the other shares is more intricate even in the power function case. However, as we shall see

later applications, Lemma 5 together with (19) and (20) frequently allow us to disentangle

the relation between these shares as well.

4.5 Procedural Remarks

As their proofs reveal, the previous results essentially all follow from applying the same

procedure that is suitable for other situations, too. Its steps are displayed in Figure 4. It is

Ratio 𝑔𝑔(𝑖𝑖)
𝜑𝜑(𝑖𝑖)

multiplicative
separable in (𝑖𝑖,𝑝𝑝) and (𝑇𝑇, 𝑥𝑥)?

Yes

No

𝑥𝑥 inequality preserving
(Theorem 5)

Does 𝑔𝑔(𝑖𝑖)
𝜑𝜑(𝑖𝑖)

have power 
function form?

Yes

No

Test for monotonic
rotation: Theorem 3

Test for rotation: Is 𝑅𝑅 > 0 or 𝑅𝑅 <
0 for all agents? (Theorem 2)

Test fails / not applicable

Figure 4: Procedure

important to mention that even if market shares are stable with respect to x, there still can

be absolute absolute inequality effects in payoffs, benefits or expenditures as x changes. For

example, the benefit share b(·) can be stable while the level of individual benefits, p(i)V (i),

increase in x. In such a case, the absolute gap p(i)V (i)−p(j)V (j) must increase in x for any

j B i (see Lemma 2). Such effects have sometimes been called Matthew effects or the “rich

gets richer”.

5 Applications

As a first step in taking our general results to applications, we state various examples that

allow for representation as competition for market shares (Section 5.1). We then split the
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inequality analysis between models featuring symmetric competition (Section 5.2), where

all agents earn the same equilibrium value per unit of market shares, and those featuring

asymmetric valuations (Sections 5.3-5.4). In what follows, we adapt the standard convention

of indicating different agents by using subscripts, e.g., we write Πi instead of Π(i).22

5.1 Competition for Market Shares: Examples

We show that three different types of competition – competition for prizes, perfect competi-

tion and monopolistic competition – can be represented as a competition for market shares.

A central insight is that these three distinct models of competition share the same formal

structure, allowing for a unified inequality analysis.

Competition for Prize A first class of models that fits our framework can be described

as a “competition for prize”. A simple example are fixed-prize contests, where different

agents compete in efforts ti ≥ 0 to seize a single prize of a value V > 0 common to all

agents. While the literature on contests is large, papers that study inequality in contests are

rare (see Konrad, 2009). Other examples suggest that the prize value V (·) is agent-specific

or endogenous. For example, litigation expenditures (Posner, 1992), salary negotiations

(Amegashie, 1999), or (money) efforts invested to obtain a monopoly franchise (Chung,

1996) can influence the terminal value V (·) earned by the winning agent.

We formalize these notions as follows. Each agent i ∈ [0, 1] chooses an effort ti ≥ 0 that

influences her chance of winning a prize which, in general, is determined by a value function

V (i, ti, T ;x). The winning chance of agent i is pi = ti/T , where T =
∫
tsds, and pi thus

verifies the formal property of a market share.23 Assuming a general cost function Φ(i, ti),

this model yields a competition for market shares with payoffs

Πi = piV (i, piT, T ;x)− Φ (i, piT ) . (21)

A key property that generally distinguishes contests from market-based competition, is that

pi depends only on relative efforts in the former, while frequently the absolute values of prices

or quantities matter for the latter.24

Perfect Competition A central example for a model of market-based competition is

perfect competition. Each firm i ∈ [0, 1] produces a quantity qi ≥ 0 of a homogeneous good

according to cost function Φ(i, qi), taking the price P as given. Market demand is given by

a function P (T ;x) > 0, where T =
∫
qidi is aggregate supply, and PT < 0 by the Law of

22This notational change is meant to increase legibility. When developing our formal results in Sections 3
- 4 the previous notation was more convenient to clarify, e.g., that Π(·) is a function of the agent index i and
other variables.

23The simple formulation pi = ti/T is wlog in the followings sense. If the “success function” p(ti, T ) is
strictly increasing in ti, zero-homogeneous in (ti, T ), and

∫
p(ti,

∫
tsds)di = 1, then the only function that

satisfies these conditions must be of the form pi = ti/T (Hefti and Lareida, 2020).
24By (21), we assume that agents take the equilibrium aggregate T as given when choosing their efforts.

In Appendix B.5, we show how to adjust (21) if finitely many different agents endogenize the effects of their
effort choices on T , thereby embedding the notion of Nash equilibrium in our setting.
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Demand.25 Let pi ≡ Pqi∫
Pqsds

denote firm i’s market share of total consumption expenditures.

Because pi = qi/T , condition (2) is verified, and restating the payoff as a competition for

market shares (in terms of consumption expenditures) yields

Πi = Pqi − Φ(i, qi) = piP (T ;x)T − Φ(i, piT ). (22)

We think of qi as produced with a production function qi = fi(
ρ
αi
y), where ρ > 0 is a

common and αi > 0 and individual productivity parameter, and y = (y1, ..., yK) an input

vector. Under the common assumption that fi(y) is a homogeneous function of, say, degree

1/γi, and y is acquired in competitive markets, the corresponding cost function must be

a power function Φ(i, qi) = αi
ρ q

γi
i hi(w, 1).26 Thus, setting ci ≡ αihi(w, 1) and using the

identity qi = piT , we obtain

Φ(i, piT ) =
ci
ρ

(piT )γi . (23)

An interesting aspect of (23) is that it separates between ex ante firm heterogeneity due to

differences in productive efficiency ci/ρ or due to different returns to scale γi. As we shall

see, the precise source of the ex ante firm heterogeneity can be decisive for the inequality

effects, and the simple structure of (23), at the very least, helps to make this most evident.

Once stated as a competition for market share, it becomes obvious that we can view perfect

competition (22) as a common-prize contest with endogenous valuation (21) (and vice-versa)

by defining the value function as V (·) ≡ P (T ;x)T . This is remarkable as there is no general

analogue in market-based competition to the relative nature of competition characteristic

for contest-like settings.

On this matter, we remark that cost function (23) makes sense in contests (21), too. For

example, if γi = γ ∀i, then γ is a measure of how “noisy” the contest is, i.e., of how easy it

is for individual agents to influence their chances of success (Hefti, 2018).

Monopolistic Competition Our third application is monopolistic competition (Dixit

and Stiglitz, 1977). Each firm i supplies a quantity qi ≥ 0 of a differentiated product at a

monopolistically chosen price Pi. There is a continuum of consumers, indexed by ι ∈ [0, 1],

each endowed with a utility function

U(ι) =

∫ 1

0
rsqs(ι)

σds, ι ∈ [0, 1], (24)

where s ∈ [0, 1] denotes a product, and rs > 0 measures the importance of product s (e.g.,

quality), qs(ι) ≥ 0 is the respective quantity demanded by consumer ι, and σ ∈ (0, 1) the

elasticity of substitution. Consumer ι has disposable income I(ι) > 0, and chooses each qs(ι)

to maximize (24), subject to
∫
Psqs(ι)ds = I(ι). For η ≡ 1

1−σ > 1, this optimization problem

25Such a demand function can further be microfounded, e.g., by a partial equilibrium setting, which we
pursue in the working paper version. Then, the demand shifter x can, e.g., represent a parameter related to
consumer utility.

26hi(w, 1) solves miny w · y, s.t. fi(y) = 1.
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leads to aggregate demand

qi =
Irηi P

−η
i∫

rηsP
1−η
s ds

, I ≡
∫
I(ι)dι > 0 (25)

for each product i. As with perfect competition, we let pi = Piqi∫
Psqsds

, amount to firm i’s

market share of total consumption expenditures.

To state monopolistic competition as a competition for market shares, note from (25) that,

by setting its price Pi, each firm also chooses its quantity qi. For any (integrable) price profile

P , we define the aggregator function Z(P ) =
∫
rηsP

1−η
s ds, where the value T = Z(P ) can be

interpreted as a preference-weighted inverse price index.27 Quantity qi is produced with a

homogeneous production function, such that costs are (23). This includes constant marginal

costs (γi = 1), which is the most common assumption.28 These definitions and (25) yield

the payoff function

Πi = Piqi − ciqγii = Ipi − wiIγipi
γiη

η−1T
γi
η−1 , wi ≡

ci
ρ
r
− γiη

η−1

i . (26)

The formulation as a competition for market shares shows that monopolistic competition

is akin to a contest for total income. Nevertheless, (26) differs from contests (21) or from

perfect competition (22), as the costs in (26) are not of the form Φ(i, piT ). This reflects

that in monopolistic competition the aggregator function Z(·) does not amount to the sum

of “actions” (i.e., prices).

5.2 Common Valuations

We now study a class of models where the agents earn an identical benefit per unit of market

share, such that payoffs are of the form

Π(i) = p(i)V (T ;x)− Φ(i, p(i), T ;x), (27)

and hence g(i) = V (T ;x). This represents a situation where heterogeneous agents, in terms

of ex ante costs, compete for an object of a common but possibly endogenous valuation.

Throughout our analysis, we suppose that (27) verifies Assumption 1 and let ex ante agent

heterogeneity to be such that p(·) is a Class I or II density ∀x ∈ X.

We recognize perfect competition (22) and monopolistic competition (26) as variants of

(27), and so is (21) in case of a contest with common prize function (including standard

fixed-prize contests). These models therefore allow for a unified inequality analysis. We

begin this analysis by clarifying the relation between market shares and other quantities.

Proposition 8 If a competition for market shares has payoffs of the form (27), then:

i) Market and benefit shares always coincide (pi = bi ∀i).
27To see that ({Πi}, Z(·)) indeed constitute a competition for market shares, note that pi can be equivalently

stated as pi =
r
η
i P

1−η
i
T

, which shows that (2) is verified.
28A prominent example is Melitz (2003) and subsequent applications in international trade.
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ii) In addition, market shares, expenditure shares and payoff shares coincide (pi = ei = si

∀i) if costs are a power function of the form Φ(i) = p
β(T ;x)
i h(i, T ;x).

The main reason why the symmetric competition model yields a strong connection between

the various market shares essentially goes back to the power function arguments from Section

4.4, by noting that g(i) naturally satisfies the power function property here.

We now proceed as follows. We first present general inequality results based on payoff

(27), where we distinguish between benefit- and cost-side conditions x (Section 5.2.1). We

thereafter refine these insights in the context of our examples (Sections 5.2.2 - 5.2.3). Section

5.2.4 provides a comprehensive intuition, and relates some of our predictions to the literature.

5.2.1 General Inequality Analysis

In general, the market condition x could enter valuations V (·) or costs Φ(x), and we distin-

guish between both cases to structure our analysis. If x only enters V (·), x must be a level

variable. For example, x could represent a demand shifter in P (T ;x) from (22), or a prize

shifter in V (T ;x) of a contest. Another interpretation is that dx > 0 captures an increase in

a quantity or sales tax, say, in perfect competition – the former yields P (T ;x) = P (T ) − x
and the latter P (T ;x) = (1 − x)P (T ). For definiteness, we assume that Vx(T ;x) > 0 if

x is a level variable. Then, the procedure from Section 3.4 and Assumption 1 assure that

T ′(x) > 0.29

We say that x is a cost-side condition if x only affects the costs in (27). For example, x

could quantify a common efficiency level, such as ρ in (23), or a general cost shifter reflecting,

e.g., deflated factor prices. If x is a cost-side condition we assume, again for definiteness,

that ϕx(i) < 0 ∀i. Then, much like a level variable, dx > 0 incentivizes all agents to aspire

for a larger market share, implying that T ′(x) > 0.

Theorem 5 showed that x is inequality preserving if (27) is multiplicatively separable in

(i, p) and (T, x). The following proposition evaluates this result in the current context.

Corollary 3 If x is a level variable with Vx(T ;x) > 0, then x is inequality preserving iff

costs are neutral. If x is a cost-side condition, then x is inequality preserving iff costs are

multiplicatively separable in (i, p) and (T, x).

Note that the previous result applies similarly for benefit shares, and also for payoff and

expenditure shares if condition ii) from Proposition 8 is verified. This also holds analogously

for the next result, which shows that x must induce a rotation whenever agents are ordered

according to the cost elasticities θi from (16).

Corollary 4 Let p(·) be Class I. If x only affects V (·) and Vx(T ;x) > 0, or if x is a cost-side

condition, then dx > 0 induces an OR (IR) of p(·) if θi < (>)θj ∀j B i in equilibrium.

The main conclusion to draw from the above two results is that the inequality effects depend

entirely on the cost function if x only affects V (·) (is a level variable) or a cost-side condition;

29If instead Vx(T ;x) < 0, e.g., as in the tax example, this simply reverts the inequality predictions (“OR”
becomes “IR” etc).
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things like the curvature or slope of V (T ;x), e.g., the price elasticity of the demand function

P (T ;x), play no role for the dispersion of market shares.

5.2.2 Returns to Scale and Market Inequality

By Corollaries 3 - 4, the cost elasticities are important for the inequality effects. These

elasticities have an immediate connection to the scale effects on which, figuratively spoken,

the “production” of market shares is based on. Therefore, the returns to scale ought to play

a major role for the possible inequality effects induced by x.

Observe from (27) that if pi = ti/T , like in perfect competition or the contest setting, costs

are neutral iff Φ(i) is a power function (23) with γi = γ ∀i, i.e., iff all firms are subject to

identical scale effects. The same goes for monopolistic competition (26). The following two

results essentially tailor Corollaries 3 - 4 to this situation, and has implications for several

examples of x.

Corollary 5 Suppose that costs are of type (23), and let x either only affect V (·) with

Vx(T ;x) > 0 or be a cost-side condition with ϕ(i) ≡ ϕ̂(i, pi, T )u(x). Then, x is inequality

preserving iff γi = γ ∀i. Further, if p(·) is Class I, γi < γj and pi > pj ∀j B i, then dx > 0

induces a partially monotonic OR in the sense of (13).

This result also applies to payoff, benefit and expenditure shares due to the power function

structure of Π(i). Corollary 5 implies that common parameters, such as efficiency level ρ, a

common quality level ri = r ∀i in monopolistic demand, a demand shifter in P (T ;x), or a

sales tax have no inequality effects iff all firms are subject to identical scale effects γ. By

contrast, if firms differ in their returns to scale, these variables necessarily induce inequality

effects, which must be rotations whenever firms are ordered according to scale effects.

In applications with monopolistic competition, constant marginal costs is the most com-

mon assumption, which means that γi = 1 ∀i. This is a special case where all firms have

identical scale effects. More generally, if all firms have identical scale effects (γi = γ ∀i), then

the scale γ itself must affect market inequality by Corollary 3 (x = γ), because multiplicative

separability is violated. Intuitively, stronger scale effects (lower γ) mean that marginal costs

respond less sensitively to an increase in market shares, which is more beneficial for firms

operating at a higher level. Thus, we would expect industries with stronger scale effects,

ceteris paribus, to display more market inequality.

The next result confirms this intuition, and applies to any competition with common

valuations and pi = ti/T (as in perfect competition or contests), as well as to monopolistic

competition (which violates pi = ti/T ). Let Φ(i) be a power function of type (23) with

γi = γ ∀i and ci < cj iff j B i. In case of monopolistic competition, we additionally assume

that ri ≥ rj for any i < j, such that the agents are sorted according to costs also in this

case. As before, the following result is valid for payoff, benefit and expenditure shares.

Corollary 6 (Scale Effects) If γi = γ ∀i, then dγ > 0 induces a monotonic IR of p(·).
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5.2.3 Monopolistic Competition

We now provide a selection of inequality results for monopolistic competition that we deem

important, also relative to the existing literature. We let ci ≤ cj and ri ≥ rj whenever i < j

for the remainder of this section.

First, Corollary 6 shows the inequality implications that different levels of common scale

effects have. With respect to the literature, this result reveals that the standard assumption

of constant marginal costs (γi = 1 ∀i) induces the most extreme market inequality among

all technologies with non-increasing returns to scale, ceteris paribus.

We next concentrate on the inequality effects implied by “love-of-variety” η and total

income I, as these two aspects received attention in other studies.

Market Power Effects The parameter η pins down the elasticity of substitution, where

a larger value of η means that products are stronger substitutes – or that there is a weaker

“love-of-variety”. In this respect, the literature frequently interpreted η as a parameter of

market power, where a larger value of η means less firm-side market power.30 The following

proposition shows how a change in market power η affects the firm-side market inequality

under the conventional assumption of identical scale effects.

Proposition 9 (Market-Power Effect) Let γi = γ ≥ 1 ∀i. Then dη > 0 induces a

monotonic OR of p(·).

This result, and all subsequent ones, holds for payoff, expenditure and benefit shares as well.

Proposition 9 shows that less market power implies more concentrated markets. Intuitively,

competition is intensified if η increases and products become stronger substitutes. While this

implies that all firms want to save costs, the equilibrium response depends on the current

market shares. As (26) shows, a larger value of η formally has the same effects on marginal

costs as a smaller γ (i.e., weaker scale effects). Thus, firms with larger current market shares,

due to favorable ex ante conditions, can adopt better to a more competitive market.

The above market power argument relies on the “firm’s ability to make the price” (Tirole,

1988), which depends on η and becomes relevant through monopolistic price-setting. Never-

theless, we emphasize that none of the inequality effects we identified earlier in monopolistic

competition actually hinge on monopolistic behavior itself: in the working paper version we

prove that identical inequality effects arise with price-taking firms.

Income Effects We now consider the inequality effects of an increasing total income I.

Note from (26) that I enters costs and benefits, meaning that the inequality effects induced

by I are not directly evident from our previous result. Our key observation is that changes

in income induces inequality effects iff the firms differ in their scale effects. We discuss the

intuition of this central result in Section 5.2.4 in a broader context.

30For example, with ex ante homogeneous firms (such that pi = 1 ∀i), the unique equilibrium price mono-
tonically approaches the perfectly competitive price whenever η →∞.
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Proposition 10 (Income Effects) Total income I is inequality preserving iff γi = γ ∀i.
Further, if γj > γi and pj < pi ∀j B i, then dI > 0 induces a monotonic OR of p(·), jointly

with growing quantities dqi > 0 ∀i.

Price Dispersion Our last inequality result pertains to an aspect that frequently shows

up in data: a non-uniform price dispersion. With ex ante heterogeneous firms, the monop-

olistic competition model generally predicts heterogeneous prices - but to what extent does

this price dispersion reflect common market conditions? As we already understand how

market shares evolve in x, a first step is to study whether the price dispersion evolves in a

similar manner. To address this question, we define πi ≡ Pi∫
Psds

as firm i’s price share and,

noting that πi
πj

= Pi
Pj

, interpret the density π(·) as the dispersion of relative prices. Thus, by

Corollary 1, the price dispersion changes iff relative prices Pi
Pj

change. The following propo-

sition shows that the price dispersion changes iff market shares p(·) change. In addition, we

exemplify how the price dispersion changes in income I or productivity ρ if firms differ in

their scale effects, while offering a common quality (ri = r ∀i).31

Proposition 11 (Price Dispersion) The price dispersion π(·) is increasing over firm types

[i], and is invariant to any exogenous parameter x iff x is inequality preserving on p(·). If

γj > γi and pj < pi ∀j B i, then dI > 0 or dρ > 0 induce a counter-clockwise rotation of

π(·), hence leading to a steeper price dispersion.

The price dispersion is increasing in firm index i, reflecting that higher-cost firms set higher

equilibrium prices. The second result of Proposition 11 implies that the price inequality

evolves analogously to market share inequality if firms differ in their scale effects and I or ρ

change. Thus, firms with favorable scale effects (γi < γj) can adjust their equilibrium prices

in a way that allows them to attract more demand, either by decreasing their prices more or

increasing them less compared to disadvantaged firms.

5.2.4 Main Intuition and Related Literature

Can certain agents take advantage of commonly improving market conditions relative to

their competitors? If the competition between ex ante heterogeneous agents is symmetric,

where agents with different cost functions compete for an object of common value, our

analysis showed that the answer to this question is non-trivially determined by the cost

side. Specifically, whether there is agent heterogeneity in the returns to scale associated

with obtaining a certain market share turned out to be decisive for inequality effects to

arise. Changes in market conditions, such as a reduction or elimination of a sales tax, or a

common shift in productive efficiency due to an industry-level innovation leave the dispersion

of market shares unaffected iff production is subject to exactly the same scale effects for

all firms. This pattern applies more generally whenever x is a market condition that only

enters the valuation per unit of market share V (·) or the cost function of each firm in a

multiplicatively separable way.

31The working paper analyzes the price dispersion for more complex cases.
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Intuition To see the main reason for this prediction, consider for the sake of illustration

a market condition x that only enters V (·) (i.e., x is a level variable), and assume power-law

cost functions (23), where firms can differ in their productive efficiency ci or their returns to

scale γi. Because competition is symmetric, equilibrium forces equate marginal costs across

all agents. Therefore, marginal costs must adjust by the same rate in equilibrium for all

agents once x changes. This competitive property explains why the scale effects are decisive

for the inequality effects caused by x.

With identical scale effects, x must be inequality preserving. To see why suppose, by

contradiction, that agent i managed to increase pi in the new equilibrium. As all agents

have identical returns to scale, this implies that i’s marginal costs must have changed by a

different proportion relative to some competitor. But this contradicts individual optimality,

as a constituent part of equilibrium, because marginal benefits have equally changed for all

agents due to dx 6= 0 and, by optimality, must be equated with marginal costs. Thus, either

agent i or some other agent must be deviating from optimal behavior.

If the agents differ in their returns to scale, dx 6= 0 must induce inequality effects. To see

this, consider two agents with pi > pj and different scale effects (γi < γj), meaning that i’s

marginal costs must be less elastic than j’s. Because of this property, market shares cannot

remain stable: if the change in x leads to a higher common valuation V (·) then, as before,

marginal costs of all agents must increase by the same proportion. But as marginal costs

respond differentially to the market shares aspired by each agent, this necessarily implies

that pi and pj must adjust differently.

Literature We now discuss how some of the results in Section 5.2 are related to existing

literature in a narrow and a wider sense.

First, we underline that, besides identifying a unified analysis for different competition

models, our inequality analysis based on “competition for market shares” allows us to

tractably go beyond the standard assumption of linear variable costs in monopolistic compe-

tition. Allowing for non-CRS technologies or heterogeneous scale effects is relevant because

empirical evidence shows that firm-level or sectoral heterogeneity in scale effects both exist

and matter (see De Loecker et al., 2016 for a recent analysis). Our analysis highlights the

implications of such heterogeneity for market inequality.

Moreover, going beyond linear costs allows us to qualify existing results. For example, our

findings both complement and generalize an insight by Mrázová and Neary (2017). These

authors study how certain properties of the demand function, summarized by its “demand

manifold”, determine the pass-through and competition effects in monopolistic competition

with constant marginal cost firms. They find that, with CES demand, the level of disposable

income plays no role for the dispersion of firm payoffs. Proposition 10 generalizes this result

by showing that what drives the neutrality of income is not linearity, but the premise of

homogeneous scale effects. In addition, Corollary 5 and Proposition 10 complement their

finding by showing that disposable income or level variables and cost-side conditions seize to

be inequality preserving once firms differ in their economies of scale, despite CES-demand.

Specifically, income growth, common efficiency gains or common cost reductions lead to
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quantity growth jointly with increasing relative prices, a steeper price dispersion, and a

growing inequality in market and payoff shares.

Second, our results provide a novel, equilibrium explanation why market inequality fre-

quently seems to be sensitive towards changes in common market conditions. For example, to

rationalize the empirically observed increasing inequality on the firm side associated with an

advancing international integration, the literature has provided preference-side explanations,

such as Mrázová and Neary (2017). A common implication of an advancing international

integration is that it ultimately increases the amount of disposable consumer income I avail-

able to the economy, possibly through the general equilibrium effects triggered by a larger

total labor force as in Melitz (2003). Because we found that an increasing disposable income,

or a general upward shift in market demand, induces firm-side inequality effects whenever the

firms differ in their returns to scale, our inequality analysis puts forth a supply-side explana-

tion. Intuitively, market inequality increases whenever firms are differentially able to adjust

to a change in a common market condition – a property, which is decisively governed by the

dispersion of scale effects across firms, and not sensitive to particular forms of competition.

The general prediction that a growing income, or an increased industry-level productivity,

leads to an increased market concentration fits the stylized observation that “Blockbusters”,

e.g., in the movie or music industry, have become more successful than ever (e.g., Elberse,

2008). If one thinks of media giants such as Disney or Sony, it is unlikely that production

is subject to perfectly identical scale effects across all firms in the industry. Thus, our

inequality analysis suggests that the empirical evidence about heterogeneous scale effects may

be strongly connected with the one about how market inequality has evolved – a relationship

which empirical literature could further seek to explore.

5.3 Idiosyncratic Valuations

We now study the case where there is ex ante agent heterogeneity in the (marginal) benefits

of the aspired market shares. For simplicity, we assume that the competition for market

shares verifies pi = ti/T , T =
∫
tidi, and that the value per unit of market share does not

depend on pi, i.e., V (i) ≡ V (i, T ;x); we relax the latter in Section 5.4.

The key differences to the common valuation case from Section 5.2 are that i) marginal

costs are not equated in equilibrium across agents, and ii) a change in a common market

condition x may induce idiosyncratic effects on the equilibrium valuations of different agents.

For these reasons, the inequality effects now generically depend also on properties of V (i).

To make the the effects of idiosyncratic valuations most evident, we assume neutral costs,

i.e., we set Φ(i) = ci(piT )γ by Lemma 4. Further, we suppose that x only enters V (·). Thus

Π(i) = piV (i, T ;x)− ci(piT )γ , with equilibrium condition

g(i) ≡ V (i, T ;x) = γcip
γ−1
i T γ ≡ ϕ(i). (28)

We take Assumption 1 as satisfied, and suppose that for any x ∈ X the ex ante agent

heterogeneity verifies V (i, T ;x) > V (j, T ;x) iff j B i.32

32That is, while we generally allow for cost-side heterogeneity in ci, this heterogeneity cannot reverse the
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A first useful insight is that (28) verifies the power function structure from Section 4.4,

despite heterogeneous valuations. By Proposition 7, this implies that market shares, benefit

shares and payoff shares coincide. Thus, all subsequent inequality effects apply for all these

market shares.

In the following, dVi ≡ ∂
∂xV (i, T (x);x) denotes the impact of x on the equilibrium valuation

of agent i. Our first result characterizes the existence of inequality effects under the above

presumptions, and finds a simple condition assuring the occurrence of monotonic rotations.

Proposition 12 Given equilibrium equation (28), x is inequality preserving iff V (i) is mul-

tiplicatively separable in i and (T, x) or, equivalently dV (i)
V (i) = dV (j)

V (j) , ∀i, j and any x ∈ X.

Further, if any j B i verifies
dV (i)

V (i)
> (<)

dV (j)

V (j)
, (29)

then x induces a monotonic OR (IR) of p(·).

Condition (29) means that if the equilibrium valuation per unit of market share increases

at a higher pace for advantaged agents, such agents will be able to increase their market

(or payoff) shares as x changes. Note that, other than with common valuations, a uniform

increase (dV (i) = dV (j) > 0) must induce a monotonic IR of p(·), because the valuations

of advantaged agents now increase at a comparably slower pace. Further, Proposition 12

shows that the “benefit side” is neutral with respect to inequality effects iff x affects the

marginal valuations by equal proportions. This generalizes Corollary 3 as dV (i)
V (i) = dV (j)

V (j) is

always satisfied for common valuations, i.e., if V (i, T ;x) = V (T ;x) ∀i.

The remainder of Section 5.3 is structured as follows. We study two general equilibrium

examples consistent with the above analysis in Sections 5.3.1 - 5.3.2. These examples also

vindicate that our approach can be used to study the inequality effects within a given group

of agents (e.g., consumers), if different groups of agents interact with each other.33 Section

5.3.3 briefly demonstrates that our approach to inequality also works if x is an idiosyncratic

rather than a common condition.

5.3.1 Inequality Effects in an Endowment Economy

Our first example takes our inequality analysis to a general equilibrium application in a

private ownership economy with a final consumption good that is competitively produced

from the resources consumers sell to firms. As we shall see, the equilibrium equation de-

termining the consumer-side dispersion of consumption (or income) is a variant of equation

(28). We study the consumer-side inequality effects induced by changes in production-side

fundamentals, and find that the source of the ex ante income heterogeneity is decisive for how

inequality evolves. Further, we use the model to illuminate the inequality effects induced by

the provision of a tax-financed unconditional basic income.

agent order implied by V (·).
33See the working paper version for a partial equilibrium model studying the effects of taxes or subsidies

within (rather than between) the firm-side and the consumer-side, and an application to international trade,
where we study the inequality effects induced by import tariffs on the domestic firms.
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Model Firms and consumers are indexed by i ∈ [0, 1] and ic ∈ [0, 1], respectively. Con-

sumers initially own all production resources, and sell them to firms at a piece-rate w > 0,

to which we refer, for simplicity, as a wage rate. Each firm uses its acquired resources yi to

produce a final consumption good with a strictly concave production function qi = fi(ρyi).

Formulated as a competition for market shares, firm payoff functions then are of the form,

Πi = piPT −
w

ρ
Φ(i, piT ),

where P is final output price, T ≡
∫
qidi, pi ≡ Pqi

PT , and Φ(i, q) ≡ f−1
i (q). For given P, T,w,

optimal firm behavior then is described by the first-order condition

P = w
ρ ϕ(i, piT ), ϕ(i, z) ≡ ∂Φ(i,z)

∂z . (30)

Because Πi is structurally similar to (22), the firm-side inequality effects will again be de-

termined by the cost function. The only additional element is that obtaining sign T ′(x) is

more subtle, as T ′(x) depends on general equilibrium forces. Nevertheless, if Φ(i) is a power

function (23) with γi = γ ∀i and x a consumer-side parameter, or if T ′(x) = 0 in equilibrium,

then x must always be inequality preserving on the firm-side.

Consumers spend their entire market income mic to acquire qcic units of the consumption

good. We distinguish between two key sources of income inequality: Differences in wage

income and differences in capital income. Let ωic > 0 denote the resource endowment of

consumer ic (e.g., units of effective labor), such that ω ≡
∫
ωicdic. Given wage w, consumer

ic thus earns a wage income wωic . Further, capital income earned by ic is sicΠ, where sic is

an ex ante ownership share, i.e.,
∫
sicdic = 1 and Π =

∫
Πidi is aggregate firm profit.34 Both

ωic and sic are (weakly) decreasing in consumer index ic, such that consumers are ordered

left-to-right in terms of total income mic . Consumer ic’s consumption share pcic coincides

with her income share in this model: if T c ≡
∫
qcicdic denotes total demand, then

pcic ≡
Pqcic

P
∫
qcicdic

=
wωic + sicΠ

PT c
=
mic

m
, m ≡

∫
micdic. (31)

We recognize (31) as a variant of (28), meaning that consumer-side inequality effects are

described by Proposition 12. In particular, for Vi ≡ wωic + sicΠ, (29) evaluates to

dV (ic)

V (ic)
> (<)

dV (jc)

V (jc)
⇐⇒

(
sic
sjc
− ωic
ωjc

)(
dΠ

Π
− dw

w

)
> (<)0. (32)

Expression (32) shows that consumer-side inequality effects depend on the ex ante dispersions

of resources and capital shares, relative to how firm profits and wages develop. In particular,

consumption (and income) inequality must remain stable whenever profits and wages change

at the same rate – in this case, total income of each consumer changes at the same rate,

independent of how ωic and sic are dispersed. By contrast, if capital income is more (less)

unequally dispersed than resource endowments, i.e., sic/sjc > (<)ωic/ωjc , then consumption

34For tractability, we assume that the shares of an individual consumer are equally dispersed across firms.

31



inequality must increase (decrease), in the sense of a monotonic OR (IR), if profits increase

at a higher rate than wages.

The evolution of profits and wages is a general equilibrium outcome, which may be subtle

due to the interplay between factor and final good markets. Likewise, a condition x that only

enters one market side may still affect the other market side via feedback effects, making the

inequality analysis not trivial. Formally, a competitive (Walrasian) equilibrium consists of

two market share functions pi, p
c
ic
> 0 and two quantities T, T c and a price P such that pi

solves (30) for each i, pcic is given by (31) for each ic, and T = T c. Wlog, we normalize the

wage rate w to one. We now derive the emerging equilibrium inequality effects for various

specific examples of condition x.

Productive Efficiency and Scale Effects For definiteness, we assume that Φ(i) is

given by (23) with γi = γ > 1, ∀i. The two production-side parameters of interest then

are productive efficiency (x = ρ) and returns to scale (x = γ). We have already analyzed

the firm-side inequality effects of ρ and γ in a partial equilibrium context. The following

proposition shows that those insights extend to the current general equilibrium setting, and

complements them with consumer-side inequality effects.

Proposition 13 Conditions ρ and γ induce the following inequality effects:

• Firm-side: ρ is inequality preserving, while dγ > 0 induces a monotonic IR of firm-

side market (or payoff) shares.

• Consumer-side: ρ is inequality preserving, and dγ > 0 induces a monotonic OR

(IR) of consumption shares pc(·) if income inequality originates mainly from capital

(resource) income, i.e., if sic/sjc > (<)ωic/ωjc for each jc B ic.

The intuition is as follows. An increase in ρ stimulates overall production (T ′(ρ) > 0),

but also forces firms to lower prices, such that the real wage increases. With neutral costs,

these effects level off, such that wages and profits change at the same rate, which means

that dρ > 0 must be inequality preserving on the consumer-side as well. Thus, while each

consumer can individually afford more consumption, the dispersion of consumption and

income shares is invariant to the level of productive efficiency.35 By contrast, improved

economies of scale (dγ < 0) induce firm- and consumer-side inequality effects that might go

in opposite directions. E.g., dγ < 0 leads to less consumption inequality if differences in

capital income are the dominant source of income inequality, while dγ < 0 simultaneously

increases firm-side inequality. The reason for the former is that improved scale effects foster

competition, which lowers profits more than wages.

Unconditional Basic Income Recently, the call for an “unconditional basic income”,

financed by some form of redistributive taxation, has echoed through several European coun-

35One might ask what happens if dρ > 0 but Φ(i) is not of type (23). We can show that the inequality
effects induced on the firm-side still depend exclusively on the cost function. Specifically, Corollaries 3 - 4
remain valid. Things are more subtle on the consumer side, but it can be shown that dρ > 0 must always
induce an OR of pc(·) if sic/sjc > ωic/ωjc and total consumption expenditures PT increase in ρ.
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tries. We now study the inequality effects of such a policy on both market sides in the current

general equilibrium context.

Section 5.2.1 established that, in a partial equilibrium context, the firm-side inequality

effects induced by a quantity or sales tax τ depend exclusively on the cost function. The

following shows that this result does not extend to the present general equilibrium context,

if the tax income is uniformly redistributed to households, as mandated by the notion of

an unconditional basic income. In the following proposition, we assume that τ denotes a

quantity or a sales tax on final good consumption that is levied on the firm-side.

Proposition 14 The redistributive tax τ is inequality preserving on the firm-side and leaves

total production T unchanged, regardless of the cost function Φ(i), while it unambiguously

reduces consumption and income inequality by inducing a monotonic IR of pc(·).

The reason why the tax must now be inequality preserving on the firm-side is that, in

equilibrium, total production cannot change because τ neither affects productive efficiency

nor resource endowment of this economy. But as total production remains constant, and the

tax affects all firms in the sense of a level variable, the tax must be inequality preserving

on the firm-side. By contrast, a (higher) basic income must induce a monotonic IR on the

consumer-side, because the income of each consumer increases by the same uniform amount

due to redistribution, while neither wages nor profits change due to the intervention.

It is possible to show that this result does not hinge on the assumption of a single final

good sector. In fact, Proposition 14 equally applies if there is a finite number of final good

sectors operated by independent firms with a unique competitive equilibrium, and the same

tax is levied on all final goods sectors. However, as the next section shows, this result needs

to be interpreted with caution as, in general, consumers may have a preference for consuming

their resources, contradicting the perfectly inelastic supply of ωic assumed here.

5.3.2 Inequality Effects in an Economy with a Consumption-Leisure Trade-Off

In this section, we reconsider the previous analysis by studying the case where individual

labor supply is an endogenous consequence of a consumption-leisure trade-off. Specifically, we

ask how the dispersions of consumption, leisure and income depends on productive efficiency,

on the importance of consumption relative to leisure, and on an unconditional basic income.

Model Each consumer ic owns one unit of perfectly divisible labor. The key difference

to the previous model is that consumers value leisure, and thus face a trade-off between

leisure and consumption opportunities. We follow the literature and assume a utility

u(ic) = qαicf
1−α
ic

, (33)

where qic is consumption of a final good, fic ∈ [0, 1] is the amount of leisure, and α ∈ (0, 1)

quantifies the importance of consumption relative to leisure (see, e.g., Heathcote et al.,

2014). As before, pcic ≡ qic/T
c denotes consumer ic’s share of total consumption, where

T c ≡
∫
qicdic. Besides wage income, consumer ic receives capital income sicΠ, and possibly
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an unconditional basic income τ̂ , such that total income is mic = (1 − fic)w + sicΠ + τ̂ .

Thus, if P is the price of the final good and w normalized to one, the budget constraint is

pcicT
cP = (1− fic) + sicΠ + τ̂ . We assume that consumers are ordered left-to-right in terms

of their capital shares, i.e., sic > sjc iff jc B ic.

Assuming an interior solution, constrained maximization of (33) shows that pcicT
cP =

α(1 + sicΠ + τ̂) and fic = 1−α
α pcicT

cP .36 As mic = α(1 + sicΠ + τ̂), the dispersions of con-

sumption shares, income shares and leisure shares coincide, which is a recently rehabilitated

empirical fact (Aguiar and Bils, 2015; Attanasio and Pistaferri, 2016).

Each firm i hires labor Li to produce qi ≥ 0 units of the final good according to qi =

( ρciLi)
1/γ , γ > 1. For simplicity, we focus on the case where basic income is financed by a

sales tax τ ∈ [0, 1). Then, if pi denotes the share of total consumption expenditure earned

by firm i, its payoff is Πi = (1− τ)piPT − ci/ρ(piT )γ .

A competitive equilibrium is defined identically to Section 5.3.1. It is easy to see that

α, ρ, τ must all be inequality preserving on the firm-side, which simplifies the analysis, but is

not decisive for consumer-side inequality effects.37 The following proposition summarizes the

consumer-side equilibrium inequality effects of labor productivity ρ, the relative importance

of consumption α, and an unconditional basic income financed by tax τ .

Proposition 15 Conditions α, ρ, τ have the following consumer-side effects

• Labor productivity ρ is inequality preserving in terms of consumption, leisure and income shares,

but increases absolute consumption and real income gaps between different consumer types.

• A larger propensity to consume (dα > 0) induces a monotonic OR of consumption, leisure and

income shares, and increases aggregate production and labor supply, while real wages fall.

• The introduction or increase of a basic income financed by a sales tax induces a monotonic IR

of consumption, leisure and income shares, but decreases labor supply and total production.

As the effects of ρ are as before, we restrict discussion to α and τ . If consumption is

more important relative to leisure (dα > 0), consumers supply more labor to afford more

consumption. The increased labor supply reduces real wages and increases profits, which

benefits capital owners, and therefore increases inequality on the consumer-side. One can

even show that, as real wages plunge, the poorest may end up with a lower consumption level,

despite a higher propensity to consume.38 The reverse prediction is that if leisure becomes

more important (dα < 0), then aggregate leisure consumption increases jointly with an

increase in relative leisure fjc/fic of the poor. Such a tendency has been observed, e.g., in

US data (Aguiar and Hurst, 2007).39 Further, the prediction that a higher propensity to

consume leads to an increasing income and leisure inequality is reconcilable with empirical

36This interior solution requires that sicΠ + τ̂ ≤ α
1−α , which can be shown to hold in equilibrium.

37See the working paper version for the case of a general cost function qi = fi(Li).
38For example, if a positive mass of consumers holds no shares at all(sic = 0) this must always be the case.
39A more ambitious model could allow α to vary across consumers, e.g., because this matters empirically

(Heathcote et al., 2014).
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evidence comparing European countries with the US, as the latter features more income

inequality jointly with a weaker preference for leisure.40

Introducing or increasing a basic income (dτ > 0) implies a reduction in consumer-side

inequality, as before. But in the current model, the equalization now comes at the costs of

lower total output and consumption (T ′(τ) < 0). This marks a key difference to the case of

inelastic labor supply, and originates from the general equilibrium property that total real

production expenditures must coincide with total labor supply. Thus, as the former decreases

due to the unconditional basic income in the current model, reflecting how consumers respond

to the change in their income composition, total production must plunge.

Welfare Considerations The previous result is welfare relevant in the following sense.

Aggregate nominal income m =
∫
micdic increases, but real income m/P decreases, as prices

inflate more, due to taxation, than nominal income. For this reason, equilibrium welfare may

decrease. Equilibrium utility is u(ic) = micP
−αz(α), z(α) ≡ αα(1 − α)1−α, and aggregate

utility is U =
∫
u(ic)dic = mP−αz(α). It is straightforward to check that U ′(τ) < 0 in

equilibrium. Thus, some consumers (the strongest capital owners) must necessarily be worse

off due to the basic income and, depending on parameters, it may even be the case that no

consumer gains at all. Therefore, a utilitarian planner would abstain from introducing such

an unconditional basic income.

5.3.3 Idiosyncratic Conditions

We now briefly demonstrate that our approach can be applied to analyze the inequality

effects if x is a purely idiosyncratic condition. Consider (28), where ci = c ∀i, and agents

are ordered according to V (i), such that p(·) is Class I, meaning that there are finitely many

different agent types. Suppose that dVi > 0 only for type i, while dVj = 0 for all other

types. In the setting from Section 3, this corresponds to the case where x only enters Vi(·),
such that dVi ≡ gx(i, p(i), T ;x) > 0 while dVj ≡ gx(j, p(j), T, x) = 0 if j is a different type

than i. A small change dVi > 0 preserves the agent order as captured by p(·). To obtain

the inequality effects caused by x, we then simply need to evaluate (8). The following result

shows that all agents except i lose if dVi > 0, where the loss is more pronounced the stronger

the agent type is.

Proposition 16 The idiosyncratic change dVi > 0 increases pi, while market shares pj of

all other agent types decrease proportionally.

5.4 Market-share depending Valuations

We next study two formally more complex variants of payoff function (21) in such that the

value V (i) per unit of market share now depends on the level of market share p(i). Such a

situation arises, e.g., if the action ti has a direct impact on V (·), as our first application to

advertising illustrates.

40See, e.g., Blanchard (2004) or Maoz (2010) for leisure preferences in the US relative to Europe. Regarding
income inequality, see, e.g., Federal Reserve.
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5.4.1 Attention and Persuasion in Advertising: Market Concentration Effects

In this model, we study how firm-side market shares evolve depending on two key aspects

of advertising: attention-seeking and persuasion. The latter captures the extent to which

advertising can alter the willingness-to-pay of attentive consumers (Bagwell, 2007). Regard-

ing the former, the competition for attention takes on the form of a contest with endogenous

prize value V (·) if attention is an exhaustible and rival resource (Hefti, 2018).

Let ti quantify firm i’s advertising intensity, which affects its market share pi = ti/T ,

T =
∫
tidi, due to attracting consumer attention, and possibly also the willingness-to-pay

V (·) of attentive consumers. Specifically, we let Vi(ti) = αti + β summarize how much

each firm earns from its attentive consumers. The parameter β > 0 corresponds to a basic

willingess-to-pay, while α ≥ 0 is the “rate of persuasion”, capturing how advertising at

intensity ti converts into revenue from attentive consumers; if α = 0, advertising only serves

to attract attention. Expressed as a competition for market shares, the payoff then is

Πi = pi (αpiT + β)− Φ(i, piT ), (34)

where Φ(·) are advertising expenditures. Formally, (34) is a variant of (21) where, other than

in previous applications, the value function Vi(·) now depends on pi and T . To make the

inequality effects implied by the above two aspects of advertising most evident, we assume

neutral costs Φ(·) = ci(piT )γ , γ ≥ 2. Further, ci is increasing over agent types, such that

p(·) is Class I, and we assume parameter values such that ti > 1 ∀i in equilibrium.41

The parameters α and γ determine the role of advertising for extracting consumer budget.

Specifically, γ quantifies how subtle market shares respond to individual changes of adver-

tising effort. A larger value of γ means that it is harder for the firms to influence consumer

attention to their favor. More generally, high values of α, γ capture a situation, where adver-

tising increases firm revenue mostly by persuading attentive consumers, while it is very hard

for firms to increase their amount of attentive consumers. By contrast, low values of α, γ

mean that a firm can best increase its revenues by competing harder for consumer attention,

while the scope for increasing the willingness-to-pay of attentive consumers is small. The

next result shows how these two aspects of advertising affect market concentration.

Proposition 17 An increase in the rate of persuasion (dα > 0) induces an OR of pi, while

less attentional control (dγ > 0) induces an IR of pi.

Proposition 17 offers two rationales how advertising may affect market inequality. First, mar-

ket concentration is larger if advertising works mostly in a persuasive manner. Intuitively, an

increase in the worthiness of attracting attention benefits the firms with the largest market

shares most. Such firms thus have the strongest incentive to increase the attention they

receive. Second, market concentration must also be larger if firms have more influence on

their chances to attract attention. This occurs because firms with lower costs can better ex-

ploit their cost advantages, the more sensitively consumer attention responds to advertising.

41γ ≥ 2 assures the strong quasiconcavity of Π(i) in pi. Further, the requirement that ti > 1 ∀i simplifies
the proof of Proposition 17, and can be always assured, e.g. if ci is sufficiently low or β sufficiently high.
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In sum, market concentration due to advertising should be large if consumer attention and

willingness-to-pay both respond sensitively towards advertising.

5.4.2 Balancing the Success Chances in Two-Prize Contests

Our last application studies the inequality effects of introducing or modifying a second prize

to a contest. This is relevant, e.g., for sport economics, where assuring a certain “competitive

balance” between different contestants or teams is a desired aspect of tournament design

(Szymanski, 2003).42

Consider a contest with a prize V1 > 0 for the winner, and possibly a prize V2 ≥ 0 for

the second place, where V1 ≥ V2. To focus on the inequality effects induced by multiple

prizes, we assume neutral costs Φ(i, ti) = cit
γ
i , where ci is increasing over agent types. The

probability to win the first prize is pi = ti/T while, by sampling with replacement, (1− pi)pi
is the chance of obtaining the second prize.43 These formulas are based on a finite number

N of atomistic agents.44 Expressed in terms of market shares, the payoff function then is

Πi = piV1 + (1− pi)piV2 − c(i) (piT )γ . (35)

Formally, (35) is a variant of (21), where the value per unit of market share, Vi(·) = V1 +

(1 − 2pi)V2, depends on the level of market share pi. The following proposition shows how

the prize scheme (V1, V2) affects the distribution of the chances pi to seize the first prize, or

to seize any prize wi ≡ pi + (1− pi)pi.

Proposition 18 V1 is inequality preserving if V2 = 0. If dV1
V1

> (<)dV2V2 , an OR (IR) of the

chance to win the first prize pi results, which equally applies to the chance of winning any

prize wi if pi < 1/2 ∀i. If dV1
V1

= dV2
V2

, pi is invariant to the allocation of prize money.

Proposition 18 includes the conventional case of a single-prize contest (set V2 = 0), in which

case V1 must be inequality preserving (given neutral costs), reflecting that V1 is a level

variable. This changes, however, if V2 > 0, in which case neither prize, nor the prize sum

V1 + V2 is a level variable, and therefore must be inequality relevant. Moreover, the two

prizes have diametrically opposite effects on inequality, as an increase of the first (second)

prize implies more inequality (equality) in the first-prize winning chances pi, and likely also

in the overall winning chances wi.

With respect to designing a balanced contests, such as a sports tournament, Proposition

18 suggests that if the overall prize money V = V1 + V2 increases, then all prizes must

42Note that our analysis differs from the literature on contest architecture (see Konrad, 2009) as we seek to
elicit the full distributive effects of a change in the prize structure, rather than identifying the reward schemes
that maximize the aggregate efforts or the winning effort.

43Assuming sampling with replacement makes the model tractable, and at least approximates the case of
sampling without replacement. By sampling with replacement we mean that if agent i did not win the first
prize, for which the chance was pi = ti/T , then i competes again with the same fixed effort and the same
agent pool for the second prize, i.e., the agent who won the first prize was not removed from the pool. Thus,
the chance of i to win the second prize, given that i has not won the first prize, also corresponds to ti/T .

44Formally, the set of agents is I ≡ {1/N, .., n/N, ...., 1}, such that i ∈ [0, 1] for any i ∈ I, and pi ∈ [0, 1] is
a probability mass function rather than a density. As mentioned earlier, the inequality results from Section
3 pertaining to Class I densities also apply if pi is a probability mass function defined over a given finite set
of atomistic agents.

37



increase proportionally (dV1/V 1 = dV2/V2) if winning odds are to remain constant. Likewise,

Proposition 18 shows how changing the composition of a given prize budget V ≡ V1 +V2 > 0

affects the dispersion of success chances. Because dV1 < 0 and dV2 > 0 both imply an IR,

ceteris paribus, it follows that an even prize split V1 = V2 = V/2 must generate the most

balanced contest, while setting V1 = V (a single-prize contest) yields the most imbalanced

contest. In addition, there is an effort-equality trade-off because aggregate effort T =
∫
tidi

decreases if V2 ≡ V − V1 increases.45

6 Conclusion

When can changes in market conditions be exploited by certain agents to increase their

equilibrium market or payoff shares, and how does the overall dispersion of these quanti-

ties change? We tried to study such questions without imposing strong assumptions on the

number of ex ante different agent types, nor on the ex ante distributions of heterogeneity

parameters. Our approach represents a competitive situation as a competition for market

shares. We see at least two merits offered by our procedure.

First, the reformulation as a competition for market shares helps us to identify common

structures in different competition models, allowing for a unified inequality analysis. For ex-

ample, we find that perfect competition, monopolistic competition and homogeneous-valued

contests are variations of a general form of symmetric competition. Therefore, these models

deliver identical inequality predictions for comparable parameters.

In this vein, our analysis clarified that the source of the agent heterogeneity regarding

the technology for “producing” market shares, such as its returns to scale, is decisive if and

how equilibrium inequality changes. For example, in market competition with production

the firm-side returns to scale are crucial for the inequality effects triggered by core variables,

such as total income, industry-wide efficiency, or a sales tax. Such variables induce inequality

effects iff firms differ in their returns to scale – a finding, which we deem particularly relevant

for industries such as movie or music. It is conceivable that companies as Disney or Sony

feature more favorable scale effects than smaller studios. Then, our analysis predicts that a

growing consumer income, or common efficiency gains, lead to quantity growth paired with

an increasing firm-side market inequality. Such patterns fit empirical evidence indicating

that “Blockbuster firms” have become more successful over the last decades, and generally

complements preference-based explanations for an observed increasing market inequality.

Further, we showed that if all firms within a given sector have identical scale effects, but

these scale effects can differ across sectors, then sectors are inequality-ranked, where those

with stronger scale effects feature more market inequality, ceteris paribus. Our approach

allowed to identify such predictions throughout different competition models, speaking for

their robustness.

45To see that T (V1, V − V1) decreases in V1, use V2 = V − V1 in (54) and note that ∂
∂V1

p(i) > 0. This is
related to Clark and Riis (1998), who consider the case of a multi-prize contest with symmetric contestants.
Their main concern is about the aggregate effort, and they find that highest aggregate effort requires to award
only one prize.
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The above insights appear relevant given the empirical evidence, both at the firm- and the

sector-level, documenting the prevalence of heterogeneous scale effects. Moreover, our results

strongly point towards a connection between the empirical evidence on heterogeneous scale

effects and the one on an increasing firm-side market inequality, which to our knowledge has

not yet been empirically explored.

Second, our inequality tools delivered novel predictions in the context of specific applications.

The tractability of the inequality analysis spurred by our representation as a competition for

market shares allowed us to swiftly derive these insights as corollaries to more abstract prin-

ciples we established earlier. The application to monopolistic competition may help to make

the analytical merits of our approach evident, where we were able to tractably go beyond the

standard assumption of constant marginal costs. We further showed that our approach can

be applied to analyze how market inequality within the firm- and consumer-sides depends on

common market conditions in general equilibrium applications. For instance, we studied the

inequality effects induced by the introduction of an “unconditional basic income”, a change

in productive efficiency, or a change in the propensity to work. We thereby found that the

inequality effects are governed by the same principles as in contests with idiosyncratic valu-

ations.

Our inequality approach can be extended to other applications, some of which we indicated

in text.46 Further, this article may provide guidelines for studying normative questions

related to inequality. An organizational planer may need to decide which instruments, wage

schemes or prize structures to implement for obtaining a certain distributional outcome or a

certain level of market concentration. Policy makers frequently are required to balance the

chances of various firms for winning a grant, patent or a monopoly franchise. Likewise, sports

tournament designers often care about finding a reward scheme that makes the competition

most unpredictable. Such planers need to know which inequality effects can be induced by

various policy instruments under the respective circumstances, which our approach can help

to identify. Finally, the fact that, on most occasions, we were able to elicit the inequality

effects without the need to specify the precise details of the ex ante heterogeneity can be of

interest to applied work, as the precise extent of the ex ante heterogeneity may be unknown

to the econometrician.
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A Proofs (for Online Publication)

Proof of Proposition 1 We first prove that p(i) > (≥)p(j) if j > i. Let p > 0 and

note that p(i) R p ⇔ g(i, p, T ) R ϕ(i, p, T ) because, by strong quasiconcavity (A1), g(i, ·, T )

must intersect ϕ(i, ·, T ) from above at p(i) (see Figure 1 for an illustration). Further, in

equilibrium

g(i, p(j), T ) > (≥)g(j, p(j), T ) = ϕ(j, p(j), T ) > (≥)ϕ(i, p(j), T ) (36)

by Assumption 2 and (4). Hence g(i, p(j), T ) ≥ ϕ(i, p(j), T ) and thus p(i) ≥ p(j), where

these two inequalities are strict if at least one inequality in (36) is strict. It also follows that

p(i) = p(j) if all inequalities in (36) are equalities, which proves the last claim of Proposition

1. Let B(i, p, T ) ≡ pV (i, p, T ). The claims about payoffs holds because

Π(i) = B(i, p(i), T )− Φ(i, p(i), T )

≥ B(i, p(j), T )− Φ(i, p(j), T ) > (≥)B(j, p(j), T )− Φ(j, p(j), T ) = Π(j),

where the first inequality follows from optimality and the second from Assumption 2. �

Proof of Lemma 1 For each i ∈ I, define z(i, p, T ;x0) ≡ g(i,p(i),T ;x0)
ϕ(i,p(i),T );x0) . Thus, using short-

hand notation, (6) is z(i) = z(j). Moreover, (4) implies that z(i) = 1 ∀i in equilibrium.

Total differentiation of this equation yields

dp(i)zp(i) = dp(j)zp(j) + r, r ≡ (zT (j)− zT (i)) dT + (zx(j)− zx(i)) dx.

Defining κi ≡ zp(i)p(i) and ∆i ≡ dp(i)
p(i;x0) , the previous equation gives

∆i = ∆j
κj
κi

+
1

κi
r. (37)

Noting that

r =

((
gT (j)

g(j)
− ϕT (j)

ϕ(j)

)
dT +

(
gx(j)

g(j)
− ϕx(j)

ϕ(j)

)
dx

)
−
((

gT (i)

g(i)
− ϕT (i)

ϕ(i)

)
dT +

(
gx(i)

g(i)
− ϕx(i)

ϕ(i)

)
dx

)

and

κi = zp(i)p(i) =
gp(i)p(i)

g(i)
− ϕp(i)p(i)

ϕ(i)
= εi − ηi,

(37) becomes

∆i = ∆j
ηj − εj
ηi − εi

+
1

ηi − εi
(−r) = ∆jkij +Rij

which yields (8). The claims that ηi > 0 and εi < ηi follow from strong quasiconcavity (A1)

in Assumption 1. �
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Proof of Theorem 1 We prove the first claim by contradiction. Hence suppose that

R = 0 ∀i, j ∈ [0, 1] and any x ∈ X, but ∃j ∈ (0, 1) such that ∆j 6= 0 (equivalently dp(j) 6= 0).

Because in equilibrium the condition

∫
∂p(s;x)

∂x
ds = 0 (38)

must hold, we can then suppose, wlog, that ∆j > 0 for some j ∈ (0, 1). By (8) we must have

∆i > 0 for all i < j, and because of (38) ∃j′ ∈ (0, 1), j′ > j, such that ∆i < 0 for all i > j′.

Take i < j and i′ > j′. Then ∆i > 0 but also ∆i = kii′∆i′ < 0, contradiction. Turning to

the second claim, note that if R 6= 0 for some i, j then ∆i = 0 ∀i ∈ [0, 1] is impossible by

(8). Hence ∀x ∈ X ∃i: ∆i(x) 6= 0, or equivalently ∂p(i;x)
∂x 6= 0, and therefore ∃δ > 0 such that

p(i;x′) 6= p(i;x) for x′ ∈ (x− δ, x+ δ). �

Proof of Theorem 2 Step 1: We prove the first claim, restricting attention to the OR-

case (the IR-case is similar). Because R(x0) is uniformly positive, ∃i ∈ (0, 1): ∆i(x0) > 0 by

the proof of Theorem 1. By the integral condition (38), there then must also be i′ ∈ (0, 1):

∆i′(x0) < 0. It then follows from (8) that i0 = sup{i ∈ [0, 1] : ∆i(x0) > 0} ∈ (0, 1),

i1 = inf{i ∈ [0, 1] : ∆i(x0) < 0} ∈ (0, 1) and i0 ≤ i1. For any i < i0: ∆i(x0) > 0 and

hence ∂p(i;x0)
∂x > 0. This derivative condition implies that ∀i < i0 ∃δi > 0: p(i;x) > p(i;x0)

∀x ∈ (x0, x0 + δi).

Step 2: Because p(·;x) is Class I, there is a finite number of equivalence classes to the

left of i0, and we only need to consider a single i, with corresponding δi, for each step of

p(·;x) to the left of i0. Let δ0 > 0 be the smallest value of these δi. We have thus shown

that ∃ i0 ∈ (0, 1) such that for any given x ∈ (x0, x0 + δ0) we have p(i;x) > p(i;x0) for

i < i0. A similar argument shows that we can find δ1 > 0 such that ∃ i1 ∈ (0, 1) such that

p(i;x) < p(i;x0) for i > i1 and any x ∈ (x0, x0 +δ1). Let δ ≡ min{δ0, δ1} > 0. Summarizing,

the arguments so far show that ∃i0, i1 ∈ (0, 1), i0 ≤ i1 such that for x ∈ (x0, x0 + δ) we have

p(i;x) > p(i;x0) for i < i0 and p(i;x) < p(i;x0) for i > i1. If ∆i 6= 0 for any i ∈ (i0, i1] we

must have i0 = i1 and the proof is complete. Now suppose that ∃m ∈ (i0, i1]: ∆m(x0) = 0.

Then (8) implies that ∆i > 0 for any mB i, and ∆j < 0 for any j Bm. But this shows that

there can be at most one step of p(·;x) for which ∆m(x0) = 0. It follows that independent

of whether p(m;x′) >=< p(m;x) for x ∈ (x0, x0 + δ), p(·;x′) must be OR of p(·;x0).

We now prove the second claim. By step 1 and the global uniform positivity of R, we

must have ∆0(x) > 0 and thus ∂p(0;x)
∂x > 0 for any x > x0 (note that this result is valid also

if p(·) is of Class II), hence p(i;x′) > p(i;x0) ∀i ∈ [0]. Similarly, ∆1(x) < 0 for all x > x0,
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hence p(i;x′) < p(i;x0) ∀i ∈ [1]. �

Proof Lemma 2 u′v ≥ uv′ hence also u′v − uv ≥ uv′ − uv or u′ − u ≥ u
v (v′ − v) > v′ − v.

�

Proof of Theorem 3 We only prove the OR case, and show that (12) implies condition

(11). Noting the equivalence between (12’) and (12), we define f(x; i, j) ≡ p(i;x)
p(j;x) . If p(·) is

Class II and (12’) is satisfied, then f(x; i, j) > f(x0; i, j) whenever x > x0, and the claim

follows from the fact that condition (11) induces a monotonic rotation. If p(·) is Class I, then

p(·;x) is piecewise constant for any given x ∈ X, with a finite number of downward jumps.

If (12’) is satisfied for any two i, j ∈ (0, 1) with j B i that are not discontinuities of p(·;x),

then f(x; i, j) > f(x0; i, j) follows for any such i, j and any x > x0, proving the claim also

for Class I densities. �

Proof of Corollary 1 Define dp(i;x) ≡ ∂p(i;x)
∂x . If x is inequality preserving, then we must

have dp(i;x) = 0 ∀i ∈ I and ∀x ∈ X. But as

∂

∂x

(
p(i;x)

p(j;x)

)
= 0 ⇔ dp(i;x)

p(i;x)
=
dp(j;x)

p(j;x)
(39)

we immediately obtain that ∂
∂x

(
p(i;x)
p(j;x)

)
= 0 , ∀i, j ∈ I and ∀x ∈ X whenever x is inequality

preserving. In the other direction, suppose that ∂
∂x

(
p(i;x)
p(j;x)

)
= 0 ∀i, j ∈ I and ∀x ∈ X applies.

Then, (39) implies that dp(i;x)
p(i;x) = k(x) > 0 ∀i ∈ I, or equivalently dp(i;x) = k(x)p(i;x).

Because p(·;x) is a density, it follows that
∫
I dp(s;x)ds = 0 as well as

∫
I p(s;x)ds = 1.

Integrating dp(i;x) = k(x)p(i;x) on both sides delivers that k(x) = 0, which assures that

dp(i;x) = 0 ∀i ∈ I and any x ∈ X, meaning that x must be inequality preserving. �

Proof of Proposition 2 We only prove the first claim as the remaining claims are proved

identically. Recall from the equivalence class argument in step 2 of the proof of Theorem 2

that, because R is uniformly positive, there is a finite number of leading agents with ∆i(x0) >

0, possibly a single ∆m(x0) = 0 and a finite number of weaker agents with ∆j(x0) < 0. Define

f(i, j, x) = p(i,x)
p(j,x) . If ∆i′(x0) ≥ 0 then any i with i′ B i has ∆i(x0) > ∆i′(x0) by (8) and

the fact that kij ≥ 1. Hence we must have ∂f(i,i′,x0)
∂x > 0. If ∆i′(x0) < 0 but ∆i(x0) > 0,

then obviously ∂f(i,i′,x0)
∂x > 0 Thus for any pair (i, i′) as described above ∃δi,i′ > 0 such that

f(i, i′, x′) > f(i, i′, x0) for all x′ ∈ (x0, x0 + δi,i′). The proof is completed by letting δ > 0 be
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the smallest among these (finitely many) δi,i′ and δ0, δ1 as in the proof of Theorem 2. �

Proof of Theorem 4 The claim follows from Theorem 3 because, by (8), if R(x) is globally

uniformly positive (negative) and k = 1, then ∆i(x) > (<)∆j(x), for any jBi and any x ∈ X,

and hence condition (12) holds. �

Proof Theorem 5 Define gx(i) ≡ ∂g(i,p(i),T (x);x)
∂x and ϕx(i) ≡ ∂ϕ(i,p(i),T (x);x)

∂x . Then, by (8),

A(i) = ∂xg(i)
g(i) −

∂xϕ(i)
ϕ(i) .

(If). Suppose that g(i)
ϕ(i) = u(i, p(i))H(T (x);x) ∀x ∈ X. Then Ln (g(i)) − Ln (ϕ(i)) =

Ln (u(i, p(i))) + Ln (H(T (x);x)) and differentiation wrt x shows that A(i) = HTT
′(x)+Hx

H(T (x);x) ,

which is independent of (i, p(i)). Thus A(i)−A(j) = 0, or equivalently Rij = 0 ∀i, j, showing

that x is inequality preserving by Theorem 1.

(Only if). Suppose that Rij = 0 ∀i, j and any x ∈ X. Then equivalently, A(i) = A(j), ∀i, j

and any x ∈ X, which implies that A(i) must be a function that does not depend on (i, p(i)),

i.e., A(i) = h(T (x);x) in general. Thus gx(i)
g(i) −

ϕx(i)
ϕ(i) = h(T (x);x) ∀x ∈ X, and integration

wrt x implies that g(i)
ϕ(i) is generally of the form g(i)

ϕ(i) = u(i, p(i))eH(T (x);x), where H(T (x);x)

is the anti-derivative of h(T (x);x). �

Proof of Lemma 4 If Φ(i, t) = c(i)tγ , then ϕ(i, p(i), T ) = γc(i)p(i)γ−1T γ in the trans-

formed model, showing the multiplicative separability of ϕ(i) in (i, p) and T . For the converse,

note that

ϕ(i) ≡ ∂Φ(i, p(i)T )

∂p(i)
= h(i, p(i)T )T,

where h(i, p(i)T ) ≡ Φt(i, p(i)T ). Then

ϕT (i)

ϕ(i)
=
ht(i, p(i)T )p(i)

h(i, p(i)T )
+

1

T
, (40)

where ht denotes the partial derivative with respect to the 2nd argument of h(i, ·). If costs are

neutral, then ϕT (i)
ϕ(i) = ϕT (j)

ϕ(j) ∀i, j and any p(i), T > 0 or, equivalently, ht(i,t(i))t(i)h(i,t(i)) = ht(j,t(j))t(j)
h(j,t(j))

∀i, j and any t(i) > 0, by (40), which implies that ht(i,t(i))t(i)
h(i,t(i)) = χ (a constant) ∀i, t(i). This

implies, by integration wrt t(i), that necessarily h(i, t(i)) = w(i)t(i)χ, and the fact that∫
h(i, t)dt = Φ(i, t) gives Φ(i, t(i)) = w(i)

χ+1 t(i)
χ+1. �

Proof of Proposition 3 The first claim directly follows from Theorem 5. For the converse,

note that Rij = 0 ∀x ∈ X by Theorem 1, because x is inequality preserving. Thus, as

T ′(x) 6= 0, this shows that A(i) = A(j) ∀i, j, which in turn implies that ϕT (i,p,T )
ϕ(i,p,T ) = h(T )
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∀i, T . Integrating with respect to T shows the multiplicative separability of ϕ(i) in (i, p) and

T . �

Proof of Proposition 4 In text. �

Proof of Corollary 2 Let jB i. The power function property implies that ε(i) = ε(j) = α

in (7). Then, kij =
ηj−α
ηi−α , and the fact that p(i) = t(i)/T further implies that ψ(i) = ηi ∀i.

Thus, as T ′(x) > 0 we have Rij > (<)0 ⇔ ψ(j) > (<)ψ(i) ⇔ kij > (<)1. This shows

that x induces an OR (IR) if ψ(j) > (<)ψ(i), and the respective rotation must be partially

monotonic by Proposition 2. �

Proof of Proposition 5 Recall from (8) that kij ≡ ηj−εj
ηi−εi , where ηi ≡ ϕp(i)p(i)

ϕ(i) and εi ≡
gp(i)p(i)
g(i) for any i. Suppose that (17) holds. Differentiation and the fact that g(i) = ϕ(i) in

equilibrium yields
ϕp(i)p(i)

ϕ(i)
− gp(i)p(i)

g(i)
= ξ(T ;x)

in equilibrium ∀i, which shows that ηi − εi = ξ(T ;x) ∀i. This assures that ηj − εj = ηi − εi

∀i, j. Thus kij = 1, and the claim about monotonic rotations follows from Theorem 4. For

the converse, fix any T > 0 and any x, and let ηj − εj = ηi − εi for any given i, j. This

implies that ηi − εi must be entirely independent of the agent index ∀i, i.e.,

ηi − εi =
ϕp(i)p(i)

ϕ(i)
− gp(i)p(i)

g(i)
≡ c(T ;x)

for any i and any given p > 0. Integration with respect to p then shows that

ϕ(i, p, T ;x)

g(i, p, T ;x)
= z(i, T ;x)pc(T ;x),

which corresponds to (17). �

Proof of Proposition 6 If Π(i) = U(i, p(i))v(T ;x)− Y (i, p(i))z(T ;x), then

g(i) ≡ ∂U(i, p(i))v(T ;x)

∂p(i)
= u(i, p(i))v(T ;x),

where u(i, p(i)) ≡ ∂U(i,p(i))
∂p(i) . This shows that g(i) is multiplicatively separable in (i, p(i)) and

(T, x). As the same holds for ϕ(i), the ratio g(i)
ϕ(i) must also be multiplicatively separable,

and therefore p(·) must be invariant to x by Theorem 5. Consider next benefit shares b(·).

Corollary 1 implies that b(·) is invariant to x iff the ratio b(i;x)
b(j;x) does not depend on x for any
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i, j. Multiplicative separability assures that this ratio is of the form b(i;x)
b(j;x) = z(i,p(i))

z(j,p(j)) , which

must be invariant to x as p(·) is invariant to x. The claim about e(·) is proved identically. �

Proof of Lemma 5 For the first claim, to see the “if” (the “only if” is obvious), suppose

by contradiction that, wlog, there is i for which q(i) > r(i). But because q(i)
r(i) = q(j)

r(j) ∀j 6= i,

it follows that also q(j) > r(j) ∀j 6= i, which is impossible as both densities must integrate

to one. For the remaining claim, suppose that q(i)
q(j) >

r(i)
r(j) ∀j B i. Because q(·) and r(·) both

are SSD densities with the same equivalence classes [i], it follows from Definition 9 that q(·)

must be a monotonic OR of r(·) (and similar for the IR case). �

Proof of Proposition 7 Follows from Lemma 5 and the fact that s(i)
s(j) = b(i)

b(j) = e(i)
e(j) . �

Proof of Proposition 8 1) follows from Lemma 5 as pi
pj

= bi
bj

, ∀i, j. 2) Proposition 7

shows that s(i) = b(i) = e(i) ∀i. Moreover, note that (27) is a version of (18) with α = 1

and ĝ(i, T ;x) ≡ V (T ;x). Thus (20) shows that si
sj

= pi
pj

, and pi = si ∀i follows from Lemma

5. �

Proof of Corollary 3 If x only affects V (·), then x must be a level variable, and the first

claim follows from Proposition 3, noting that T ′(x) 6= 0, ∀x ∈ X. Let x be a cost-side condi-

tion, and thus also T ′(x) > 0 ∀x ∈ X as noted in the main text. Multiplicative separability

means that the function ϕ(·) verifies ϕ(i) = u(i, pi)w(T ;x). Thus, the equilibrium equation

(4) g(i) = ϕ(i) can be equivalently reformulated as

ĝ(i;x) ≡ V (T )

w(T ;x)
= u(i, pi) ≡ ϕ̂(i)

iff ϕ(i) is multiplicatively separable, which implies that x satisfies the definition of a level

variable in the new equilibrium system. Thus, the second claim follows from the first. �

Proof of Corollary 4 As T ′(x) > 0 ∀x ∈ X, the claim follows from Proposition 4. �

Proof of Corollary 5 The first claim directly follows from Corollary 3 noting that ϕ(i) is

multiplicatively separable in (i, p) and (T, x) iff γi = γ ∀i. For the second claim, suppose that

equilibrium market shares p(·) satisfy γi < γj ⇔ pi > pj ⇔ j B i, ∀x ∈ X. By presumption,

marginal costs are of the form ϕ(i) = h(i)p
z(γi)
i w(i, T )u(x), where either z(γi) = γiη

η−1 − 1 for

monopolistic competition, and else z(γi) = γi− 1 by (23). In the latter case, if x only enters

V (·) (hence u(x) = 1), i.e., is a level variable, the claim follows from Corollary 2 as T ′(x) > 0
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(as Vx > 0), pi = ti/T and ψi = γi − 1, and thus ψi < ψj ∀j B i. A similar reformulation as

in the proof of Corollary 4 (dividing equation (4) by u(x)) shows the claim if x is a cost-side

condition instead.

In case of monopolistic competition, (4) yields

g(i) ≡ I = wiI
γi
γiη

η − 1
p
γiη

η−1
−1

i T
γi
η−1 ≡ ϕ(i), wi ≡

ci
ρ
r
− γiη

η−1

i . (41)

Note that x = ρ is the only parameter that enters the cost in a multiplicative separable way

as required by Corollary 5 given that γi 6= γj . Evaluating (9) for (41) and x = ρ gives

sign(Rij) = sign (A(i)−A(j)) = sign

(
(γj − γi)

T ′(ρ)

T

)
, j B i, (42)

where T ′(ρ) > 0. Because γj > γi, this assures that Rij is uniformly positive, which implies

that dρ > 0 induces an OR of p(·) by Theorem 2. To see that this OR must be partially

monotonic, note from (8) and (41) that kij =
ηj
ηi

, where ηs = γsη
η−1 − 1, which further implies

that kij > 1 uniformly ∀j B i as γi < γj ∀j B i. This exactly amounts to the condition of

Proposition 2 that assures a partially monotonic rotation in the sense of (13). �

Proof of Corollary 6 Let j B i. If ϕ(i) = γcip
γ−1
i T γ , then

pi
pj

=

(
cj
ci

) 1
γ−1

.

As j B i the ratio pi
pj

must strictly decrease in γ, and the claim follows from Theorem 3. In

case of monopolistic competition, (41) shows that

pi
pj

=

(
cj
ci

) η−1
η(γ−1)+1

(
ri
rj

) γη
η(γ−1)+1

, (43)

which also decreases strictly in γ if j B i, and the claim also follows from Theorem 3. �

Proof of Proposition 9 The claim follows from (43) and Theorem 3, because pi
pj

is strictly

increasing in η whenever j B i. �

Proof of Proposition 10 Note that the optimality condition (41) can be stated as

I1−γi = wi
γiη

η − 1
p
γiη

η−1
−1

i T
γi
η−1 (44)
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The procedure from Section 3.4 can be used to verify that T ′(I) < 0. Applying (15) to this

equation directly shows that A(i)−A(j) = 0 ∀i, j iff γi = γ ∀i, which proves the first claim

by Theorem 1. For the remaining claim, let j B i and the ex ante heterogeneitsy be such

that pj < pi whenever γj > γi. Further, plugging the fact that

qi = Ipi
η
η−1T

1
η−1 (45)

into (41) and rearranging yields

η − 1

η

(
I

T

) 1
η

=
γi
ρ
q

(γi−1)+ 1
η

i , (46)

and thus

q
(γi−1)+ 1

η

i

q
(γj−1)+ 1

η

j

=
γj
γi
. (47)

Now, because T ′(I) < 0, (46) implies that dqi > 0 ∀i. As dqi > 0 ∀i and γj > γi, (47) implies

that the ratio qi
qj

must also increase strictly if dI > 0. By (45), qi
qj

=
(
pi
pj

) η
η−1

, which shows

that the ratio pi
pj

increases in I by the previous step. This proves the monotonic OR of p(·)

by Theorem 3. �

Proof of Proposition 11 From pi = rηP 1−η
i /T we first observe that Pi is increasing over

firm types, and second that Pi
Pj

=
(
pj
pi

) 1
η−1

. Thus, the first claim follows from Corollary 1.

For the second claim, let j B i, and note that the ratio pi
pj

must strictly increase in I and ρ

by the proof of Proposition 10. As π(·) is increasing, the fact that Pi
Pj

is decreasing in I and

ρ implies that π(·) must rotate (monotonically) counter-clockwise, by the same logic that an

increasing ratio pi
pj

causes a monotonic OR of p(·) (i.e, a clockwise rotation of p(·)). �

Proof Proposition 12 As costs are neutral, (15) and the definition of dV (i) imply that

signRij = sign (A(i)−A(j)) = sign

(
dV (i)

V (i)
− dV (j)

V (j)

)
, (48)

and the first claim follows from Theorem 1. For the second claim, note from (28) that the

function ϕ(i)
g(i) verifies

ϕ(i)

g(i)
=

γciT
γ

V (i, T ;x)
pγ−1
i ,

which satisfies (17). Thus, by Proposition 5, dx > 0 induces a monotonic OR (IR) if

Rij > (<)0, ∀j B i. The second claim follows as (48) implies that Rij > (<)0 for any j B i
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iff (29) holds. �

Proof Proposition 13 Regarding firms, optimality condition (30) and w = 1 show that

ρP = γcip
γ−1
i T γ−1. This equation shows that ρ must be inequality preserving (due to

multiplicative separability) while dγ > 0 must induce a monotonic IR of p(·), independent

of any general equilibrium effects. Regarding consumers, the normalization w = 1 requires

us to set dw = 0 in (32). Further, equation (31) and w = 1 imply that PT = ω + Π in

equilibrium, which together with the fact that Π = PT γ−1
γ yields Π = (γ − 1)ω. Thus

Π′(ρ) = 0, which implies that dV (ic)/V (ic) = dV (jc)V (jc) for any ic, jc, which shows that

ρ must be inequality preserving by Proposition 12. By contrast, the fact that Π′(γ) > 0

implies that the sign of sic/sjc − ωic/ωjc becomes decisive for the inequality effects induced

by γ, and the remaining claim formally follows again from Proposition 12. �

Proof Proposition 14 Wlog, we normalize ρ = 1. Consider a quantity tax, such that

τT is total tax income. Then, w = 1 and integrating (31) shows that PT = ω + Π + τT .

Together with Π =
∫

Πidi = (P − τ)T −
∫

Φ(i, piT )di, this implies that ω =
∫

Φ(i, piT )di.

The last equation, in turn, implies that T ′(τ) = 0 in equilibrium. To see this, note from this

equation that 0 =
∫
ϕ(i, piT ) (p′i(τ)T + piT

′(τ)) di, where by (30) ϕ(i, piT ) = P − τ ∀i in

equilibrium. The claim follows by noting that always
∫
p′i(τ)di = 0 and

∫
pidi = 1. Then, the

fact that T ′(τ) = 0 implies, by (30), that τ must be inequality preserving on the firm-side.

This further implies, again by (30), that P ′(τ) = 1, which in turn shows that Π′(τ) = 0.

Individual consumer income is ωic + sicΠ + τT . Thus, by the logic of (32), dτ > 0 induces a

monotonic IR of pc(·) if (ωic −ωjc) + (sic − sjc)Π > 0, ∀jcB ic, which holds by presumption.

If τ is a sales tax, such that (1− τ)PT is total tax income, repeating exactly the same steps

as above completes the proof. �

Proof of Proposition 15 Note that α, ρ, τ are inequality preserving for firms. Equilibrium

profits are Πi = (1−τ)piPT
γ−1
γ , and thus aggregate profits are Π ≡

∫
Πidi = (1−τ)PT γ−1

γ .

The equilibrium equation determining consumer market shares (T c = T ) is

α(1 + sicΠ + τPT ) = pdicTP, (49)

hence PT = α(1 + Π + τPT ) by aggregation. Substituting the expression for Π yields

Π =
α(1− τ)(γ − 1)

γ(1− α) + α(1− τ)
, PT =

αγ

γ(1− α) + α(1− τ)
. (50)
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Further, the firm-side optimality condition is (1− τ)PT = ciγp
γ−1
i T γ/ρ, which implies that

T γ =
(1− τ)ρ

K

α

γ(1− α) + α(1− τ)
, K ≡

∫
cip

γ−1
i di. (51)

Equation (49) is of form (28), such that a monotonic OR (IR) of consumption shares pcic (or

leisure or income shares) occurs if

(sic − sjc) (dΠ + τ̂ dΠ−Πdτ̂) > (<)0, τ̂ ≡ τPT, (52)

whenever jc B ic by Proposition 12.

Regarding dρ > 0, (51) shows that Π′(ρ) = τ̂ ′(ρ) = 0, which by (52) implies that ρ must be

inequality preserving on the consumer-side. As also T ′(ρ) > 0 by (51) and qic = pcicT , dqic > 0

for each consumer follows, which implies that absolute consumption gaps qic − qjc , jc B ic,

must increase by Lemma 2 as qic/qjc remains constant. Nominal income mic = α(1+sicΠ+τ̂)

remains constant, but real income mic/P increases as P ′(ρ) < 0 by (50) and (51). As (real)

income shares remain constant, it again follows that the absolute gaps of real income must

increase.

Regarding dα > 0, (50) shows that Π′(α), τ̂ ′(α) > 0. Let jc B ic. For (52) to hold, we

thus require that Π′(α)
Π > τ̂ ′(α)

1+τ̂ , which by (50) is equivalent to γ
γ−1 > α(1 − τ). As the last

inequality is satisfied, we conclude that dα > 0 induces a monotonic OR of pic . Further,

larger production T ′(α) > 0 follows from (51), which necessarily requires an increase in total

labor supply. Finally, (50) and (51) imply that P ′(α) > 0, which implies that real wages

(= 1/P ) must fall.

Regarding dτ > 0, (50) shows that Π′(τ) < 0 but τ̂ ′(τ) > 0, which by (52) implies an IR

of pcic . Further, (51) shows that T ′(τ) < 0; hence total production and total labor supply

decreases. �

Proof of Proposition 16 We prove the claim by applying Lemma 1. First, we note that

kmn = 1 ∀m,n ∈ [0, 1]. Second, we note that Rmn = 0 whenever m,n 6= i, and Rij = dVi
Vi

> 0

whenever j B i, while Rji = −dVi
Vi

< 0 whenever i B j. These facts imply that ∆m = ∆n

whenever m,n 6= i. We now prove that ∆i > 0 and ∆j < 0 ∀j 6= i. By contradiction, suppose

that ∆j ≥ 0 for some j 6= i. Then actually ∆j > 0 for all j 6= i. Because market shares must

integrate to unity, it follows that ∆i < 0, which is impossible because ∆i = ∆j + Rij > 0.

We conclude that ∆i > 0 while ∆j < 0 ∀j 6= i, which further implies that only the market

share of i increases. The claimed proportionality in the decreasing market shares of the other
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agents follows directly from ∆m = ∆n, m,n 6= i. �

Proof of Proposition 17 The equilibrium equation is

g(i) ≡ 2αpiT + β = γcip
γ−1
i T γ ≡ ϕ(i). (53)

We first use the procedure in Section 3.4 to determine the sign of T ′(α). Implicit differenti-

ation of (53) for given T > 0 shows that

pT (i;T ) = −gT (i)− ϕT (i)

gp(i)− ϕp(i)
= − 2αpi(1− γ)− βγ/T

2αT (2− γ)− β(γ − 1)T/pi
< 0

The same type of calculation shows that pα(i;T, α) > 0, which allows us to conclude that

T ′(α) > 0 by the procedure in Section 3.4. To prove the claimed OR, we show that R > 0

uniformly using (9). Thus, we need to calculate the sign of A(i)−A(j) for any j B i. As

gα(i)

g(i)
=

2piT

2αpiT + β
,

gT (i)

g(i)
=

2αpi
2αpiT + β

it is easily verified that A(i)−A(j) > 0 proving that R > 0 uniformly.

We now show that R < 0 uniformly for dγ > 0. We first show that T ′(γ) < 0. We have

pγ(i;T ) = −gγ(i)− ϕγ(i)

gp(i)− ϕp(i)
=
cip

γ−1
i T γ (1 + γLn(pi) + γLn(T ))

2αT (2− γ)− β(γ − 1)T/pi
,

and thus pγ(i;T ) < 0 if 1+γLn(pi)+γLn(T ) < 0, where the last inequality holds as pi = ti/T

and ti > 1 by presumption. Together with pT (i;T ) < 0 this shows that T ′(γ) < 0 by the

procedure in Section 3.4. To prove that R < 0, we need to verify that A(i)−A(j) < 0. But

as
gγ(i)
g(i) = 1/γ+Ln(pi) +Ln(T ), both

gγ(i)
g(i) and gT (i)

g(i) are strictly increasing over agent types,

R < 0 follows from T ′(γ) < 0, which proves the second claim. �

Proof of Proposition 18 The equilibrium condition (4) is

g(i) ≡ V1 + (1− 2pi)V2 = cip
η−1
i T η ≡ ϕ(i), (54)

from which the first claim immediately follows as costs are neutral and V1 is a level variable

if V2 = 0. Hence, let V2 > 0. By Proposition B.2 (Appendix B.4.2) the marginal change
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dV1, dV2 causes an OR (IR) of p(·) if

z(p) ≡ dV1 + (1− 2p)dV2

V1 + (1− 2p)V2

verifies z′(p) > (<)0. The second claim follows from sign(z′(p)) = sign (dV1V2 − dV2V1).

The claim about wi follows from observing that dwi = 2dpi(1− 2pi), showing that wi must

behave like pi (as sign dwi = sign dpi) whenever pi < 1/2 ∀i. The remaining claim follows

from noting that Rij = 0 uniformly if z′(p) = 0. �
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B Supplementary Material (for Online Publication)

The purpose of this supplementary material is to provide additional results intended to

strengthen, elaborate and further generalize our inequality analysis.

Section B.1 proves the equivalence between the equilibria where agents compete directly

for market shares or indirectly via choosing their actions. Section B.2 establishes the exis-

tence of a unique equilibrium given Assumption 1. Section B.3 elaborates on the continuum

representation for atomistic agents. Section B.4 contains additional technical results on ro-

tations. Section B.5 demonstrates how to adopt the formal analysis to study inequality in

the Nash equilibrium of aggregative games.

B.1 Equivalence of equilibria

We show that the model, where the agents optimize (1) by choosing t(i) yields the same

equilibria as the model, where agents optimize (3) by directly choosing their market shares.

For simplicity, we refer to the model with payoff (1) as the “original model”, and to the model

with payoff (3) as the “transformed model”. Recall that an equilibrium of the original model

is given by (t, T ), where t is the equilibrium action profile, such that t(i) is the optimal action

for each i ∈ I, and T = Z(t). The following theorem shows that under the assumptions

made, any equilibrium (t, T ) of the original model corresponds to an equilibrium (p, T ) of

the transformed model, and vice-versa.

Theorem B.1 Suppose that (2) holds, and the market share function p(i, ·, T ) is bijective

for any given i ∈ I and any T ∈ R+.

1) If (t, T ) is an equilibrium of the original model and a function p : I → R+ is defined

by p(i) = p(i, t(i), T ), then (p, T ) is an equilibrium in the transformed model.

2) If (p, T ) is an equilibrium of the transformed model and t(i) = p−1(i, p(i), T ) for each

i ∈ I, then (t, T ) is an equilibrium in the original model.

Proof: Recall the notational convention that we write Π
(
i, p−1(i, p(i), T ), T

)
≡ Π (i, p(i), T )

for the payoff function where t(i) has been replaced by the unique corresponding value

p(i), instead of using a separate symbolic notation Π, Π̂ to explicitly distinguish between

Π(i, t(i), T ) and Π̂(i, p(i), T ). In particular, this means that Π(i, t(i), T ) = Π(i, p(i), T )

whenever p(i) = p(i, t(i), T ) or likewise t(i) = p−1(i, p(i), T ).

1) If (t, T ) is an equilibrium, then T = Z(t) and for each i ∈ I, t(i) maximizes (1). Let

p(i) ≡ p(i, t(i), T ) denote the market shares induced by (t, T ). Suppose now that (p, T )
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as constructed in the Theorem is not an equilibrium of the transformed model. Because∫ 1
0 p(i)di = 1 by (2), there then must be p̃(i) 6= p(i) such that Π(i, p̃(i), T ) > Π(i, p(i), T )

for some i ∈ I. Because t̃(i) = p−1(i, p̃(i), T ) 6= t(i) = p−1(i, p(i), T ) this likewise implies

that Π(i, t̃(i), T ) > Π(i, t(i), T ) in the original model, contradicting the optimality of t for

all i ∈ I.

2) Let (p, T ) be an equilibrium of the transformed model, with market shares p(i) ∈ R+.

Consider the action profile t defined by t(i) = p−1(i, p(i), T ), i ∈ I. Because market shares

p(i) inversely are determined by p(i) = p(i, t(i), T ) and 1 =
∫ 1

0 p(i)di =
∫ 1

0 p(i, t(i), T )di,

also Z(t) = T by (2). Now, suppose that (t, T ) is not an equilibrium of the original model.

Then, there is t̃(i) 6= t(i) such that Π(i, t̃(i), T ) > Π(i, t(i), T ) for some i ∈ I. Setting

p̃(i) ≡ p(i, t̃(i), T ) for these i ∈ I then implies that Π(i, p̃(i), T ) > Π(i, p(i), T ), contradicting

optimality of p(i) in the transformed model. �

B.2 Equilibrium existence and uniqueness

We prove that Assumptions 1-2 ascertain the existence of a unique equilibrium (p(i), T ).

Theorem B.2 (Existence and uniqueness) Any model with payoffs (3) that satisfy As-

sumptions 1 and 2 has a unique equilibrium (p(i), T ). All equilibrium payoffs Π(i) are posi-

tive, and p(·) is a bounded, decreasing and strictly positive density.

The proof evolves in two steps, reflecting the two requirements in the equilibrium defini-

tion. Its baseline reasoning is illustrated in Figure 1 in the main text. (A1) implies that

a unique optimizer p(i;T ) > 0 exists for any given T > 0 and any fixed i ∈ [0, 1]. This

follows because a zero market share is not optimal (g(i, 0, T ) > 0 = ϕ(i, 0, T )), the gains

from increasing one’s market share are limited (g(·, T ) bounded from above) and marginal

costs are strictly increasing in p(i) and unbounded. Uniqueness of this optimizer is im-

plied by strong quasiconcavity. (A2) then assures that there is a unique T > 0 such that∫
p(i;T )di = 1. To see why, suppose that g(i, p, T ) is bounded above and away from 0 for

any p ≥ 0 and any T > 0, consistent with (but stronger than) assumption (A2). Even the

best agent (i = 0) then seeks to make her market share p(i;T ) arbitrarily small because as

T →∞ marginal costs become arbitrarily large. Similarly, even the worst agent (i = 1) aims

at an arbitrarily large p(i;T ) if T → 0 and marginal costs become arbitrarily small. These

two facts imply that lim
T→∞

∫
p(i;T )di = 0 and lim

T→0

∫
p(i;T )di =∞, and existence of a T > 0

with
∫
p(i, T )di = 1 follows by continuity of

∫
p(i; ·)di. Uniqueness then follows from the

last assumption in (A2), which assures that
∫
p(i; ·)di is strictly decreasing at

∫
p(i, T )di = 1.
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Proof of Theorem B.2 The proof consists of two steps. i) Fix i ∈ [0, 1] and T > 0 arbi-

trarily. (A1) assures that the equation (4) has a unique solution p(i;T ) > 0, and that this

solution indeed maximizes (3) given T . Now, consider the function p(i, T ) ≡ p(i;T ), not-

ing that p(i, ·) is a strictly decreasing C1-function on (0,∞) as a consequence of the Implicit

Function Theorem, the strong quasiconcavity assumption in (A1), and the last assumption of

(A1). Moreover, p(·, T ) must be a decreasing function by Assumption 2 and, hence, p(·, T ) is

integrable over [0, 1], so let G(T ) ≡
∫ 1

0 p(i, T )di, noting that G is differentiable. ii) We show:

∃! T > 0: G(T ) = 1. Fix i ∈ [0, 1]. By (A2) there must exist Ti > 0: g(i, 1, Ti) = ϕ(i, 1, Ti).

Therefore, ∃T0 > 0 such that p(0, T0) = 1. Because p(i, ·) strictly decreasing, it follows that

p(0;T ) < 1 for T > T0. Since p(·, T ) is decreasing, we must have p(i, T ) < 1 for any i ∈ [0, 1]

and T > T0, which implies that lim
T→∞

G(T ) < 1. Similarly, it follows that ∃T1 > 0 such

that p(1;T1) = 1. Thus p(i, T1) > 1 for i ∈ [0, 1] and T < T1, hence lim
T→0

G(T ) > 1. As

G(·) continuous, ∃T > 0 such that G(T ) = 1, and uniqueness follows from the fact that, for

each i ∈ [0, 1], p(i;T ) and hence G(T ) is strictly decreasing in T . Finally, Π(i) > 0, because

p(i) = p(i;T ) > 0 is the unique maximizer and Π(i)|p(i)=0 = 0. �

B.3 Continuum representation for atomistic agents

We illustrate that the equilibrium distribution in case of n ∈ N atomistic (“discrete”) agents

can be identified with our finite step density model. The following argument considers

the case, where heterogeneity enters the model through a cost coefficient function as in

(5). This should suffice to make evident that the representation result applies similarly to

other cases as well. Consider a population consisting of n ∈ N atomistic (or “discrete”)

agents, indexed by {1/n, 2/n, ..., 1}. Suppose that the agents differ in their cost coefficient

c(i), i ∈ {1/n, 2/n, ..., 1}. Then, the agents can be partitioned into 1 ≤ K ≤ n groups

of identical agents, with group size nk,
∑

k nk = n. This partition gives 1 ≤ K ≤ n

equivalence classes (groups) of sizes n1, ..., nK ,
∑

k nk = n. We identify each group by a

“representative” agent ik. In equilibrium every agent (i/n) chooses pd(i/n) (d for “discrete”)

to maximize her payoff Π(i), where pd(i/n) must satisfy
∑n

i=1 p
d(i/n) = 1. Let p(i) denote

the (step) density function that characterizes our (continuum) equilibrium from definition

1 with the corresponding cost step function c(i) = c(ik) on [ik, ik+1), and group measures

γ1, ..., γK satisfying γk = nk/n. We now establish the formal equivalence between the discrete

equilibrium probability distribution
{
pd(1/n), ..., pd(1)

}
and the equilibrium step density

p(i).
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Theorem B.3 (Continuum Representation) Let n ∈ N and suppose that agents are

partitioned in K cost groups. If
{
pd(i/n)

}
corresponds to the discrete equilibrium and p(i) is

the equilibrium (step) density of the respective continuum problem, then pd(i/n) = 1
np(i/n)

is satisfied for all i ∈ {1, ..., n}

Proof: In the continuum case we only have to solve the optimization problem for a rep-

resentative agents ik. In the discrete equilibrium 1 =
∑n

i=1 p
d(i/n) =

∑K
k=1 p

d(ik)nk. The

claim now is that 1
np(ik) = pd(ik) for k = 1, ...,K. But because in the continuum equilibrium

we must have

1 =

∫ 1

0
p(i)di =

∑K

k=1
p(ik)γk =

∑K

k=1

(
1

n
p(ik)

)
nk

the claim follows from the uniqueness of equilibrium. �

Hence the continuum step-function case and the atomistic case are equivalent up to the

multiplicative constant 1/n (independent of group composition), which means that we can

work with either model, and justifies our procedure of the main text. It then also follows

that p(ik)γk = pd(ik)nk corresponds to the market share of a member of group k, illustrating

why we used the notion of a “representative” agent.

Because Theorem B.3 remains valid as n grows arbitrarily large, this provides the following

justification for using strictly increasing cost coefficient functions (Class II) as an approxima-

tion for the case of many different agents. Suppose that c(i) is a Class II function defined on

[0, 1] (e.g., c(i) = 1+i), and let p(i) = p(c(i)) denote the corresponding equilibrium density (a

strictly decreasing, continuous function). Then, because c(i) is continuous on a compact in-

terval, for n ∈ N the sequence of step functions defined by cn(i) = c(i) if i ∈ {0, 1/n, 2/n, ..., 1}

and cn(i) = c(s/n) for i ∈ (s/n, (s + 1)/n), s ∈ {0, 1, ..., n − 1}, converges (uniformly)

to c(i) as n → ∞.47 Consider the atomistic equilibrium distribution pd(i/n) induced by

c(0), c(1/n), c(2/n), ..., c(1). By Theorem B.3, npd(i/n) = p(i/n), where p(i/n) is the step-

density version of pd(i/n). More precisely, for a given n ∈ N this density is a decreasing finite

step function with pn(i) = p(cn(i)), where cn(i) is as defined above. Because cn(i) → c(i)

and p(i) is continuous, we have p(i) = p(c(i)) = p(lim cn(i)) = lim p(cn(i)) = lim pn(i).

This shows that while, of course, the atomistic pd(i/n) becomes arbitrarily close to zero as

n grows large, the “scaled” distribution law as captured by the step-density version p(i/n)

approaches p(i).

47Such approximations of continuous functions by a sequence of step functions are a standard result in real
analysis and integration theory.
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B.4 Rotations: Further Results

B.4.1 Ratio Test

We prove that condition (11) from Section 3.3.2 indeed implies a rotation of p(·).

Proposition B.1 Suppose that ∞ > p(·;x′), p(·;x) > 0 are right-continuous, decreasing

SSD densities with similar equivalence classes [i]. If (11) holds, then p(·;x′) is an OR (IR)

of p(·;x).

Proof: Let g(i) ≡ p(i;x′)
p(i;x) . Because p(·;x′) and p(·;x) both are SSD densities with similar

equivalence classes, (11) implies that g(·) is not constant on (0, 1): ∃i0 ∈ (0, 1) such that

g(i) > g(j), i < i0 ≤ j. Further, g(·) is right-continuous, and by (11) also decreasing.

We first claim that g(0) > 1. Suppose, by contradiction, that g(0) ≤ 1. Then g(i) ≤ 1,

i ∈ I, and additionally g(j) < 1 for j ≥ i0. This implies that p(i;x′) ≤ p(i;x), i ∈ I,

and p(j;x′) < p(j;x) for j ≥ i0. Hence
∫
p(s;x′)ds <

∫
p(s;x)ds, contradiction. Therefore

g(0) > 1; a similar argument shows that g(1) < 1. Because g(0) > 1 and g(·) is right-

continuous, the set {i : g(i) > 1, i > 0} is non-empty, and we let i0 ≡ sup{i > 0 : g(i) > 1},

noting that i0 ∈ (0, 1). Because g decreases and g(1) < 1, the set {i : g(i) < 1, i ≥ i0} is

non-empty, and we set i1 ≡ inf{i ≥ i0 : g(i) < 1}. If i0 = i1, then p(i;x′) > p(i;x) on (0, i0),

and p(i;x′) < p(i;x) > 0 on (i0, 1]. If i0 < i1 then g(i) = 1 on (i0, i1). These facts together

imply that p(·;x′) is OR of p(·;x); the case on an IR is proved similarly. �

B.4.2 On the Direct-Aggregative Effect

By Theorems 1 and 2, the sign of the direct-aggregative effect is crucial for studying the

inequality effects. In this section we search for the determinants of sign(Rij) in terms of

primitives. We concentrate on the multiplicatively separate case where ϕ(i) = ϕ(i, p)C(T )

as many of our applications feature such a cost function.

Proposition B.2 Let ϕ(i) = ϕ(i, p)C(T ), and define h(i, p, T ;x) = Ln (g(i, p, T ;x)). If

hx(i, p, T ;x0) ≥ hx(j, p, T ;x0), hT (i, p, T ;x0) ≥ hT (j, p, T ;x0) ∀j B i,

hT (i, p′, T ;x0) ≥ hT (i, p, T ;x0), hx(i, p′, T ;x0) ≥ hx(i, p, T ;x0) ∀i and any p′ > p,

where at least one of the above inequalities is strict, then R is uniformly positive at x0. If

all inequalities are reversed (and one strict so), then R is uniformly negative at x0. Finally,

if all inequalities are equalities, then R is uniformly zero at x0.
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Proof: We only prove the uniformly positive case (the negative case is established by the

same type of arguments). We need to show that for

A(i) =
gT (i)

g(i)
T ′(x) +

gx(i)

g(i)

we have A(i) > A(j) whenever jB i. So take any jB i. First, hT (i, p′, T ;x0) ≥ hT (i, p, T ;x0)

and hT (i, p, T ;x0) ≥ hT (j, p, T ;x0) yield

hT (i, p(i), T ;x0) ≥ hT (i, p(j), T ;x0) ≥ hT (j, p(j), T ;x0)

and because T ′(x) > 0 (see Lemma 3, Section 3.4) and hT = gT
g we have

gT (i)

g(i)
T ′(x) ≥ gT (j)

g(j)
T ′(x),

where the inequality is strict, whenever at least one of the initial inequalities is strict. Second,

hx(i, p, T ;x0) ≥ hx(j, p, T ;x0) and hx(i, p′, T ;x0) ≥ hx(i, p, T ;x0) yield

hx(j, p(j), T ;x0) ≤ hx(j, p(i), T ;x0) ≤ hx(i, p(i), T ;x0)

and hence also
gx(i)

g(i)
≥ gx(j)

g(j)

where, again, the inequality is strict if one of the previous inequalities is strict. This shows

that Rij(x0) > 0. Finally, is all inequalities are equalities, the condition in Proposition B.2

is equivalent to multiplicative separability of g(i) in (i, p) and (T, x), meaning that x must

be a level variable, and the last claim follows from Corollary 3. �

Proposition B.2 contains the inequality analysis of the contest model from section 5.2 as the

special case, where marginal benefits in (4) are independent from p and T . In such a case,

Proposition B.2 tells us that only the direct effect of dx matters for the inequality effects.

In particular, incentives to increase market shares are relatively stronger for strong agent

types iff marginal benefits increase proportionally more for these types, i.e., iff dg(i)/g(i) >

dg(j)/g(j) holds for j B i. In the more general case, where marginal benefits depend also

on p and T , the above effect is mitigated. For example, a positive shock dx > 0 increases T

by Lemma 3, and the direct incentive effects of dx > 0 are either reinforced or weakened in
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response to dT depending on gT .48

As another application, suppose that marginal benefits can be written as a power function

of the form

g(i, p, T, x) = u(i)v(T ;x)pξ(T ;x),

Proposition B.2 then implies that R is determined solely by the elasticity function ξ(T, x).

In particular, R is uniformly positive if ξT , ξx ≥ (≤)0 with one strict inequality, and R = 0

uniformly if ξ is constant.

B.5 Market Inequality in the Nash Equilibria of Aggregative Games

The aim of this section is to exemplify, by means of a simple application from contest theory,

that the approach of this paper can be applied to study inequality effects in aggregative

games with payoffs of the form (1). The only essential difference to the setting of the main

text is that in an aggregative game the individual agents take into account the effects of

their own actions on the aggregate in a Nash equilibrium. If the aggregate T in payoff (1) is

not exogenous to the individual player, it is not obvious whether and how our distributional

tools may be used to study the inequality effects.

We now exemplify how our approach can be adjusted to be fruitful also in this more cum-

bersome case. The way how we proceed to use our inequality tools if individual players take

into account their impact on the aggregate is general, and can be used in any other aggrega-

tive game with a differentiable structure as well. Note that there is little loss in assuming a

sum-aggregative structure of such games, because any aggregative game with a well-behaved

aggregator (differentiable and coordinate-wise strictly monotonic) is strategically equivalent

to a sum-aggregative game (Cornes and Hartley, 2012).

In Section 5.2 we analyzed a contest model under the assumption that individual agents take

the aggregate T =
∫
t(i)di as given when choosing their effort, while T was endogenous to

the model. We now study the same model, assuming that each of finitely many agent types

takes its own effect on the aggregate into consideration. Consider a fixed-prize contest with

n atomistic agents and payoffs

Πi =
ti∑
ts
V − Φ(i, ti) (55)

48Particularly, if gT > (<)0, then R > 0 is more likely to result if the increase (decrease) in marginal
benefits triggered by dT > 0 affects the strong agent relatively more (less).

7



Define the market share pi = ti/T as before, with T ≡
∑
ts. Let Ti ≡

∑
s 6=i ts. Because

T = Ti + ti and ti = piT we obtain t(i) = pi
1−piTi. Thus we can restate (55) in terms of own

market share as

Πi = piV − Φ

(
i,

pi
1− pi

Ti

)
, (55’)

where Ti is exogenous to player i. A Nash equilibrium is a probability vector (p1, ..., pn) and

an aggregate T > 0 such that Ti = (1− pi)T and p(i) maximizes (55’).49 Thus, any interior

Nash equilibrium satisfies the FOC system

V =
ϕ(i, piT )

1− pi
T. (56)

Because (56) is of the form (4), we can apply the inequality tools from Section 3 as they are

to study the inequality effects as we did in the main text.50

One question of self-interest is whether the inequality predictions are sensitive to the

change in the equilibrium concept. For example, Acemoglu and Jensen (2010) find that

sometimes individual strategies may respond differently to exogenous shocks if players take

their impact on the aggregate into account. In this respect, the following proposition shows

that we find the same inequality effects induced by an increase in the common prize value

dV > 0 in case of Nash equilibria, at least in the present contest model.

Proposition B.3 The inequality effects induced by dV are determined by the t-elasticity of

marginal costs alone. If Φ(i, t) = cit
γ, then p(·) is invariant to x. If Φ(i, t) = ctγi such that

pi is of Class I, then dV > 0 causes an OR of p(·).

Proof: Evaluating (9) in case of (56) and using ti = piT yields

sign(Rij) = sign

(
ϕt(j, tj)tj
ϕ(j, tj)

− ϕt(i, ti)ti
ϕ(i, ti)

)

proving the first claim. With iso-elastic costs we obtain ϕ(i, piT ) = γcipi
γ−1T γ−1. By (56),

this implies that
cj
ci

=

(
pi
pj

)γ−1(1− pj
1− pi

)γ+1

,

from which Rij = 0 follows. A similar argument together with the fact that T ′(V ) > 0 shows

49It is straightforward to verify by the same arguments we use in Theorem B.3 that this characterization
of Nash equilibrium is equivalent to the standard one.

50A formal advantage of the model in the main text is that it yields a more tractable structure. The
respective FOC is V = ϕ(i, piT )T . For given pi, T marginal costs are thus higher if the own effect on the
aggregate are taken into account. This is intuitive, because an increase in t(i) also increases T which, ceteris
paribus, decreases ti/T .
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that Rij > 0 if Φ is iso-elastic with exponents γi that increase over agent types, which shows

the OR of p(·). �
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